Reducibility and solvability of some classes
of Kryuchkov binary tree pairs

Maria Madonia and Giuseppe Scollo

Department of Mathematics and Computer Science
University of Catania
V.le A. Doria 6, 1-95125 Catania, Italy

{madonia,scollo}@dmi.unict.it

Submitted: Apr 30, 2011; Accepted: Dec 22, 2011; Publisided: 2, 2012
Mathematics Subject Classification: 05C05, 05C15, 05C2230

Dedicated to Doron Zeilberger on the occasion of his siktlatthday

Abstract

This paper addresses the problem of characterizing cladsssrs of binary trees of equal
size for which a signed reassociation sequence, in the dli#ryuchkov sense, can be
shown to exist, either with a size induction hypothesisfofole pairs), or without it (solv-
able pairs). A few concepts proposed by Cooper, Rowland aildetger, in the context of
a language-theoretic approach to the problem, are heremafated in terms of signed re-
association sequences, and some of their results areedeast proven in this framework.
A few strategies, tactics and combinations thereof foretigreassociation are introduced,
which prove useful to extend the results obtained by theeafientioned authors to new
classes of binary tree pairs. In particular, with refereticpath treesi.e. binary trees that
have a leaf at every level, we show the reducibility of pairseve (at least) one of the two
path trees has a triplication at the first turn below the teplleand we characterize a class
of weakly mutually crooked path tree pairs that are neitleelucible nor solvable by any
previously known result, but prove solvable by approprigassociation strategies. This
class also includes a subclass of mutually crooked patipaiee. A summary evaluation of
the achieved results, followed by an outline of open quastand future research directions
conclude the paper.

1 Introduction

The Four Colour Theorem (4CT), is a paradigmatic case ofriateapplicability of methods

and results that are offspring of research on translatietsden different frameworks, because
of the several equivalent formulations of the planar mapwohg problem. One of the earliest
cases of this phenomenon is a well known result by Tait [1(), thht shows the equivalence
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between the 4CT witlvertex colouringand the 3CT withedge colouring The latter means
proper colouring of edges rather than vertices of a planandgulation, where “proper” means
the condition that adjacent edges, i.e. border of a sameguiar face, must be assigned dif-
ferent colours, whereas adjacent vertices must be assdjfiecent colours by a proper vertex
colouring.

The 4CT was first proven by Appel and Haken[1, 2] using substtecomputing resources.
The currently most parsimonius proof of the same kind is\W8jere reducibility still requires a
fairly impressive 633-case analysis. An equivalent stat@nof great relevance to the present
work, is the Eliahou-Kryuchkov (EK) Conjecture (which aalfy holds, thanks to the afore-
mentioned proofs of the 4CT, but one should like to get anpeddent proof of its validity,
hoping to find a combinatorially simpler proof of the 4CT thaty), that owes its name to the
independent findings in [7], where the problem is formulatetgrms of signed reassociation of
binary trees, and in [4], dealing with signed diagonal flippkanar triangulations. Kauffman
[5] has a similar reformulation in terms of the vector crggeduct algebra. In his more recent
work [6], the connection between that reformulation andEkeConjecture is elucidated, and
a nice feature of the reassociative approach is pointedrmobis words: “Here is a remarkable
game! [...] These reassociation moves on the coloringsateplarly nice in that they do not
involve changing the colors only reconfiguring the graphisigame is indeed going to be the
main business in the present paper.

A language-theoretic approach toward an independent pifdoauffman’s Theorem is pre-
sented by Cooper, Rowland and Zeilberger in [3], which isrttan source of inspiration for
the present work. An especially interesting feature ofrthpproach is that, besides proving the
solvability of specific families of problem instances, ivegl cases it also provides an explicit
count of the number of solutions to given instances, theteimpvering fruitful links between
formal language theory and enumerative combinatorics[IBg binary parse trees considered
in [3] are well suited to represent edge 3-colourings of thieic graph that is obtained by join-
ing the roots and pairwise, in left-right reverse order,l#aes of two binary trees of equal size
that have a common parse word. Tree vertices thus correspogdies of the cubic graph so
obtained, and thereby as well to edges of the triangulatidtheosphere where each triangular
face bijectively corresponds to a vertex of the cubic gragid each edge in the triangulation
corresponds to that edge in the cubic graph which joins tinéces which correspond to the
faces which share the given edge as common border in thetdi@tnon.

Pairs of binary trees of equal size are also well suited toessgnt the signed reassociation
version of the edge 3-colouring problem [4, 7], but under mewhat different, albeit related
labelling and interpretation. The relationship is easigyetmined by considering that solutions
of the edge 3-colouring problem are unique up to colour péatian, whereas in the signed
reassociation version of the problem each sign represem@sobthe two classes of circular
permutations of the three colours, viz. clockwise and #&mtlovise [8, 5], and solutions are
unique up to sign permutation.

A solution of the signed reassociation problem is a signgassent to the internal vertices
of either tree in the pair that allows a sequence of signesksmaation moves that turns its tree
structure to that of the other tree in the pair. Signed re@ation moves look like applications
of the associativity rule for a binary operation whose tearesrepresented by the subject trees,
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Figure 1: Signed reassociation

but such applications are only allowed if the vertices wlanodjoined by the upper-staying edge
involved in the move, which we shall refer to as tkassociated edgare equally signed; their
signs are changed (for both vertices) as an outcome of the mov

Figure 1(a) displays a signed reassociation of term (12)328), while Figure 1(b) gives
a pictorial representation of the signed reassociatioa fwhich is obviously symmetric, viz.
signed reassociation moves are reversible), in the gecasd where the reassociated edge
e has sibling and children edges that are not necessarilyinalradges, viz. incident with a
leaf. Terminal edge cases are just similar, obtained framgicture by replacing subtrees with
leaves.

From any solution of the signed reassociation problem disolof the 3-colouring problem
is determined by an arbitrary colour choice for the root ad thnary parse tree, and then by
recursively determining the colours of each pair of sibliggtices according to the colour of
their parent vertex in the parse tree and to its sign in theesigree, that tells whether the 3-
colour sequence for parent and (ordered) siblings is to bekalise or anticlockwise. In this
way, since the set of solutions of each instance of the sige&ssociation problem is closed
under sign complementation, from each pair of equivaleat §ign-complementary) solutions
in this set one gets six colour permutation equivalent smhstof the corresponding instance of
the 3-colouring problem.

Sign complementation equivalence of solutions for theeiilyieassociation problem may be
factored out if one replaces vertex sign labels with (inpdyrelation labels for internal edges,
viz. those edges which connect internal vertices of therpitrae. The so denoted (in)equality
relation is indeed that between the signs of the internaioes joined by the labelled edge.
This obviously requires a coherent reformulation of thensijreassociation rule, whereby the
reassociated edge of an edge-labelled reassociation mogquired to bear the equality label
before the move, and keeps that label after the move, whamasther of its four possible
neighbour internal edges, viz. parent, sibling and up todhitdren edges, gets its label com-
plemented after the move.

Signed (or edge-labelled) reassociation moves preseafeoleer, so it is convenient to
endow leaves with identifiers, such as their ordinal positioleft-to-right sequential order (or
anticlockwise around the tree root). Since solutions alieeted by successful reassociation se-
guences, as we are going to see, itis as well convenient tmeimternal edges with identifiers,
in order to represent those sequences. Search of solutiapdbencarried out by starting with
either tree in the given pair as initially unlabellsdurcetree of the reassociation sequence, and
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Figure 2: Edge-labelled reassociation

then exploring subsequent reassociation moves aimed anoly the othertargettree struc-
ture; edge labels are introduced “by need” along the se#nahjs to say, the reassociated edge
of a reassociation move is required to bear the equalityl labeo label before the move, and
in both cases it takes the equality label after the move, @dserany otherof its four possible
neighbour internal edges that is labelled before the moteitgelabel complemented after the
move, whereas it stays unlabelled if so is before the movehithway, for each given source
tree, there is a map which sends each allowed sequence ebogasONn moves to a tree of the
same size and with a partial labelling of its edges. This aeduan equivalence relation on
allowed reassociation sequences for the given sourcethrates the map kernel equivalence.

Figure 2(a) depicts the edge-labelled reassociation pdeied above, for the general case
where all four neighbour edges may be internal ones, witlasgorackets denoting optionality
of labels, and label complementation denoted by overlimhabels. Again, terminal edge
cases are just similar, obtained from this picture by raptasubtrees with leaves (terminal
edges are always unlabelled, of course). Furthermoreg thiéess are oriented, since the optional
equality label on edge in the left-hand-side tree is not optional in the right-hasde tree—
it is “produced” by the rule application. However, thesessziation rules are closed under
chiral symmetrythat is to say, each rule has a chiral mirror image one, wledteight edge
orientations are switched. Figure 2(b) shows the edgdiabéee produced by an allowed
reassociation sequence on a given, unlabelled tree.

(In)equality labelling of internal edges enables parsiimoos pictures of problem instances.
Binary trees of interest here aoempleteones,i.e. every internal vertex is the parent of two
children vertices. One may equivalently say that everyin@bedge is the parent of two children
edges. Now, since only internal edges are labelled, tefrattges may be safely disposed of in
the picture of the binary tree (thus roughly halving the nemdf edges explicitly represented),
or replaced by a leaf number when needed. For instance,d-8{aj gives the same information
as Figure 2(b), but by only displaying the internal etigekbone®f the subject binary trees,
which in this case happen to be path trees (hence backbanpats).

Figure 3(b) illustrates the solution, produced by the giveassociation sequence for the
subject problem instance, expressed as a (total) assigroh¢im)equality relation labels to
internal edges. In this case, the labeling produced by tagsgiation sequence on the target
tree happens to be total, therefore it represents a singéi@o to the reverse reassociation
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Figure 3: Backbone representation of reassociations ardlofions

problem though. In order to find the corresponding solutiorhte original problem, viz. a
labelling of the source tree, one may apply the reverse oe&gson sequence to the labelled
target tree just obtained. In general, the labelling of trget tree produced by a successful
reassociation sequence need not be total, and it provides af solution®f cardinality 2,
wherek is the number of unlabelled internal edges in the producegttaree.

2 Basic concepts, terminology and notation

As mentioned at the end of Section 1, allowed reassociatguences generally produce a
partial assignment of (in)equality relation labels to exlgé the reassociated tree. A binary
tree endowed with such a partial assignment will be refetoedls aconstrained tree A pair

of (possibly constrained) binary trees of the same sizgolgableif there is a reassociation
sequence from either tree, taken as source tree, thatvsaadlby its constraints and turns its tree
structure into that of the other, target tree, while prodga constraint assignment that extends
the given one on the target tree, under the appropriate regeoh edges that is determined by
the tree structure matching. While the EK Conjecture am®tmsolvability of every pair of
unconstrained binary trees of equal size, not all pairs oktrained ones are solvable.

A pair of (unconstrained) binary trees of equal sizeeducibleif it is solvable under the
size induction hypothesis that all pairs of smaller (yetadly) sized, unconstrained binary trees
are solvable. Most often, reducibility of a given tree pairshown by exhibiting a specific,
smaller tree pair, together with an effective way of gettingolution for the given pair out of
any solution for the smaller one. Clearly, if a tree pair dueible to a solvable tree pair, then it
is solvable, too.

Owing to closure of reassociation rules under chiral synmmdtoth solvability and re-
ducibility are also closed under chiral symmetry. More jBely, let (s’, t') be the pair of chiral
images of a given tree pais(t); if the latter is solvable and: is a successful reassociation
sequence — t, then also {, t') is solvable, with the same successful reassociation segue
s" % t/, whereas if the solvability of the given pai, ¢) is reducible to that of a smaller-sized
pair (s”,t"), then the solvability of {,¢') is reducible to that of the pair of chiral images of
(8”, t”).

