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Abstract

This paper addresses the problem of characterizing classesof pairs of binary trees of equal
size for which a signed reassociation sequence, in the Eliahou-Kryuchkov sense, can be
shown to exist, either with a size induction hypothesis (reducible pairs), or without it (solv-
able pairs). A few concepts proposed by Cooper, Rowland and Zeilberger, in the context of
a language-theoretic approach to the problem, are here reformulated in terms of signed re-
association sequences, and some of their results are recasted and proven in this framework.
A few strategies, tactics and combinations thereof for signed reassociation are introduced,
which prove useful to extend the results obtained by the aforementioned authors to new
classes of binary tree pairs. In particular, with referenceto path trees,i.e. binary trees that
have a leaf at every level, we show the reducibility of pairs where (at least) one of the two
path trees has a triplication at the first turn below the top level, and we characterize a class
of weakly mutually crooked path tree pairs that are neither reducible nor solvable by any
previously known result, but prove solvable by appropriatereassociation strategies. This
class also includes a subclass of mutually crooked path treepairs. A summary evaluation of
the achieved results, followed by an outline of open questions and future research directions
conclude the paper.

1 Introduction

The Four Colour Theorem (4CT), is a paradigmatic case of potential applicability of methods
and results that are offspring of research on translations between different frameworks, because
of the several equivalent formulations of the planar map colouring problem. One of the earliest
cases of this phenomenon is a well known result by Tait [10, 11], that shows the equivalence
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between the 4CT withvertex colouringand the 3CT withedge colouring. The latter means
proper colouring of edges rather than vertices of a planar triangulation, where “proper” means
the condition that adjacent edges, i.e. border of a same triangular face, must be assigned dif-
ferent colours, whereas adjacent vertices must be assigneddifferent colours by a proper vertex
colouring.

The 4CT was first proven by Appel and Haken[1, 2] using substantial computing resources.
The currently most parsimonius proof of the same kind is [9],where reducibility still requires a
fairly impressive 633-case analysis. An equivalent statement, of great relevance to the present
work, is the Eliahou-Kryuchkov (EK) Conjecture (which actually holds, thanks to the afore-
mentioned proofs of the 4CT, but one should like to get an independent proof of its validity,
hoping to find a combinatorially simpler proof of the 4CT thatway), that owes its name to the
independent findings in [7], where the problem is formulatedin terms of signed reassociation of
binary trees, and in [4], dealing with signed diagonal flips of planar triangulations. Kauffman
[5] has a similar reformulation in terms of the vector cross-product algebra. In his more recent
work [6], the connection between that reformulation and theEK Conjecture is elucidated, and
a nice feature of the reassociative approach is pointed out;in his words: “Here is a remarkable
game! [. . . ] These reassociation moves on the colorings are particularly nice in that they do not
involve changing the colors only reconfiguring the graph.” This game is indeed going to be the
main business in the present paper.

A language-theoretic approach toward an independent proofof Kauffman’s Theorem is pre-
sented by Cooper, Rowland and Zeilberger in [3], which is themain source of inspiration for
the present work. An especially interesting feature of their approach is that, besides proving the
solvability of specific families of problem instances, in several cases it also provides an explicit
count of the number of solutions to given instances, therebyuncovering fruitful links between
formal language theory and enumerative combinatorics[12]. The binary parse trees considered
in [3] are well suited to represent edge 3-colourings of the cubic graph that is obtained by join-
ing the roots and pairwise, in left-right reverse order, theleaves of two binary trees of equal size
that have a common parse word. Tree vertices thus correspondto edges of the cubic graph so
obtained, and thereby as well to edges of the triangulation of the sphere where each triangular
face bijectively corresponds to a vertex of the cubic graph,and each edge in the triangulation
corresponds to that edge in the cubic graph which joins the vertices which correspond to the
faces which share the given edge as common border in the triangulation.

Pairs of binary trees of equal size are also well suited to represent the signed reassociation
version of the edge 3-colouring problem [4, 7], but under a somewhat different, albeit related
labelling and interpretation. The relationship is easily determined by considering that solutions
of the edge 3-colouring problem are unique up to colour permutation, whereas in the signed
reassociation version of the problem each sign represents one of the two classes of circular
permutations of the three colours, viz. clockwise and anticlockwise [8, 5], and solutions are
unique up to sign permutation.