Two relevant cases of reducibility are put forward in [3z.xdlecomposabilityf a tree pair,
and existence of &iplication of the same triple of consecutive leaves in both trees, oneas
shall say, eshared triplicationof leaves in the pair; that is to say, there exists a tripleeaf/es
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(7, +1, i+2) whose parent vertices are connected by a 2-edge pathhriiees. Those binary
tree pairs which have no shared triplication are calledkly mutually crookeah [3], whereas
mutually crookedree pairs are those which have steared duplicationmeaning that no pair of
consecutive leaves,(i+1) have their parent vertices connected by a 1-edge patbtinttees.
While tree pairs which fail to be weakly mutually crooked ah®wn to be reducible in [3], the
reducibility of the larger class of non mutually crookedetqgairs is only conjectured.

When considered in terms of reassociation sequences, gesatility delivers the possi-
bility of constructing a successful sequence as a pardildfle of subsequences thereof, which
are defined on pairwise disjoint sets of internal edges; aattemof fact, one may decompose
the subject tree pair into a set of smaller tree pairs whiehuiee mutually independent solu-
tions. It so happens that this possibility also exists in s@ases where the subject tree pair is
not decomposable in the sense of [3], such as the followmglsi one.

In Section 5.3 of [3] the decomposability of path tree paitthwommon top leafi(e.taking
the same ordinal position in the leaf ordering in the two gjes pointed out, so these pairs
are reducible. One may equivalently say that path tree pdtts covariant(that is, equally
oriented) top (internal) edges are reducible. This statgnseamenable to a small generaliza-
tion, where reducibility is warranted unless the 2-edgepaths consist of edge pairs that are
covariant in each tree ar@bntravariant(that is, not covariant) with respect to the other tree.
Edges hereafter referred to are internal ones, unlesswigestated.

Proposition 2.1. If a path tree pair §,t) has a shared duplication at the top, or if at least one
of their pairs of top leaves is not duplicated, thent{ is reducible.

Proof.
The shared duplication case is an instance of the decomitisahse mentioned in Section
5.3 of [3], thus only the case where top edges are contramatigserves further consideration,
with at least one of the trees having its top leaf pair not ibapéd by hypothesis. Without loss
of generality, one may assume source tsde be duplication-free at top level (otherwise the
following argument applies to the converse pair, with reuglity of successful reassociation
sequences completing the proof). Then reassociation ofafheedge ofs makes this edge
covariant with the top edge af with both trees having the same leaf at the top level, and
the (s, t) solvability problem then reduces to that of the smallee tpair ', '), wheres’ is
the subtree just below the top edge in the tree resulting tlemreassociation, whilg is the
subtree of just below its top edge. K is the top edge of and« is a successful reassociation
sequence forg(, t'), thenea is a successful reassociation sequencesai (wherea exists by
size induction hypothesis, singéis unconstrained. O

It is instructive to see why the path tree pair explicitly satered in the proof of Prop. 2.1
fails to be decomposable in the general case. Figure 4(plagsthe first, top edge reassocia-
tion move, in the backbone-only representation of pattstree one of the two possible relative
orientations of contravariant top edges of the two trees {titner case being the chirally sym-
metric one). It is apparent that the target path teeg, the left-hand-side tree in Figure 4(b),
does form a decomposable pair with tl@erivativeof the source tred,e. the tree resulting
from thee-reassociation move, rather than with the source tree angwhile the derivative is
a constrained tree, the produced constraint is confinedetoipiper, 1-edge subpath of the tree
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backbone. This already matches the corresponding subpétle target backbone, so no fur-
ther change is needed there, while the rest of the sourcba@done is wholly unconstrained.
Figure 4(b) ilustrates top edge reassociation as first mdwenvihe first two top edges in the
source tree are covariant, viz. the tree has a top level capin; the derivative is not a path
tree in this case, which fact motivates the choice of the prathwith nonduplicated top leaves
as source tree in the proof.

n 1 =
() (b)

Figure 4: Top edge reassociation as first move

A special case of decomposability of general binary treesygn in Prop. 9 of [3], gives
the opportunity to introduce a basic tool in the developnoéiihie present work. The statement
under consideration asserts the reducibility of any paibiofry trees (of the same size, this
will be henceforth understood) that share a paiboftom leavesviz. consecutive leaves that
are each other’s sibling. For example, in Figure 2(b), leal@ are bottom leaves in the left-
hand-side tree, whereas this property is recognized inee@v4 of the right-hand-side tree.
A bottom leaf pair shows up in the backbone-only represemaif binary trees as the pair of
leaves attached tomottom edgén the backbone, that is a backbone edge with no backbone edge
underneath. For example, edgés a bottom edge of the right-hand-side tree in Figure 4(b).

While the cited statement points out the possibilityeipandany solvable pair of trees by
replacing any shared leat€d. leaves that take the same ordinal position in the leaf andan
the two trees) with a shared pair of bottom leaves, the caevaperation, which may be termed
bottom edge contractian the present context, turns out to be a useful solutiorcéganl. This
operation may be applied to both trees in a pair when theyesh#ottom leaf pair; it consists
in replacing the bottom leaf pair, together with the bottalgeincident with it, by a single leaf
(by a terminal edge actually, not displayed in the backb@peasentation of the binary tree),
hereby obtaining a pair of trees of smaller size. This opanat applicable regardless of any
constraint on the contracted bottom edge in either tree.sirfigde leaf (attached to the terminal
edge) which replaces the contracted bottom edge, is refférras arabstraction leaf

Bottom edge contraction plays also a role in a simple prégebd another reducibility case
from [3] (Prop. 10 there), viz. that of any pair of trees wharpair of bottom leaves in either
tree is duplicated in the other. This amounts to a reassoniatove on the edge joining the
duplicated leaves, that turns them into a pair of bottomdeathus enabling the subject edge
contraction. Such a move is always allowed if it is the firsts®ociation of the edge in question,
otherwise it is only allowed if the edge is labelled by the ‘tdnstraint. In the present context,
where the choice of the source tree for the reassociatiameseg is made aforehand, it is useful
to distiguish betweetarget bottom edge contractipwhen the duplicated pair of leaves is in the
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source tree (while it is a bottom leaf pair in the target treedsource bottom edge contraction
in the other case. K is the contracted edge ands a successful reassociation sequence for the
contracted tree pair, theswv is a successful reassociation sequence for the origiraliae in
the case of target bottom edge contraction, whesegis such a sequence in the case of source
bottom edge contraction. In the latter case, siad&s no occurrence in, the reassociation
move, that is needed to turn the bottom leaf pair into a daf#d one after the reassociation
sequence, is always allowed if edgés unconstrained in the source tree before its contraction.
Reduction to a pair of smaller trees by the aforementionegktbases of bottom edge con-
traction may be expressed by using the following notatieetcle {B,SB,78} denote the bottom
edge contraction type, resp. shagattom leavessourcesottom edgeyargetsottom edge. We

write (s, t) i (¢, ") if one of the following conditions holds:

e cisB and s',t' resp. result from contraction of bottom edgen s, and of the corre-
sponding bottom edge it i.e. that which has the leaf pair in the same ordinal position
underneath in;

e ciSTB, e is the connecting edge, not labelled by™ 6f two duplicated leaves in source
trees that are bottom leaves in target tre@nds’, ¢’ resp. result from contraction of edge
e in s and of the corresponding bottom edge;in

e cis SB, e is an unconstrained bottom edge in source teghile its corresponding edge
in target tred is the connecting edge of two duplicated leaves, @&ndresp. result from
contraction of edge in s and of the corresponding edgetin

Tree pair reduction by bottom edge contraction may occuatieely, in which case the abstrac-
tion leaf resulting from a previous reduction step may ftbelinvolved in further contractions.
It is then useful to introduce a convenient notation for edxston leaves which result as a
cumulative outcome of a sequence of edge contractionse $awes which are joined in a con-
traction step are always consecutive ones in the leaf otdegves handy to let:¢—n) denote
the abstraction leaf resulting from a sequence of contrastwhich has joined all leaves in the
closed intervalin, n], with m < n. Of course, this notation does not tell how the abstraction
leaf is to be expanded to the subtree it stands for, neithderivatives of the original source
tree nor in the original target tree. This information mayrbeovered from the context, viz.
the sequence of individual contraction steps which prodube subject abstraction leaf; the
respectively corresponding expansion steps then appivierse order.

With path tree pairs, reduction to a pair of smaller treedde a&iable whenever the top leaf
is on the same side as in the target tree, such as it happensfter the reassociation move
in Figure 4(a), with a target tree structure as on the leftehside of Figure 4(b). The reduced
path tree pair then consists of the subtrees under the rfegpéap edges, which are removed
in the reduced tree pair together with the pair of top leavagually, this reduction technique
also applies to general binary tree pairs, provided thetkbanes have only one edge at the
top, these top edges in the two trees being covariant. Mash dhis condition is met by an
e-derivative of the source tree, wheeeis one of its top edges. In reduction steps it is thus
convenient to adopt a similar notation as for bottom edgedraction, by convening that is
the top edge contraction type designator. There is a diffaxethough; the designated edge in
a reduction by bottom edge contractiomist reassociated, whilst it is so, by our notation, in a
reduction by top edge contraction.
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Figure 5 displays a 5-step reduction sequence, whose oetapair of trees of identical
structure. The last two steps combine two reassociationes@xth a reduction step by top
edge contraction. The resulting reassociation sequenttersa = eabcaf. Reduction of
the B type requires no reassociation move, and thus producenstraint. This explains
why « has nod occurrence. Most of the produced constraints are not @sibthe reduction
sequence, since they apply to edges which are removed ictiedsteps. The constrained
a-derivative specifies a set of two solutions, correspontiinipe (in)equality label assigned to
the unconstrained edge. The reconstruction of the produced constraints, atitesolutions
determined by reverse reassociation, is left to the reaglanaxercise.

ag
b 7 [e] b
1< ¢ .
AN
e g 56)3 (34)(56)(34)(56)
s 460
3,4
? 2 _
[d] OB ] a ys /8
T 2, (3 6) 7,8 8 T
(3-6), 7 (3-6),7
(3-6), 7
(iii) 2,(3-6) (3-6), 7 (iv) (v)

Figure 5: Combined reassociation moves and reduction steps

3 Reducibility of path tree pairs with triplications

Two reducibility results are presented in this section. fiitseone is a reformulation of Theorem
17 from [3] in the present framework, that establishes tloeicéility of binary tree pairs with
shared triplications. This effort is useful, since it prd@s the constraint conditions which
are to be met in order to apply the related edge pair contradt constrained trees as well.
The second result is novel; it establishes the reducihdlitpath tree pairs, with turns in their
backbones, where one of the two trees has a triplicatioredirgt turn below the top level. The
triplication need not be a shared one.