A solution of the signed reassociation problem is a sign assignment to the internal vertices
of either tree in the pair that allows a sequence of signed reassociation moves that turns its tree
structure to that of the other tree in the pair. Signed reassociation moves look like applications
of the associativity rule for a binary operation whose termsare represented by the subject trees,
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Figure 1: Signed reassociation

but such applications are only allowed if the vertices whichare joined by the upper-staying edge
involved in the move, which we shall refer to as thereassociated edge, are equally signed; their
signs are changed (for both vertices) as an outcome of the move.

Figure 1(a) displays a signed reassociation of term (12)3 to1(23), while Figure 1(b) gives
a pictorial representation of the signed reassociation rule (which is obviously symmetric, viz.
signed reassociation moves are reversible), in the generalcase where the reassociated edge
e has sibling and children edges that are not necessarily terminal edges, viz. incident with a
leaf. Terminal edge cases are just similar, obtained from this picture by replacing subtrees with
leaves.

From any solution of the signed reassociation problem a solution of the 3-colouring problem
is determined by an arbitrary colour choice for the root of the binary parse tree, and then by
recursively determining the colours of each pair of siblingvertices according to the colour of
their parent vertex in the parse tree and to its sign in the signed tree, that tells whether the 3-
colour sequence for parent and (ordered) siblings is to be clockwise or anticlockwise. In this
way, since the set of solutions of each instance of the signedreassociation problem is closed
under sign complementation, from each pair of equivalent (i.e. sign-complementary) solutions
in this set one gets six colour permutation equivalent solutions of the corresponding instance of
the 3-colouring problem.

Sign complementation equivalence of solutions for the signed reassociation problem may be
factored out if one replaces vertex sign labels with (in)equality relation labels for internal edges,
viz. those edges which connect internal vertices of the binary tree. The so denoted (in)equality
relation is indeed that between the signs of the internal vertices joined by the labelled edge.
This obviously requires a coherent reformulation of the signed reassociation rule, whereby the
reassociated edge of an edge-labelled reassociation move is required to bear the equality label
before the move, and keeps that label after the move, whereasany other of its four possible
neighbour internal edges, viz. parent, sibling and up to twochildren edges, gets its label com-
plemented after the move.

Signed (or edge-labelled) reassociation moves preserve leaf order, so it is convenient to
endow leaves with identifiers, such as their ordinal position in left-to-right sequential order (or
anticlockwise around the tree root). Since solutions are delivered by successful reassociation se-
quences, as we are going to see, it is as well convenient to endow internal edges with identifiers,
in order to represent those sequences. Search of solutions may be carried out by starting with
either tree in the given pair as initially unlabelledsourcetree of the reassociation sequence, and
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Figure 2: Edge-labelled reassociation

then exploring subsequent reassociation moves aimed at obtaining the other,target tree struc-
ture; edge labels are introduced “by need” along the search,that is to say, the reassociated edge
of a reassociation move is required to bear the equality label or no label before the move, and
in both cases it takes the equality label after the move, whereas any otherof its four possible
neighbour internal edges that is labelled before the move gets its label complemented after the
move, whereas it stays unlabelled if so is before the move. Inthis way, for each given source
tree, there is a map which sends each allowed sequence of reassociation moves to a tree of the
same size and with a partial labelling of its edges. This induces an equivalence relation on
allowed reassociation sequences for the given source tree,that is the map kernel equivalence.

Figure 2(a) depicts the edge-labelled reassociation rule specified above, for the general case
where all four neighbour edges may be internal ones, with square brackets denoting optionality
of labels, and label complementation denoted by overliningof labels. Again, terminal edge
cases are just similar, obtained from this picture by replacing subtrees with leaves (terminal
edges are always unlabelled, of course). Furthermore, these rules are oriented, since the optional
equality label on edgee in the left-hand-side tree is not optional in the right-hand-side tree—
it is “produced” by the rule application. However, these reassociation rules are closed under
chiral symmetry, that is to say, each rule has a chiral mirror image one, whereleft-right edge
orientations are switched. Figure 2(b) shows the edge-labelled tree produced by an allowed
reassociation sequence on a given, unlabelled tree.