Theorem 1. If a binary tree pair §,t), with s a constrained binary tree, has a shared tripli-
cation, where neither of the edges which connect the tapdid leaves i is labelled by “="
then (s, t) is reducible.
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Proof.
The solvability of ¢, t) is reduced to that ofs(, ¢'), which is obtained fromg ¢) by contraction
of the triplicated leaves, together with their pair of coatireg edges to a single leaf, hereafter
referred to as #iplication leaf. Since the corresponding expansion is to a 2-edge straajht p
it proves necessary to distinguish between its two possifdatations. Ifi,i+1,i+2 are the trip-
licated leaves, thetli+2 and:\:+2 denote the triplication leaf after contraction, togetivéh
the contracted edge pair orientation.
Now, leta = eje,...¢;, be a successful reassociation sequencesfot’), the following proce-
dure is claimed to map to a successful reassociation sequencedai (
Let s; = s', ands] be thee;-derivative ofs,_,, for 1 < i < k; let us say that; is aneighbour
edge occurrencehenceforth abbreviataueq of the triplication leaf inn, if edgee; is incident
with (the terminal edge leading to) it, as either parent blisg, in s;_,. The triplication ex-
pansion procedure replaces each snebwith a 3-edge sequence, and progressively applies
an appropriate edge renaming permutation toctreiffix following thatneq possibly already
renamed by previous applications of the same procedurén tBet3-edge expansion sequence
and the permutation depend on what kind of neighbour, vieemtaor sibling, the edge de-
noted by theneois, in the relevant derivative tree; furthermore, in theecaparent edge, the
permutation also depends on the relative orientation céifaedge and triplication leaf (of its
contracted edge pair, actually). Let = s, ands; be the expanded tree which corresponds to
si, for1 < i < k. Leth; andl; respectively denote the higher and lower edge of the 2-edtye p
connecting the triplicated leavesdp ;. Let g; be the image of; under sequential composition
of the renaming maps associated to the precedads of the triplication leaf in. The 3-edge
expansion oheoe; is g;h;l; if edgee; is the parent of the triplication leaf isf_,, whereas it is
gil;h; if ¢; is its sibling edge. The edge renaming permutation is defaydtie following maps
in the three subject cases, and is the identity elsewhere:
(i) covariant parent edgey; < I;;
(i) contravariant parent edge; — l;,l; — h;, h; — g;
(iii) sibling edge:g; — h;, h; — 1;,l; — g;

Figure 6 illustrates the application of the expansion ringse three subject cases, justifies the
previous definition of the edge renaming map, and is helgfauickly see the validity of the
stated claim. First, it is apparent that both edges conmgtlie triplicated leaves after appli-
cation of an expansion rule are labelled™ and that this is to be their label, if any, before
application of the rule; the hypothesis about triplicatexmge constraints is so justified. Fur-
thermore, expansion rules are context-preserving, uraeetlge renaming maps, with respect
to not only context tree structure, but also neighbour edgesiraints, as it may be inspected in
the picture. Expansion rules obviously preserve triplmabf the expanded leaves, which are
thus triplicated in the final derivative produced by the exgian ofa. This coincides with the
triplication expansion of, under the edge renaming map resulting from the sequermtiat ¢
position of the renaming maps associated to the triplicdgafneds in «, by induction on the
number of thos@eds. O

Any tree pair where one of the trees has a turnfree path baekisoeasily solvable; in the
case of path trees, with a turnfree backbone target, theisolget is found by the top-down
sequence of reassociation moves, starting from the higlmeste edge that is contravariant
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(ii)

Figure 6: Triplication expansion rules

with the target backbone edge between the same levels. Tbwiftg result applies to path
tree pairs where both tree backbones have turns.

Theorem 2. If either tree in a path tree pairs( ¢t) has a triplication at the first turn below the
top, then §, t) is reducible.

Proof.

In view of the fact established by Prop. 2.1, path tree paesaasumed to have a nonshared
duplication at the top of both trees. Letbe the number of backbone edges in either path tree,
thus havingn+2 leaves. Without loss of generality (by closure of rediitibof binary tree
pairs under chiral symmetry), assume the target tree haseiipgence of consecutive, pairwise
duplicated leaves 1, 2, ..k, with leaf 1 at the top level and leavég h;+1 not duplicated,
whereas the source tree has the sequence of consecutimeispailuplicated leaves+3-h,
n+3-(h,-1), ...,n+2, with leafn+2 at the top level and leaves-2-h,, n+3-h, not duplicated,
and bothh;>2 andh,>2 by the stated assumption.

Let k,=1 if leaves 1, 2 are not duplicated in the source, otherveisg,R,. . .k, be the sequence
of consecutive, pairwise duplicated leaves in the sourcé sat leaves,, k,+1 are not du-
plicated. Similarly, letk;=1 if leavesn+1, n+2 are not duplicated in the target, otherwise let
n+3-k;,n+3-(k;-1),... n+2 be the sequence of consecutive, pairwise duplicatecéeswvthe
target such that leaves+2-k,, n+3-k; are not duplicated.

By Theorem 1, the tree pair may be assumed to have no shapédation; this entails the
following implications hold:k, > 2 = h; = 2, andk; > 2 = h, = 2. Now, assume; > 2
and consider first the cage = 1, viz. tree backbones as in Figure 7(a). Then the 2-move reas-
sociation sequencege; yields a source tree derivative as in Figure 7(b), that sheglication
n/n+2 with the target tree, featuring a constraint on the coting@-edge path that agrees with
the hypothesis of Theorem 1, and with top edge that is caviwih the target tree top edge,
whence further reduction is enabled. The solvability of gheen pair thus reduces to that of a
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pair of smaller, unconstrained path trees in the dase 1.

Consider now the case, > 1, where tree backbones are as in Figure 8(a). Then the 4-move
reassociation sequeneg:; ese, shows reducibility in this case as well, where the argument d
pends on whethet, = 2 or k, > 2. In both cases the source tree derivative is as in Figure 8(b)
In the first case, this shares triplicatiafin+2 with the target tree, again featuring constraints
that allow triplication reduction, and furthermore it sbathe top level duplication of leaves 1, 2
with the target tree, whereby reduction to a pair of smallagonstrained path trees is achieved.
Whenk, > 2, one hash; = 2 by the previously stated implications, whereby the souree t
derivative shares the two top level duplications of leavel andn+2, n+1, with the target tree,
and the consequent reduction is again to a pair of smallegnstrained path trees.

Finally, the statement also holds in the case where 2 andk, > 2, by considering the re-
verse pair of chiral images of the given trees, and by relbéityi of successful reassociation

seqguences. |
10§
e # n+2
ee 2
_2t n+1

(a) (b)

Figure 7: Reducibility in the:, = 1 case

n2 1'\
m S %%%%
n+2
n+1
n
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Figure 8: Reducibility in thé:, > 1 case
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4 Strategies and tactics for constrained reassociation ofib
nary trees

Strictly speaking, in the context of formal derivation /s, a strategy is a function that selects
a 1-step derivative out of the set of 1-step derivatives of wall-formed formal expression,
whenever that set is nonempty. This concept may be renderg¢de context of the general
problem of constrained reassociation of binary trees o#mee size, as a deterministic criterion
to select a reassociation move out of those allowed fordyéar any given pair £, t) of binary
trees, wheres generally bears (in)equality constraints on its edges.s liseful, though, to
consider a 2-level articulation of the strategy conceptereha strategy, in this refined sense,
operates at the global level by selectingaatical goalout of a set of viable ones, whereas
tactics which may be seen as local strategies in the former senleet seassociation moves,
and are aimed at achieving those goals. The conceptual\rarkenay be further broadened
to includenondeterministicstrategies, where nondeterminism may be introduced a¢recth
both levels: at the local one, by tactics that selesetof allowed reassociation moves.g.to
explore parallel search of alternatives to achieve the,gwal/or at the global one, by a strategy
that selects a set of tactical goadsg.to explore parallel search of alternative blends thereof.
Finally, multimove tacticselect allowedsequencesf reassociation moves, rather than single
moves, and may be deterministic (a single sequence) as svalbadeterministic (selecting a
set of allowed sequences of reassociation moves).

The bottom-up joining of target bottom leavdsenceforth referred to as tiJ strategy
is a first, fairly simple case of locally nondeterministicaségy. The tactical goal here is to
get a source tree derivative where a deterministically ehgsair of consecutive leaves that
are bottom leaves in the target tree become siblings (heotterb leaves) in the source tree
derivative as well. The choice is necessarily determinifr path trees, where there is only
one pair of bottom leaves, and may be made deterministicigémeral case of binary trees, if
so desired, by selecting the target leaf pair on the basisabfdrder.

Let £,(7, i+1) be the set of edges in the cycle-free path linking targébln leavesi( i+1) in
(possibly constrained) source treeA convenient, nondeterministic tactics for the BU strateg
selects the set of reassociation moves with edgés i i+1) that are not labelled by="/in
s, and iterates this selection until emptiness of the salest¢. Each such reassociation move
shortens by 1 the length of that path, for it removes the masted edge fronF,(i,i+1).
Thus, the produced reassociation sequences for the gieénalagoal are of length at most
k, and the goal is achieved if at least one sequence of lelmgghproduced. Such a locally
successful sequence may happen to fail globally, howewetjgely in the case that the source
tree derivatives’ it delivers, forms an unsolvable pai’ (¢) with the given target tree.

Locally unsuccessful sequences may be swept out of sighgtiyinlg the nondeterministic,
multimove tactics for the BU strategy as that which selelatsget of reassociation sequences
which are permutations of the edges#hi(i,i+1) and are allowed by the constraints on them
in s. Of course, such a set may well happen to be empty. When tleis dot happen, the
achievement of the goal enables a bottom edge contractidypef B, by the classification
introduced in Section 2 (this does not entail reducibilifytiee given pair, since the reduced
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source tree derivative may bear constraints on its edgegjerieral binary trees, the abstraction
leaf obtained after contraction is not necessarily a botleaf in the target tree, but it does
happen to be such in path trees; here the strategy progegssioves the target abstraction leaf
upwards, along the backbone path.

Finally, one may note that the set of reassociation seqseselected by the multimove
tactics, will often contain equivalent alternatives, unthee kernel equivalence introduced in
Section 1. For example, this surely happens whefi, :+1) has at least 3 edges and these are
all unconstrained i, since 3! = 6 while the Catalan numb€s = 5 is an upper bound for
the number of distinct tree derivatives out of reassoam$iequences that are permutations of
the edges inF;(i, i+1), when|E,(i,i+1)] = 3. Implementations of nondeterministic, multi-
move tactics ought to take the aforementioned equivalarioeaccount, to prevent unnecessary
computational effort.

As an example of the functioning of the BU strategy, consttierpath tree pairs(t) dis-
played in Figure 9(a). Two solutions are found by the BU stygtfor this pair, respectively dis-
played in Figure 9(c.1) and 9(c.2). Figure 9(b.1) and 9(bl@3trate the respective derivation
and reduction steps leading to these solutions. The natatiopted is similar to that employed
in Figure 5, except that target tree reducts are omitted @#ioned above, they are easily ob-
tained by stepwise moving the target abstraction leaf ugsyaalong the backbone path), and
so is the indication of the default contraction type, whishg, inherently to tactical goals in
the BU strategy, except that when the abstraction leaf happehave the same leaf sibling in
the source reduct as in the target one, then reduction td&es py an edge contraction of type
B, in which case the contraction type is explicitly indicated reassociation move goes along
with the reduction in this case).

Each of the reassociation and reduction steps displayeidund-9(b.1) and 9(b.2) relates to
the choice of a multimove reassociation sequence out ofahef she allowed ones selected by
the BU tactics. The initial set consists of the two sequedeemded, respectively developedin
Figure 9(b.1) and 9(b.2). The former features a set of fdomadd multimoves after the second
step, but two of them are equivalent, viwlc anddbc; this fact is represented by specifying the
two sequences using the shuffle operatdy With left-associative parsing. Furthermore, two
out of the three reduced derivatives turn out to have the gsgitof allowed multimoves for the
fourth step, as represented by th& ‘occurrences in the picture. The third reduced derivative
out of the third step, on the contrary, proves globally ssstd eventually. Similar notes apply
to the two developments in Figure 9(b.2), only one of whicklgs a solution for the given
tree pair. The reader may verify that the two successful fiealvative path trees are those de-
picted on the right of Figure 9(c.1) and 9(c.2), respecyiyebduced by reassociation sequences
defcbdac andedfecbfcaf, and that application of the respective reverse sequendbese
path trees yields the solutions depicted on the left of E@(c.1) and 9(c.2), respectively.

The top-down resizing of sibling subtreedsenceforth referred to as théD strategy is a
second, somewhat more complex case of locally nondetestidrstrategy. The tactical goal
here is to get a source tree derivative where the left sulntféke root has the same size as
that in the target tree, and therefore similarly does thiatrgubtree with respect to its target
counterpart. Top-down iteration of the tactical goal aldhg tree structure, when successful,
eventually results in identical tree structures.
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Figure 9: Solutions by the BU strategy

The identification of effective tactics for the TD strategyuires some extra care, in com-
parison with the BU strategy case, for the achievement ofatttecal goal generally requires the
transfer of a certain number of leaves from one of the two tdyrees to the other. A couple of
definitions and related facts will enable a quick identifmatof appropriate multimove tactics
for the TD strategy.

Definition 1. Let (s,t) be a pair of binary trees of the same size, wheleas/, leaves in its
top left subtree and has!; leaves in its top left subtree. Thesizing edge set of to ¢, E,,,

is defined as the empty sel.jf= [;, otherwise as the set of edgessah its resizing path tot,
that is the path linking the root of to its resizing bottomvertex, which is the closest common
ancestor of leaves, [;+1 in s.

Note that the resizing bottom is the parent of Igaf both [, and/;,+1 are left leaves in,
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while it is the parent of leaf;+1 if both/, and/,+1 are right leaves in. If p,, is the resizing
path ofs to ¢, we let|p, ;| = | E | denote its length.

As we are going to see, certain permutations of the edgés jrdefine reassociation se-
guences that, if allowed by constraintssinyield derivatives where the respective sizes of the
two top sibling subtrees are the same as in the target treee $iot all permutations of; ;
edges always enjoy this property, it is useful to charantetihose which do. To this purpose,
the language opostfix concatenation/shuffle expressiana useful tool. Terminal symbols of
this language are a set of edge nameskElée a nonterminal symbol with productions::= e
for all edge names. The subject language is then generated from the start dyfby the
following three further productionss ::=¢, S := SE, S := S|E.

The intended meaninfp] of a language expressidghis a set of sequences of edge names,
that is defined below. Two binary infix operators form langei@xpressions, viz. juxtaposi-
tion, which denotes sequential concatenation, afydvhich is a parallel shuffle operator. The
syntactic restriction on both operators, to take a singlgeegame rather than a language ex-
pression as their right argument, forces left-associgiamsing of language expressions, where
no parentheses are thus needed.

The meaningS] of language expressions, ranged overdyyis defined by structural in-
duction, as follows. The set denoted by a shuffle-free egprass the singleton containing
that expression as the only sequence in the set. THejhconsists of all sequences that are
formed by postfixing: to a sequence in the sgt], while [S|e] consists of all sequences that
are formed by inserting am occurrence at an arbitrary position of a sequence in thé$et
while keeping unchanged the relative order of the elemehtstiwform that sequence.

Definition 2. Let (s, t) be a pair of binary trees of the same size, witly, its resizing edge set
of s to t, ands possibly constrained.

(i) Theresizing set specification ofto¢, S, ., is the postfix concatenation/shuffle expression
that is obtained from the sequence of edgeg&ijnin bottom-up order, from the resizing
bottom vertex up to the root, by inserting & Tn between each pair of adjacent names
of edges that are covariant in

(i) Theresizing set ofs to ¢, R;,, is the subset of those sequence§dn,] which specify
allowed reassociation sequences, under the constraiatsetiiges inF; , have ins.

Once equipped with the previous definitions, the identiiicabf a nondeterministic, multi-
move tactics for the TD strategy proves easy, as it boils dovatate that the selected set is the
resizing set of the source to the target tree. Whenever ¢his sonempty, the goal is achieved
by each reassociation sequence in the resizing set, asatrig tp be shown, and this enables
a twofold top edge contraction of the given pair, to the resige tree pairs (with constrained
source trees) formed by the top left subtrees and by thedgbp subtrees of the source derivative
tree and given target tree.

Please note that, according to definitions 1 and 2, if theirgiedge sef’; , is empty, then
the resizing set specification is the empty sequence, anesieng setr, , is nonempty, as it
is the singleton containing the empty sequence.

One may further note that if no edge but (either or both ofteetop ones is constrained in
the source tree derivative, then the given given tree pagdsicible. This observation enables
the following straightforward generalization of Prop. 2.1
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Proposition 4.1. If a binary tree pair 6, t) hasE;, or E, , of cardinality < 2, and in the case
of cardinality 2, with shuffle-fre€;, or S, ;, i.e. the 2-edge resizing path has a turn, then the
pair (s, t) is reducible.

Proof.

The resizing set is a singleton, and the constrained treeatige which results from the speci-
fied reassociation sequence has no constraints outsideptteelges, which are removed by the
subsequent top edge contraction, so the solvabilitysof) (s reduced to that of two pairs of
smaller, unconstrained trees. O

It will often be useful to view a backbone path as composedseitaience gbath segmenis
where a segment is a maximal contiguous subsequence ofaiuvadges in the backbone path.
Segments are thus delimited hyrnsin the path, but for extremal segments, which are (also)
delimited by the root and by the bottom vertex in the path.

A formal motivation of the proposed tactics for the TD stgptas provided by the next
theorem, which is introduced by by a couple of useful lemmas.

Lemma 4.1. Let (s, t) be a pair of binary trees of the same size, whetegs/, leaves in its
top left subtree and has/; leaves in its top left subtree, with # [;; let p be a permutation of
a subsetty, of the edges in that specifies an allowed reassociation sequence.fdrhen the
p-derivative ofs hasl, leaves in its top left subtree onlyH; , C E,.

Proof.

By hypothesis, the sequence specifiedjbgeparates ledf, living in the top left subtree of
the p-derivative ofs, from leaf/;+1, living in the top right subtree of thederivative ofs. By
contradiction, suppose there existg& £, e ¢ E,. Sincee € E;,, e belongs to the resizing
path ofs to ¢t and, therefore, both leavésandi;+1 are in the subtree of rooted at the lower
vertex incident withe, for this vertex is in the resizing path, which ends at theseki common
ancestor of leaveg and/;+1. Sincee does not occur i, edgee is not reassociated in the
sequence specified y hence it still holds in the-derivative ofs that all leaves of that subtree
are the leaves of the subtree rooted at the lower vertexentidith e, therefore leaveg and
l;+1 are in the same top subtree (left or right) of thderivative ofs, against the hypothesis[]

Let s be a binary tree and let= ¢, .. . e,, be a path ins starting from the root. For any
1 <i < n, edgee; in p meets one and only one of the followimgriance conditions
() e; isthe lastedgeip,i.e.i =n,
(ii) e; is notthe last edge ip, i.e. i # n, ande; is covariant withe; 1,
(iif) e; is not the last edge ip, i.e. i # n, ande; is contravariant witte, , ;.

Remark 4.1. Let (s, t) be a pair of binary trees of the same size andplet ¢, ...¢, be the
resizing path ok to ¢. Lets’ be thee;-derivative ofs for somei, 1 < i < n, and letp’ be the
resizing path of’ to ¢. By the reassociation rule, we have that = |p| iff e, meets variance
condition(iii) in p (in which casee; belongs tgy’), and that|p/| = |p| — 1 iff e; meets either
variance conditior(i) or (ii) in p (in both caseg; does not belong tp').

Lemma 4.2. Let (s, t) be a pair of binary trees of the same size, whetegs/, leaves in its
top left subtree and hasl; leaves in its top left subtree, with # [,. Letp = ¢;, ...¢;, be a
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permutation ofZ; ; that specifies an allowed reassociation sequence.fbforeover, lets, = s,
let s; be thee;;-derivative ofs;_, for 1 < j < n, and letp; be the resizing path of; to ¢, for
0 < 7 < n. Then the»-derivative ofs hasi, leaves in its top left subtree iff, for every< j < n,
e;, does not meet variance conditiifi) in p;_;.

Proof.

It suffices to observe that thederivative ofs, viz. s, hasl; leaves in its top left subtree iff,,
the resizing path of,, to ¢, has lengttd. But this is true iff, for everyt < j <n, |p;| = |p;—1|—1
(since|po| = |Es,| = n) iff, by Remark 4.1, for everyl < j < n, ¢;; does not meet variance
condition (iii) inp;_;. O

Theorem 3. Let (s, t) be a pair of binary trees of the same size, whehasi, leaves in its top
left subtree and has!, leaves in its top left subtree, with # [;; let p be a permutation of; ,
that specifies an allowed reassociation sequence.fdmen thep-derivative ofs hasl; leaves
in its top left subtree ifp € R, ,, viz. iff p € [S,,].

Proof.

Letp = e, ...e, be the resizing path ofto ¢, and suppose = ¢;, .. .¢;,. Lets, = s, and lets;
be thee;,-derivative ofs;_; andp; be the resizing path of; to ¢, for 0 < j < n. By Lemma 4.2,

it suffices to show that € [S, ] iff for every 1 < j < n, e;, does not meet variance condition
(i) in p;_1.

Suppose first that is turnfree; then, by the reassociation rule, qaereassociation in the se-
quence specified by may change the orientation of any edgejrwith respect to that which
it has inp;_; (the orientation ot;, itself does change, but, does not belong tp;), therefore
everyp; is turnfree, for0 < j < n, which entails that ne;; may ever meet variance condition
(iii) in p;_4, for 1 < j < n, while, on the other hand, every permutationfaf, is in [.S; ],
sincep is turnfree.

Suppose now that is not turnfree, hence there is an edge with 1 < h < n, that meets
variance condition (iii) irp. For any edge below it ip, saye;, with h < k < n, let fy = ¢;, and
fi,-.., fm be the possibly empty, not necessarily contiguous subsegusfp that consists of
those edges which follow, and precede,, in p, and meet variance condition (iii) jn

Assume na;, meets variance condition (iii) in;_, for 1 < j < n. Then, for eacld < g < m,
the reassociation of every edge in the segment just follgvijrin p must precede that of, in
the sequence specified pysince the orientation of, may only change by its own reassocia-
tion (the alternative being a reassociation of its contriavé predecessor edgg in somep;_;,
against the current assumption), while if some of the edgdisa segment following, in p is
not reassociated beforg, then the reassociation gf would violate the current assumption.
We may thus infer that, precedesf,, in p, and, ifm > 0, that f, precedesf,_; in p, for

1 < ¢ < m, whencee, precedesy, = ¢, in p by precedence transitivity. Since this holds for
everye, that meets variance condition (iii) inand every, that followse,, in p, we may con-
clude thatp € [S;.], by the semantics of postfix concatenation/shuffle exppassirecalling
their left-associative reading and the wély; is obtained from the resizing path

Conversely, assumee [S;.], then the aforementioned semantics entailsdharecedes;, in

p Whenever,;, meets variance condition (iii) ip, for all h < & < n. By contradiction, assume
e;, meets variance condition (iii) ip;_, for somel < j < n, and consider the smallest such
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Then, one of the following cases should be inferred aboustioeessor of;, in p;_;: 1) Itis
reassociated beforg,, but still is in the resizing path; _, (cf. Remark 4.1); then this successor
edge should bez-j,, for somej’ < j, and it should meet variance condition (iii) pfy_,, against
the stated minimality of; clearly, this case is to be rejected. 2) The successey afi p;_; is
reassociated after; ; by the stated minimality of, for everyl < j' < j, e;, meets variance
condition (i) or (ii) in p;,_;, which fact entails that every edgepn_, has the same orientation
it has inp, and that their relative ordering im_; is the same as ip; then, the occurrence of
e;; in p precedes ip that of an edge, its successorin 4, that is contravariant with it ip, by
the aforementioned preservation of edge orientation, amerevit followse; , by the aforemen-
tioned preservation of edge relative ordering in the regjpath. Two final subcases arise from
this inference: 2.1y;, meets variance condition (iii) ip, in which casep ¢ [S;,], against the
assumption; 2.29; meets variance condition (i) ip, in which case all edges below it in its
segment irp are reassociated before it (since it meets variance conditi) in p,_), including
the lowest one of them, say, this one is thus reassociated befefg which is reassociated
before its successor in;,_;; then, by precedence transitivi#/,is reassociated before the suc-
cessor ok, in p;_1, but the latter edge follows in p, wheree’ meets variance condition (iii);
whence the same absurd conclusion is drawn as in the presitiesise, vizp ¢ [Ss ] . O

The specialization of the TD strategy for path trees enjtysproperty that each tactical
goal boils down to get that all leaves but one be placed in dtieeadwo top-level subtrees, the
other consisting of the top leaf. The achievement of the tiwal enables top edge contraction,
whereby the root of the reduced target tree progressivelyamdownwards, along the backbone
path. In the case of path trees, thus, BU and TD strategiaséa sort of symmetric dynamics.
Figure 10 illustrates the application of the TD strategyite $ame path tree pair considered in
Figure 9, with similar notational conventions, except thate the default contraction type is
T. When no edge reassociation is required for top edge cditmawiz. R,; = {¢}, then this
fact is made explicit by subscripting the reduction steghwit”. Three solutions are found by
the TD strategy in the subject example, resp. depicted iar€ig0(c.1), 10(c.2), 10(c.3); none
of them coincides with any of those found by the BU stratedye Teader may verify that the
path trees on the right of Figure 10(c.1), 10(c.2), 10(caB3, respectively produced by reasso-
ciation sequenceshdcaefd, abcdacfeaf, abcdacefae, and that application of the respective
reverse sequences to them yields the solutions on the Iéfigoire 10(c.1), 10(c.2), 10(c.3),
respectively.

The nondeterminism of tactics employed in both strategie®duced above, entails that
either of them may deliver a set of solutions, not only beedhbs final target constraint assign-
ment may be partial, but also because a set of not necessauilyalent reassociation sequences
may prove globally successful. This possibility raises phi@ciple question whether any of
these strategies ompletethat is, able to deliver the whole set of solutions for anyegipair
of binary trees. The examined case settles the answer tqubistion in the negative, both for
the BU and for the TD strategy, where either strategy provesble to find solutions found by
the other. This motivates the consideration of a third eggt which subsumes the previous
ones, while featuring a higher degree of nondeterminisrhegtobal level. This strategy es-
sentially is thenondeterministic combination of BU and TD strateglesreafter shortly referred
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Figure 10: Solutions by the TD strategy

to as theBU|TD strategy The set of tactical goals selected at each step consistesé defined
by either of the BU and TD strategies, while each goal is peoldoy the corresponding tactics
as previously defined.

The definition of the BUTD strategy entails that the set of solutions it deliversasisvin-
cludes those delivered by the standalone BU and TD strategvever, it may also contain
solutions found by neither of them. This is hard to testifytlie previous case, wheeeg.
the BUTD strategy gets the solution displayed in Figure 11, by #mssociation sequence
edfeabcfac. It appears, though, that this solution is the same as tine time delivered by
the TD strategy, resulting from the reassociation sequabhcdacefae, as displayed in Fig-
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Figure 11: An equivalent reassociation sequence by th@ Bldtrategy

ure 10(c.3). The resulting constrained source trees ardigd, whereas the constrained target
trees only differ by a permutation of edge names. Howeveh sudifference is irrelevant in
terms of sign assignments to tree internal vertices, hemedwo reassociation sequences are
equivalent. This offers the opportunity to point out tha¢ image of the map mentioned in
Section 1 consists of (partially) constrained trees witiméamed edge€dge names are a con-
venient means to specify reassociation moves and therefaydtgolutions, but these abstract

from those names, as they only refer to tree structure.
The path tree pair presented in Figure 12(a) testifies toetttettiat the BUTD strategy may

, .9/ 0,0

B 34(5-8)9T (5-8)9 4,5-8)

Figure 12: An additional solution by the BUD strategy

deliver solutions that are found by neither the BU nor the Tiategy. The reader may verify
that, in this case:

21
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() the BU strategy finds only one solution, that is displayeé&igure 12(b), by the reasso-
ciation sequenceedcbgfcafg;

(i) the TD strategy finds two solutions, as displayed in Feggi2(c.1) and 12(c.2), respec-
tively by reassociation sequendes(cb|ed) fegbec andbadcbefgbfcd;

(iii) the BU|TD strategy also finds the solution displayed in Figure 12fg}he reassociation
sequencetebadcbfgb, whose development is presented in Figure 12(d). It is agpar
that this reassociation sequence is not equivalent to athos€ found by the BU and TD
strategies.

The question about completeness of the Bl strategy is open. A perhaps more interest-
ing principle question relates to tledfectivenessf the subject strategies, where a strategy is
effective if it always finds some solution for solvable tresrp. It is not yet known whether
any of the strategies defined above is effective. Note tlegetlquestions are independent of
the validity of the EK Conjecture, since neither comples=neor effectiveness of any strategy
ensures that the set of solutions is never empty.

5 Strategies that solve path tree pairs with a shared bottom
leaf

While solution search strategies considered so far are etendinistic, and apply to pairs of
general binary trees, in the rest of this work deterministiategies are investigated, that prove
suitable tosolvespecific classes of path tree pairs. The first such classsisradi those pairs
of path trees which share a bottom leaf. Pairs that sharedmitm leaves are reducible, since
they are decomposable (by an instance of Proposition 9 )n\y8iile pairs that share only one
bottom leaf are known to be solvable, by Proposition 8 in\|8jere the existence of a common
parse word for the subject path trees is shown. The trapslatf that proof in the present
framework proves very instructive and fruitful, since it

e uncovers two related deterministic strategies that alwengsa successful reassociation
sequence, for any pair in the subject class,

e enables a general characterization of the solutions foynléaforementioned strategies,
that only depends on path tree structure,

e provides a basis for the investigation of other, relate@deinistic strategies, that prove
suitable to solve certain classes of path tree pairs whieesho bottom leaf (as it is
shown in the next section).

These goals justify the fact that, in this section, neithesainposable pairs nor otherwise re-
ducible pairs are excluded from consideration, sinceesgiat and solutions to be dealt with,
apply to the whole class of equally sized path tree pairs wishared bottom leaf. The second
item in the previous list is first addressed, by proposingttiewing definition.

Definition 3. A (partial) assigment of (in)equality constraints to backke edges of a path tree
is sequentialif every nonbottom edge in the backbone is either uncomsttaor constrained by

(i) “="ifitis contravariant with the adjacent edge below it
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(i) “~£"if itis covariant with the adjacent edge below it.

The following lemma is a first, useful tool to prove the prdaseformulation of Proposition
8 of [3].

Lemma 5.1. Let s be a path tree with sequential constraint assignment, aaiher the back-
bone bottom edge not constrained by™ 6r a nonbottom edge that is contravariant with the
adjacent edge below it. Then tleederivative ofs is a path tree with sequential constraint
assignment.

Proof.
Immediate from Def. 3 and the properties of reassociatiateuthe stated assumptions about
edgee. O

Any constraint assignment to the bottom edge of the backipatie plays no role in the
previous definition, but it does play an essential one in treacterization of those sequential
constraint assignments that warrant solvability of a pgif) f path trees that share exactly one
bottom leaf, and where either tree in the pair may be comstdhi A trivial remark is a useful
introduction to the forthcoming definition, viz. that if twaath trees of equal size share just one
bottom leaf, then this lies on opposite sides in the two trees

Definition 4. A pair of path trees of equal size, with contravariant top esl@nd that share
exactly one bottom leaf, is

(i) a majority pair if the shared bottom leaf lies on the same side as the top ile&ipth
trees;

(i) a minority pair if the shared bottom leaf lies on the opposite side to thaheftop leaf,
in both trees.

Top leaves in a pair of path trees with contravariant top edigeon opposite sides, therefore,
by the previous remark, the single shared bottom leaf megither on the same side as the top
leaf in both trees, or on the opposite side, again in botlstréde terminology adopted in the
previous definition is justified by the fact that, for any fixgath tree size, the set of pairs of path
trees of that size, that have contravariant top edges amd alsangle bottom leaf, is partitioned
into the two subclasses which are resp. characterized bgahditions stated in Def. 4, and
that the first class is always larger than the second one {ewbe smallest case, viz. of 1-edge
backbone, where the majority class is populated by a sirgjle yp to chiral symmetry, while
the second class is empty).

The followingbottom edge ruleharacterizes those sequential constraint assignmeitth wh
warrant solvability of path tree pairs with contravariaop tedges, a single shared bottom leaf,
and where either tree in the pair may be constrained, thanksforthcoming result. It is just
amazing that the dichotomy drawn by this rule is essentaghgrmined by the relative orienta-
tion of the two farthest edges in the backbone path. Pleaselmat there is no loss of generality
in the contravariance assumption about top edges, sinceless/top edge contraction applies
to pairs with covariant top edges, and any partial constessignment that solves the pair of so
reduced path trees does also solve the original pair, wéhdp edge left unconstrained. This
preserves sequentiality of the constraint assignmentrdog to Def. 3.
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Definition 5. A sequential constraint assigment to backbone edges adrgiidth tree, in a
pair of equal-size path trees that have contravariant togesdand share a single bottom leaf,
satisfies théottom edge rulef the bottom edge is either unconstrained, or else

(i) constrained by “=" iff it is covariant with the top edge ithe backbone path, when the
given pair is a majority pair;

(i) constrained by “=" iff it is contravariant with the top dge in the backbone path, when
the given pair is a minority pair.

The forthcoming terminology is based on the notion of patnsent, introduced above.
The following acronyms (kept lowercase for typographicahwenience) will designate two
deterministic strategies for path tree pairs, as defineo\ael

tdbus top-down (strategy with) bottom-up (tactics for multineoreassociation of) segments;
butds bottom-up (strategy with) top-down (tactics for multineoreassociation of) segments.

Definition 6. Let (s, t) be a pair of path trees of the same size. Then two deterngisejuential
strategiesare defined as follows:

(i) the tdbus strategy is the deterministic specialization of the TD t&gy for path trees,
where tactics only select multimove reassociation of edgbsttom-up order, when this
is allowed, otherwise the selection is undefined,

(i) the butdsstrategy is the deterministic specialization of the BU t&gy for path trees,
where tactics only select multimove reassociation of edyésp-down order, when this
is allowed, otherwise the selection is undefined.

The next lemma tells in what sense do sequential strategiee effective under, and pre-
serve, validity of the bottom edge rule.

Lemma 5.2. Let (s,t) be a pair of equal-size path trees that have contravariapt ¢dges
and share a single bottom leaf, with a sequential constragsignment irs that satisfies the
bottom edge rule. Let be the edge reassociation sequence selectedgrihe tactics of either
sequential strategy as per Def. 6. Thers allowed by the constraints iy and the path trees
in the pair (', t), with s’ the a-derivative ofs, either have identical tree structure or reduce
without further reassociation to a pais/(, ¢') of equally sized, smaller path trees that either
have identical tree structure, or have contravariant togesl, share a single bottom leaf, and
with a sequential constraint assignmentsihthat satisfies the bottom edge rule.

Proof.

Each subsequent move of thesequence satisfies the hypothesis of lemma 5.1, so, if allowe
« preserves sequentiality of the constraint assignmentr€i§j3 displays multimove reassoci-
ations by the two kinds of sequential strategy defined abovwhe case when the sequence of
reassociated edges does not include the bottom edge; iasex that, in this case,is always
allowed, thanks to sequentiality of the constraint assigmim the source path tree and because
« starts with a nonbottom edge that is contravariant with tja@ent edge below it, and this
condition is preserved for all subsequent edges in the corresponding derivative trees. Note
that, whenk =1, the optional constraint on edgein the source tree of Figure 13(a) is “=", and
so is the resulting constraint on edggein the derivative tree in in Figure 13(b).
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(b)

Figure 13: Multimove reassociations by sequential stiageda)tdbus (b) butds

Similar pictures represent multimove reassociations bgcuence that includes the backbone
bottom edge, by dropping edge,; and taking edge; to be the bottom edge. In this case,
however, the sequence is allowed whenis either unconstrained or constrained as shown in
the picture, but the latter condition is not warranted byddgquentiality hypothesis alone, rather
also by that of validity of the bottom edge rule. This goesdkows. For thetdbusstrategy,
according to Figure 13(a) without edgg, 1, leaf j+1 is the shared bottom leaf, hence validity
of the bottom edge rule in the constrained source tree eritalt the constraint oa;, is “="
both in the case of top edge covariant with the bottom onegdine tree pair is a majority pair,
and in the opposite case, where the tree pair is a minority geagain, this also holds when
k=1, as noted above. For theitdsstrategy, as in Figure 13(b) without edgg, , leaf j-1 is
the shared bottom leaf, and a similar reasoning leads tcatine €onclusion. Moreover, in both
strategies, by chiral symmetry the validity of the conatusdoes not depend on the displayed
orientation of the reassociated edge sequences.

It remains to be shown that validity of the bottom edge rulprisserved as stated. It is con-
venient, to this purpose, to consider the combined outcohtbeon reassociation sequence
together with the subsequent, nonempty sequence of mewdige contractions, which are top
edge contractions in thebusstrategy, bottom edge contractions in the other stratelg.tivo
strategies are dealt with separately, as follows.

In the tdbussequence of multimove reassociations, the first bottom-ulimmove ends at the
top edge of the source tree, since the given trees have vartat top edges, and each subse-
guent bottom-up multimove ends at the top edge of the redsoerte tree which results from
the sequence of moveless top edge contractions that fottmysrevious multimove, where the
reduced tree pair also has contravariant top edgesa et the bottom-up sequence of edges
selected by thé&dbustactics at any step of the strategy, with moveless top edgiamdions as
already mentioned. Then,always includes the top edge, as just argued. If it also deduhe
bottom edge, then the multimove is the last one in thelbussequence, the source tree it acts
upon is turn-free, and the resulting derivative has the sae®estructure as the target, so the
statement holds. I& does not include the bottom edge, but it includes the edgeahmve it,
then the source tree has a single turn, placed between thésaed the bottom one, and the
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multimove changes both orientation and constraint of théoboedge, but not the bottom leaf
pair. The top edge of the reduced source tree which reswlis the subsequent moveless top
edge contractions has the same orientation as the top edge sburce tree before the multi-
move, therefore the majority/minority status of the tree@ ganot changed, thus validity of the
bottom edge rule is preserved. Finally, consider the cassnwhincludes neither the bottom
edge nor that just above it. Then neither orientation nosstramt of the bottom edge change
after the multimove. Depending on where do the subsequeneless top edge contractions
end up in the source path, the top edge orientation of thétmregueduced source tree derivative
may have the same or opposite orientation as the top edge sbtirce tree before the multi-
move, viz. the majority/minority status of the tree pair nsgty the same or may change, but
neither orientation nor constraint of the bottom edge clearg validity of the bottom edge rule
is preserved in both cases.

In thebutdssequence of multimove reassociations one has an almossitiugtion, but not ex-
actly, so a detailed analysis is badly needed. The first tspadmultimove ends at the bottom
edge of the source tree, and moveless bottom edge contradtar the multimove makes the
abstraction leaf to be a shared bottom leaf in the reducedte. If also its sibling bottom leaf
is shared, viz. the abstraction leaf is on the same side mtbe¢s, then further moveless bottom
edge contraction takes place, until the bottom leaf paithéntwo progressively reduced trees
share one leaf only, that is the abstraction leaf. This happes soon as the bottom edges in
the two trees are contravariant, while sharing both botteavés; then, moveless bottom edge
contraction still takes place, but the resulting abstacteaves are on opposite sides in the so
reduced tree pair, which thus only features the abstradtiahas a shared bottom leaf. Let
a be the top-down sequence of edges selected bpukdstactics at any step of the strategy,
with moveless bottom edge contractions as already mertiofiéen,« always includes the
bottom edge, as just argued. If it also includes the top etlg®, thea: multimove is the last
one in thebutdssequence, the target tree is turn-free, and the resultirigadiee has the same
tree structure as the target, so the statement holds. dibes not include the top edge, then
contravariant top edges in the reduced tree pair have the saientations as in the tree pair
before the multimove, but orientation and/or constrainth&f source bottom edge may differ,
depending on where do the moveless bottom edge contraetiteamshe multimove end up in the
source path, and the majority/minority status of the tréermpay or may not change, depending
on whether does or does not change the side of the sharedtetid(in both trees). Validity of
the bottom edge rule in the reduced tree pair holds iff eitherbottom edge is unconstrained,
or else either none or (exactly) two of the following threegerties hold: the abstraction leaf
is on the same side as the top leaf, top edge and bottom edgeaeant, the bottom edge
constraint is &”. This turns out to be the case indeed, when the bottom edgeeineduced
source tree is constrained, as a consequence of the comseguentiality hypothesis (and al-
ready shown preservation), and because the last movelgest@dge contraction, yielding the
subject reduced tree pair, refers to contravariant bottdges, as argued above, while the tree
pair before the last moveless bottom edge contraction sHasth bottom leaves. Figure 14
illustrates the case analysis that completes the prooking assumption that the source top
leaf is on the right side. The assumption is harmless, siatidity of the statement only de-
pends on the relative orientation of top edge and bottom adte source tree, hence a similar
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Figure 14: Bottom edge rule validity under thatdsstrategy.

case analysis applies under the opposite assumption, @t simmetry. As it may be seen in
the picture, eight subcases are to be considered for theaiebefore the last moveless bottom
edge contraction, but these can be paired, each pair of sebgéelding the same reduced tree
pair. With the notation established in Section/2:{) denotes the abstraction leaf after the last
moveless bottom edge contraction, witk: j. The bottom edge of the resulting reduced source
tree is assumed to be constrained (otherwise the bottomretlges satisfied), conforming to
the constraint sequentiality hypothesis, while neithgrather constraint, nor the orientation of
the target bottom edge after the last moveless bottom edgeaction, are displayed, since this
information is irrelevant to validity of the bottom edge euh the resulting, reduced tree pair.
For the sake of simplicity, neither edge names nor the cotimratype subscriptg, of course)
are displayed in the picture. O
And here is the main justification for the title of the press@ttion.

Theorem 4. Let (s, t) be a pair of path trees of equal size, with contravariantédges, leaf a
bottom leaf in both trees, and a sequential constraint assignt ins. Then the pair is solvable,
and both sequential strategies as per Def. 6, applies tind a solution for it, if either of the
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following conditions holds:

(i) s andt share both bottom leaves;
(i) 1iis the only bottom leaf shared Byand¢, and the constraint assignment srsatisfies
the bottom edge rule.

Proof.

Under condition (i), the two path trees have the same numbksfioleaves (hence also the
same of right leaves), thus no reassociation of the backbottem edge is needed. Multimove
reassociations by either sequential strategy that exdlugldoottom edge are allowed by the
constraints irs, as shown in the first paragraph of the proof of lemma 5.2, aesgove both the
number of left leaves and constraint assignment sequigpitiay lemma 5.1. Under condition
(i), the statement follows from lemma 5.2 by induction. O

An easy corollary of the previous theorem is the solvabibtyvery pair of unconstrained
path trees that share (exactly) one bottom leaf, viz. thetaxanslation of Proposition 8 of [3]
in the present framework; this holds because the empty @nsassignment is sequential and,
for path trees with contravariant top edges, it satisfiesdbtittom edge rule. More can be said
about the class of path tree pairs that share either or bdtbrbhdeaves, however, as well as
about the examined sequential strategies for them.

Consistently with the concept in [3], say that a level belb top one is @ecomposition
level for a pair of path trees if these have the same subsequeneaw&d under that level. In
particular, the backbone bottom level is a decompositivalldf the two path trees share both
bottom leaves. By the following result, one gets an easy wagount the number of distinct
sequential solutions found by either sequential strategwfy given path tree pair that shares
at least one bottom leaf; the proof uncovers a very easy wayraw the partial constraint
assignment that specifies the set of solutions found byresguential strategy, with no need
to perform any reassociation whatsoever.

Theorem 5. Both sequential strategies, tdbus and butds, are effefdivihie class of path tree
pairs that share either or both bottom leaves. They yieldstrae partial constraint assignment
for any given pair in the class, that thus specifies the saroegmpty) set of solutions. This set
has cardinality 2, wherek is the number of decomposition levels for the given pathgease

Proof.

Itis enough to show that 1) the partial constraint assigrrioemd by any strategy for a path tree
pair in the subject class, may leave unconstrained onlyethaskbone edges which are located
just above a decomposition level, and 2) either sequent&kgy leaves all those edges uncon-
strained. These two statements together entail that th@lpaonstraint assignments found by
the two sequential strategies coincide, since either ohttelivers a partial constraint assign-
ment that is sequential and, in the case of single sharedrbd#af, that satisfies the bottom
edge rule; such an assignment is then uniquely determinételgg properties outside the set of
unconstrained edges.

The truth of statement 1) is easy to see from the fact that ge exdleft unconstrained in the
partial constraint assignment delivered by a reassociagguence iff it does not occur in that
sequence; in such a case there is no flow of leaves acrosséhpiks below that edge, therefore
the reassociation sequence is a successful one only if bjectlevel is a decomposition level.
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Statement 2) may be proven by induction on the backboneHefigiie two sequential strategies
coincide in the basis case, where the backbone is emptyaaisdise constraint assignment, of
course. For the inductive step, if the tree pair has no deositipn level, then both strategies
deliver a partial constraint assignment where all edgesamnstrained, by statement 1), so as-
sume the tree pair has at least one decomposition level., Tyetlecomposition at this level,
both component source trees have smaller backbones tharghel, composite one, since the
decomposition level lies below the top by definition, and$barce backbone edge just above
it is a terminal edge in the upper component tree, so it beddagreither component source
backbones. The induction hypothesis thus applies to batipoaent tree pairs, and the set of
edges of the original source backbone that are left uncaingitl by either strategy is the union
of those left unconstrained for the smaller component backb, together with the edge just
above the decomposition level. O

Finally, we conjecture that both sequential strategiesiat®nly effective but also complete
for the class of path tree pairs that share either or botloboléaves. A proof of this statement
would amount to show that every solution must be a sequarttiedtraint assignment, satisfying
the bottom edge rule in the case of single shared bottom $&&afe no other edge may be
left unconstrained by any solution strategy besides thodefsby either sequential strategy,
according to the two statements in the proof of Theorem 5.

6 A class of solvable pairs of weakly mutually crooked path
trees

The results presented in Section 5 prove also useful to swain pairs of path trees that
share no bottom leaf. The basic idea here is to attack thdgmoby atwo-phase strategy
where the first phase is aimed at yielding a reduced path t@enith a shared bottom leaf
and a sequential constraint assignment that satisfies ttmnibedge rule in the reduced source
tree derivative. A successful outcome of this kind from thstfphase, enables adoption of a
sequential strategy in the second phase, or just direaeinée of the remaining part of the final,
partial constraint assignment, by the latest remark beFbeorem 5.

Path tree pairs of present interest are indecomposabld|yvweaitually crooked i(e. share
no triplication), have at least three segments each (thusaiteable by Theorems 11 and 12 of
[3], which have essentially the same proofs in the preseméwork), with contravariant top
segments of length at least 2 (thus not reducible by Propa2d second segments from the top
of length at most 2 (thus not reducible by Theorem 2), sharbattom leaf, and neither pair
of bottom leaves is duplicated in the other tree. Within thass of path tree pairs, a subclass
is isolated that proves solvable by a two-phase, detertirsgrategy of the aforementioned
kind. The hypotheses which characterize this class givéaitly narrow outlook, but it may be
interesting to anticipate that it even includes a subclassutually crooked path tree pairs«.
sharing no duplication).

Before embarking on the characterization of the subjeds;la may be useful to give a
flavour of the method by a contrived example, where a mutuatigked path tree pair is solved.
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Figure 15: A solvable pair of mutually crooked path treessigano bottom leaf

The path tree pair in Figure 15(a) meets all aforementiorssdimptions, and shares no
duplication. The first phase sequence of reassociationgeahdttions, as displayed in Fig-
ure 15(b), is determined by tHautdsstrategy, in this example. In the general case of forth-
coming interest, the first phase strategy will be BU, but vaittheterministic tactics that selects
either the top-down or the bottom-up sequence, throughwtathole phase, depending on
which alternative hypotheses are met. Not every intermtediaduced source tree derivative
gets a sequential constraint assignment, since there ibared bottom leaf in the given pair,
but the final outcome of the displayed phase does so, it &attsie bottom edge rule (as the bot-
tom edge is unconstrained, in this case), and it sharesaétf, viz. leaf 5, with the reduced
target tree, hence the given pair is solvable. The constegisigment inferred from the first
phase outcome, by constraint sequentiality and bottom adggis displayed in Figure 15(c).
Note that only edges that are contracted in the first phaseawanytually get constraints that
violate constraint sequentiality.

As it will be shown, the following definition characterizesnstraint assignments in the
reduced source tree derivatives throughout the first pHasg@ath tree pairs of the intended,
solvable class.

Definition 7. A (partial) constraint assigment to backbone edges of a pathisnear sequen-
tial if at most one of the constrained edges violates constramuentiality as per Def. 3.

The next definition generalizes the terminology introduasth Def. 4.
Definition 8. A pair of path trees of equal size, with contravariant top eslgnd that do not

share both bottom leaves, is

(i) a majority pair if either tree has more leaves on its top leaf side than therdtiee on the
same side;

(i) a minority pair if either tree has fewer leaves on its top leaf side than thermtree on
the same side.

One of the reasons which justify the term “sequential” fa #trategies introduced in Sec-
tion 5 is that all tree derivatives they determine, for a pa¢ie pair sharing a bottom leaf, are

THE ELECTRONIC JOURNAL OF COMBINATORICS 18(2) (2012), #P32 30



path trees. This is no longer the case with first phase stet@pnsidered here, not even in
the case of top-down tactics (that is thetdsstrategy), because of the lack of a shared bot-
tom leaf. However, theeducedtree derivatives they determine are path trees. In othedsyor
each tree derivative resulting from a multimove reassamidtas at most one edge that violates
“pathness” of the internal edge backbone, but this underdgpattom edge contraction in the
subsequent reduction.

It is fairly easy to see that, whichever of the two sequenéatics, viz. bottom-up or top-
down, is chosen for the first phase BU strategy, the reducgatsdree derivative resulting from
the first multimove reassociation and bottom edge contradias a near sequential constraint
assignment. Since neither of the target bottom leaves igtarhdeaf in the given source tree,
the abstraction leaf out of the first reduction is not a botleaf in the reduced source tree
derivative, and this has one edge violating sequentialitthe constraint assignment iff the
multimove consists of at least two moves, the target bottom leaves are not duplicated in the
source tree, which is one of the nonreducibility assumstgtated above. This one edge is the
sibling of the terminal edge ending in the abstraction Ié#ie tactics is bottom-up, otherwise
it is the parent edge of that terminal edge.

Now, in order to motivate the choice of tactics under appeiprhypotheses, and to justify
the hypotheses themselves, it is useful to consider camditivhich preserve near sequentiality
of constraint assignment throughout the first phase. Itstaunt that each of the two relative
orientations of target tree segments, with respect to theségment orientation, viz. covariant
and contravariant, hasdefault tactics which also depends on whether the path tree pair is a
majority or minority one, that ensures the aforementionegs@rvation, as long as the target
abstraction leaf moves up along a segment with that orientat

More precisely, with the target abstraction leaf on a segniext is covariant with the target
top segment in a majority pair, or contravariant with it in anority pair, bottom-up tactics
preserve near sequentiality of constraint assignmentdoaed source tree derivatives, with
possible violation of constraint sequentiality in the sigledge of the source abstraction leaf,
provided this condition holds when the target abstractsaf is at the lower end of the segment,
and as long as it keeps staying on that segment. Convers#hthe target abstraction leaf on
a segment that is contravariant with the target top segmestmajority pair, or covariant with
it in a minority pair, top-down tactics preserve near sediadity of constraint assignment in
reduced source tree derivatives, with possible violatibcomstraint sequentiality in the parent
edge of the source abstraction leaf, provided this conditiolds when the target abstraction
leaf is at the lower end of the segment, and as long as it keapisig on that segment.

Turns between adjacent target segments present the faligwoblem. The condition stated
above, that is preserved along the lower segment by its edatics, yields possible violation
of constraint sequentiality at an edge, either parent dimgjlof the abstraction leaf, that is
other than that where it would be preserved by the defauticeaéor the upper segment. In
other words, the idea of switching tactics at backbone tumsdopt default tactics for each
segment, does not work, that is, it does not preserve neaenéglity of constraint assignments
in reduced source tree derivatives.

However, it so happens that, if the sibling leaf of the lowesdge in the upper segment and
its consecutive leaf at the next lower turn (at the bottoimthie lower segment is the bottom
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one in the target backbone) are duplicated in the source tinea, after reduction along the
lower target segment with default tactics, either tacteled the same, 1-edge move, and this
reassociation “recovers” the constraint sequentialidfation in the reduced source tree deriva-
tive. Thereatfter, if the upper segment has more than one atgethe next pair of consecutive
leaves are not duplicated in the source tree, then the nanldé&dctics, that is the same tactics as
for the lower segment, reintroduces constraint sequétytiablation in the reduced source tree
derivative on the same sort of edge (parent or sibling of thetraction leaf) where it is found
before the aforementioned 1-edge move. Iterated occlerehthis condition, meaning that
subsequent pairs of consecutive leaves on the upper tageient are alternatingly duplicated
in the source tree, preserves near sequentiality until ¢éigenent end. A situation whereby a
successful exit out of the first phase is achieved, is thatevtie last first phase reduction that
yields a reduced source tree derivative sharing a bottohwliga the reduced target, follows a
1-edge move that, together with the subsequent contracfitre reassociated edge “recover”
the single violation of constraint sequentiality.

Once armed with the intuitions exposed above, the readeropgfully get a grasp of the
admittedly complex formulation of the hypotheses for theghfooming theorem. Further jus-
tification is provided in its proof, as it were. For the sakesohplicity, we assume definite
(contravariant) orientations of top segments in the givath prees, but this is no harm to gen-
erality, by reversibility of successful reassociationseaces solving the converse pair of path
trees.

Theorem 6. Let (s, t) be an indecomposable pair of path trees of equal size, styrmiback-
bone edges, that share no bottom leaf, have at least thremsesdg each, with contravariant top
segments of length at least 2, segments just below the tepadrength at most 2, no shared
triplication, and where neither pair of bottom leaves is ticgted in the other path tree. As-
sume leaf 1 is the top leaf in target tréethus leafn+2 is the top leaf in source tree. Let
h, h+1 be the bottom leaves i) andi, i+1 be the bottom leaves in Such a path tree pair is
solvable if either occurrence of a source bottom leaf{ ., h+1} in ¢, together with the given
tree structures satisfy one out of the following four setalte#rnative hypotheses:

() (s,t)is a majority pair, leafl is not duplicated with leaf+1 in target treet, and
e every segment contravariant with the top one,ibelow the level of ledfhas even
length, except for the top such segment, ending with rigtitjde- i+1 at the level of
(necessarily left) leaf, that has odd length;
e every pair of consecutive leaves-2p-1,i+2p) is duplicated in source tree, for
1<p< L5
(ii) (s,t)is a minority pair, leafl is not duplicated with leaf-1 in target treet, and
e every segment covariant with the top onetjrbelow the level of leaf has even
length, except for the top such segment, ending with leftdea: at the level of
(necessarily right) leaf, that has odd length;
e every pair of consecutive leavesp+1,i-2p+2) is duplicated in source tree, for
1<p<i=gH;
(i) (s,t)is a majority pair, leafl = h+1 and it is duplicated with leafi+2 in target treet,
and
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e every segment covariant with the top onetibetween the bottom and the parent
vertex of leaf, with the top such segment cut at that vertex, has even lgngth

e every pair of consecutive leavesp+1,:-2p+2) is duplicated in source tree, for
1<p <

(iv) (s,t)is a minority pair, leafl =h and it is duplicated with leaf-1 in target treet, and
e every segment contravariant with the top one ietween the bottom the parent
vertex of leaf, with the top such segment cut at that vertex, has even length
e every pair of consecutive leaves-2p-1,i+2p) is duplicated in source tree, for
1<p< 57

Proof.

The claim is that a first phase BU strategy, with bottom-ugi¢acunder hypotheses (i) or
(i), top-down tactics under hypotheses (iii) or (iv), ydsla reduced source tree derivative that
only shares leaf as a bottom leaf with the reduced target tree, and has a sggjuEmstraint
assignment that satisfies the bottom edge rule. Validithefdiaim then entails solvability of
(s, 1), thanks to Theorem 4. Figure 16 depicts the situation rteargarent vertex of) ledfin
target tree, in the four cases considered in the hypotheses.

NN Y
oK A

Ve AN N
|+1\ /1—1 /9’ g’\

i, i+1 i, i+1 i, i+1 i i1

(i) (ii) (iii) (iv)

Figure 16: Target tree case analysis for first phase exit shitired bottom ledf

The choice of tactics in the specified cases only depends ethehor not is leaf duplicated
with its consecutive leaf below it in target trée This is motivated as follows. For the claim
to hold, by the duplication assumptions on source tietbe target leaf at the level just below
that of/ must get joined with the abstraction leaf, in the reducedamtree derivative, by a 1-
edge last move of the first phase that recovers the consseguientiality violation. Therefore,
the nondefault tactics are to be adopted for the segmentenitsesibling lives. This, together
with the definition of default tactics and a quick inspectafrigure 16 entail bottom-up tactics
when leafl is not duplicated with its consecutive leaf below it, as ippans under hypotheses
(i) or (i), top-down tactics otherwise. This also explathg parity requirements on the length
of segments where these tactics are the nondefault ones.

The reader may have noticed that the stated hypotheseseehyglication of alternating pairs

THE ELECTRONIC JOURNAL OF COMBINATORICS 18(2) (2012), #P32 33



of consecutive leaves, within a specified interval, in seurees, but do not require the other
pairs of consecutive leaves in the same interval not to béiciied. This is not necessary, by
the following argument. If such a leaf pair has sibling edges segment of length greater than
2 in target tred, then it is part of a triplication in this tree, that would belzared triplication
if that pair were also duplicated in source treeagainst the assumption of absence of shared
triplications in the given path tree pais,¢). On the contrary, when the subject leaf pair has
sibling edges in a segment of length 2 in target tre@en it is not part of a triplication in this
tree, so it may well be part of a triplication in source tee¢lowever, the net effect of this in the
reassociation with reduction process, is the preservatfdhe single constraint sequentiality
violation on the same edge where it occurs before the twogk-@doves which join the leaves
out of the subject leaf pair with the abstraction leaf.
Let theproper tacticsbe bottom-up in cases (i) and (ii), top-down in the other tweeas. Let
thefirst-phase final leaff be target leaf; in cases (i) and (ii)[+1 in case (iii),/-1 in case (iv).
The proof is carried out by showing that

() every first phase BU multimove reassociation determimgthe proper tactics is allowed,

and yields a reduced source tree derivative with near se@liennstraint assignment;
(I1) the reduced tree pair obtained by contraction of a bratealge that has the first-phase final

leaf f as a bottom leaf, has leafs the only shared bottom leaf, and its reduced source
tree derivative has a sequential constraint assignmens#iiafies the bottom edge rule.

¢ ¢ ¢ ¢
[#1/7(+ 1)K ] 7(]—k) CEHN (J—k)ﬁel
() g-ole) X, 0 & &l ~
X # % 1
& K & K
i k
(i) (ii)
¢ ¢ ¢ ¢
e/k Ye J el e#
g e..e e \‘l S oe..e_re 3
. [:'q 1 q q . . [ﬂ ‘ 1 q_]I C]] 7 ’
&-1 e G-1 &
4 it g -
% i SRR (k)
(i-(k-1)) ((+1)k)
(iii) (iv)

Figure 17: First phase source tree reductions with defaatids: (i,ii) bottom-up, (iii,iv) top-

down.
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Figure 17 illustrates multimove reassociations with sgogat bottom edge contraction in the
source tree derivative, when the proper tactics is the diefene on the target segment where
the corresponding contraction takes place. With referéadggure 16, let’ =1 in cases (i,ii),
I'=g'+1 in case (iii),l’ = ¢’-1 in case (iv). Clearly, one hds< j <i <k < f in cases (i,iv),
strained in source treebefore the (first) multimove reassociation, and the geredsgtraction
leaf ((j+1)—) in Figures 17(i,iv) is actually leaf+1, while (j—(k-1)) in Figures 17(ii,iii) is ac-
tually leafs; ¢ > 2, in this case because the target bottom leaves are not dtgai source tree
s by hypothesis.

However,q >2 for every multimove reassociation that has the properdsets the default one
on the target segment, not just for the first one, and regssdié whether leavegandj+1 in
as follows. From Figure 17 it is apparent that, when the imdtie reassociation is not the
first one, in all cases the abstraction leaf gets joined tather target bottom leaf in the re-
duced source tree derivative by moving the latter leaf towthe former. This fact has three
consequences. First, even if the moved leaf is duplicatdl & consecutive leaf in the op-
posite vertical direction with respect to the abstractieaf] the new abstraction leaf will not
be duplicated with it, which fact proves>2 as stated. Second, constrained edges after the
multimove reassociation and subsequent bottom edge ctintraall have - constraints and
are on the same vertical sides. above or below, with respect to the abstraction leaf; onky on
of them violates constraint sequentiality, and that is thieg edge of the abstraction leaf with
bottom-up default tactics, whereas it is the parent edgéheffarent vertex of) the abstraction
leaf with top-down default tactics. Third, on condition thiae moved leaf is not a bottom leaf
with bottom-up default tactics, nor the top leaf with topagodefault tactics, then the first edge
in the multimove edge sequence is unconstrained before tiftenmove; this fact, together with
the previous one entail that the reassociation sequendkvged, under the stated condition.
Actually, this also holds when the position of the leaf to bevied reaches the bottom, with
bottom-up default tactics, or the top, with top-down defgattics, for the first time.

With top-down default tactics, the lower bound pin case (iv), and the upper bound énn
case (iii) entail multimove reassociations with defauttitzs are allowed, provided the first of
them for the target segment is allowed. With bottom-up deéfagtics, the lower bound on

in case (i), and the upper bound énn case (ii) entail multimove reassociations with default
tactics are allowed, provided the first of them for the taggggment is allowed. Now, the first
multimove reassociation for a target segment with defadper tactics is obviously allowed
when the segment is the bottom one, since all source edgésiteally unconstrained, but for
a nonbottom such segment, the first multimove reassociaiatiowed if near sequentiality
of constraint assignment holds after the last multimoveseeiation for the previous target
segment, with nondefault proper tactics, and provided thestraint assignment violates se-
guentiality on the sibling edge of the abstraction leaf hvwdbttom-up tactics, or on its parent
edge, with top-down tactics. The proof of statement (I) issthompleted by showing that mul-
timove reassociations for target segments with nondefaafier tactics, except for the top one,
reaching the level of leafin cases (i) or (ii), or cut at its parent vertex in cases éimd (iv),
do deliver a near sequential constraint assignment théate® constraint sequentiality on the

THE ELECTRONIC JOURNAL OF COMBINATORICS 18(2) (2012), #P32 35



required edge, when the target abstraction leaf reachasetti¢urn on the target backbone.

as outcome of the last bottom edge contraction for the stitgeget segment.

Figure 18 illustrates multimove reassociations with sgogat bottom edge contraction in the
source tree derivative, when the proper tactics is not tfi@udteone on the target segment where
the corresponding contraction takes place, for conseelgiaf pairs that are not duplicated in
source tree. Actually, the first reassociation on such a target segnmotves, by hypothesis,

a pair of consecutive leaves that are not duplicated in tdrget, but are so in source tree
s. The 1-edge move on the reduced source tree reassociatesmindcts the parent edge of
(the parent vertex of) the abstraction leaf with bottom-ugper tactics, the sibling edge of the
abstraction leaf with top-down tactics. Therefore th€ tdnstraint changes to “=" on the edge
incident with (the parent vertex of) the abstraction leaftthiolated constraint sequentiality.
This is the situation depicted in Figure 18 before multimoeassociation, where one sees that
reduced source tree derivatives in all cases feature agangée violation of constraint sequen-
tiality, on the same sort of edge (sibling or parent of thetraotion leaf) where it was found
before the two-multimove sequence. Note that this alsoshelten the displayed reassociation
is a 1-edge one, viz. one may haye 1 in Figure 18, when the target segment has length 2, as

¢
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—_— > . #
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Figure 18: First phase source tree reductions with nondtetiactics: (i,ii) bottom-up, (iii,iv)
top-down.
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earlier argued. Finally, note that when proper tactics isthe default one, reassociation with
subsequent contraction moves the abstraction leaf towartbaf with which it gets joined, and
all reassociated edges are unconstrained before the noukinwhich is thus always allowed.
Statement (1) is thus proven, by the parity hypothesis abimitength of target segments with
nondefault proper tactics, togeteher with the hypothekeatalternating duplications in source
trees. However, also part of statement (II) immediately followsice the number of reassoci-
ations on the top segment with nondefault tactics is odd Ippthesis (this also holds in cases
(iii,iv), since the sibling edge of target leais not contracted), which entails sequentiality of
the constraint assignment in the reduced source tree tedehH as a shared bottom leaf with
the reduced target tree.

It remains to be seen that leak the only shared bottom leaf, and that the constraint assémt
satisfies the bottom edge rule. The former statement holcksuse leaf is on opposite sides in
the reduced tree pair. This is immediate in cases (iii) and ¢ee Figure 16, sinde= h+1 by
hypothesis in case (iii) is a right leaf in the source treeilevh= 1 by hypothesis in case (iv) is

a left leaf in the source tree. The same holds in case (i) When+1 and in case (ii) wheh=h.

In all these cases,is on the same side in the reduced source tree as it is in stese since
the bottom edge incident with it is not reassociated. Ttgs ahtails that the constraint assign-
ment satisfies the bottom edge rule, in these cases, beteulsettom edge is unconstrained.
The situation is a little different in case (i) whég: h, and in case (ii) wheh=h+1. However,
the only differences are that lelah the reduced source tree is on the opposite side to thaewher
it is in source trees, since the bottom edge incident witls reassociated once in these cases,
but again Figure 16 tells that leafin target treet and in source tree are on the same side
in these cases, therefore the shared bottom/lesabn opposite sides in the reduced tree pair.
Finally, Figure 17(i) withj = [+1= h+1, and Figure 17(ii) witht = [-1 = h, tell that, in these
last two cases, when the bottom léafthanges side in the reduced source tree derivative, the
bottom edge incident with it gets &~ £onstraint and remains contravariant with the top edge
in case (i), where the tree pair is a majority pair, covariaith it in case (ii), where the tree
pair is a minority pair, therefore the bottom edge rule issé@d in both cases at this stage, and
it remains satisfied throughout the rest of the first phaseesby Figure 16 it is apparent that
the remaining multimoves relate to the top segment reacthiagevel of/ in the target tree,
with nondefault bottom-up tactics, and therefore they withve up the abstraction leaf even
further, hence never include the bottom edge that is in¢idéth / in the reduced source tree
derivatives. O

The reader may like to verify that the path tree pair disptayeFigure 15(a) satisfies case
(ii) of the hypotheses stated in Theorem 6; this justifies¢hoice of top-down tactics for the
first phase. A necessary condition for a path tree pair, ti#fges the hypotheses of Theorem 6,
to be mutually crooked, like the exemplified one, is thatedjrments which are required to have
even length by those hypotheses, actually have length 2.
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7 Conclusions

The reassociative approach toward an alternative proo@fiCT has been explored in this
paper by recasting concepts and results from recent workdmp&r, Rowland and Zeilberger,
geared toward a language theoretic proof. The dynamicar@atf the reassociative approach,
whereby solutions are delivered by reassociation seqsehes enabled us both to extend the
aforementioned results, viz. to characterize new claséesducibile or solvable binary tree
pairs, and to open new questions for further investigati®ome of the new classes have fairly
wide extent and are obtained by simple proofs, notably P2dh. Theorem 2, and Prop. 4.1.
Perhaps amazingly, some others are of narrower extent gudee more substantial deductive
effort, such as Theorem 4 (with the bulk of its proof confined_emma 5.2) and especially
Theorem 6. Theorem 5 showcases how, also in the reassecagtproach, may one count the
number of solutions for any given problem instance in a cetlass—a valuable feature of the
aforementioned language theoretic approach. Howevearsed may only claim having found
a lower bound to the count for path tree pairs that share afpdtaf. To turn this into a definite
count, a positive anwer is needed to the completeness qnedibut the sequential strategies
employed for the subject class.

If one evalutes the strength of a theorem as inversely ptigoad to the number of its
hypotheses, and its cost by the size of its proof, then sdregorem 6 scores low on the ben-
efit/cost ratio, to the point of making one wonder whetherdhteome deserves the effort. We
believe it does, for a methodological reason which leadkédinal subject of these concluding
notes, relating to the new questions which arise from thegarework, and the further research
directions they open.

The main open questions relate to the nondeterministitegfies and tactics introduced in
Section 4. In summary, they are: effectiveness of the BU@ntD strategy, completeness of
the BUTD strategy. While these questions are independent of tidityaf the EK Conjecture,
settling them in the positive (the answer we expect in akkéhcases), would yield a solid
foundation of solution search algorithms.

Further work of ours is under way, aimed at a fast decisiorcguare to characterize the
subset of a given set of permutations of a set of edges, thapiises those edge reassociation
sequences that are allowed by any given (partial) consteaisignment to edges in the given
set. This, together with the result provided in Theorem 3HerTD strategy and with a decision
procedure for the map kernel equivalence on reassociatigumesices, would deliver useful tools
to develop effective parallel implementations of alganghfor nondeterministic strategies. A
positive answer to the BIID completeness question would then provide an effectivena¢o
count the number of solutions to any given problem instance.

As testified to by the work presented in Section 5, specifissga of binary tree pairs are
solvable by deterministic specializations of the aforetivgred strategies. This actually holds
for specific classes of path tree pairs, so far. In this respexhave shown both the effectiveness
and the equivalence of sequential strategies for path age gharing a bottom leaf, where the
only residual open question relates to their completerssssgcalled above (and where, again,
a positive answer is our expectation). The work presente8ection 6 is to be viewed as
a first attempt to find other effective, deterministic stgigs that could expand the class of

THE ELECTRONIC JOURNAL OF COMBINATORICS 18(2) (2012), #P32 38



solvable tree pairs. The near-sequential weakening of teeiqusly introduced concept of
sequential constraint assignment, proves useful to ifyetditerministic strategies that solve a
fairly narrow class of path tree pairs, as that which sassiee hypotheses of Theorem 6. Yet
this should be viewed as a first sortie into a wide open exptndield, not necessarily limited
to path tree pairs. Other deterministic blends of strategied tactics might prove capable of
solving further classes thereof, especially blends whieeechoice of tactics is not fixed for
each pair in the class, but rather takes a dynamic charatzeif may change throughout the
reassociation sequence.
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