(In)equality labelling of internal edges enables parsimonious pictures of problem instances.
Binary trees of interest here arecompleteones,i.e. every internal vertex is the parent of two
children vertices. One may equivalently say that every internal edge is the parent of two children
edges. Now, since only internal edges are labelled, terminal edges may be safely disposed of in
the picture of the binary tree (thus roughly halving the number of edges explicitly represented),
or replaced by a leaf number when needed. For instance, Figure 3(a) gives the same information
as Figure 2(b), but by only displaying the internal edgebackbonesof the subject binary trees,
which in this case happen to be path trees (hence backbones are paths).

Figure 3(b) illustrates the solution, produced by the givenreassociation sequence for the
subject problem instance, expressed as a (total) assignment of (in)equality relation labels to
internal edges. In this case, the labeling produced by the reassociation sequence on the target
tree happens to be total, therefore it represents a single solution, to the reverse reassociation
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Figure 3: Backbone representation of reassociations and ofsolutions

problem though. In order to find the corresponding solution to the original problem, viz. a
labelling of the source tree, one may apply the reverse reassociation sequence to the labelled
target tree just obtained. In general, the labelling of the target tree produced by a successful
reassociation sequence need not be total, and it provides aset of solutionsof cardinality 2k,
wherek is the number of unlabelled internal edges in the produced target tree.

2 Basic concepts, terminology and notation

As mentioned at the end of Section 1, allowed reassociation sequences generally produce a
partial assignment of (in)equality relation labels to edges of the reassociated tree. A binary
tree endowed with such a partial assignment will be referredto as aconstrained tree. A pair
of (possibly constrained) binary trees of the same size issolvableif there is a reassociation
sequence from either tree, taken as source tree, that is allowed by its constraints and turns its tree
structure into that of the other, target tree, while producing a constraint assignment that extends
the given one on the target tree, under the appropriate renaming of edges that is determined by
the tree structure matching. While the EK Conjecture amounts to solvability of every pair of
unconstrained binary trees of equal size, not all pairs of constrained ones are solvable.

A pair of (unconstrained) binary trees of equal size isreducibleif it is solvable under the
size induction hypothesis that all pairs of smaller (yet equally) sized, unconstrained binary trees
are solvable. Most often, reducibility of a given tree pair is shown by exhibiting a specific,
smaller tree pair, together with an effective way of gettinga solution for the given pair out of
any solution for the smaller one. Clearly, if a tree pair is reducible to a solvable tree pair, then it
is solvable, too.

Owing to closure of reassociation rules under chiral symmetry, both solvability and re-
ducibility are also closed under chiral symmetry. More precisely, let (s′, t′) be the pair of chiral
images of a given tree pair (s, t); if the latter is solvable andα is a successful reassociation
sequences

α
→ t, then also (s′, t′) is solvable, with the same successful reassociation sequence

s′
α
→ t′, whereas if the solvability of the given pair (s, t) is reducible to that of a smaller-sized

pair (s′′, t′′), then the solvability of (s′, t′) is reducible to that of the pair of chiral images of
(s′′, t′′).

Two relevant cases of reducibility are put forward in [3], viz. decomposabilityof a tree pair,
and existence of atriplication of the same triple of consecutive leaves in both trees, or, aswe
shall say, ashared triplicationof leaves in the pair; that is to say, there exists a triple of leaves
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(i, i+1, i+2) whose parent vertices are connected by a 2-edge path in both trees. Those binary
tree pairs which have no shared triplication are calledweakly mutually crookedin [3], whereas
mutually crookedtree pairs are those which have noshared duplication, meaning that no pair of
consecutive leaves (i, i+1) have their parent vertices connected by a 1-edge path in both trees.
While tree pairs which fail to be weakly mutually crooked areshown to be reducible in [3], the
reducibility of the larger class of non mutually crooked tree pairs is only conjectured.

When considered in terms of reassociation sequences, decomposability delivers the possi-
bility of constructing a successful sequence as a parallel shuffle of subsequences thereof, which
are defined on pairwise disjoint sets of internal edges; as a matter of fact, one may decompose
the subject tree pair into a set of smaller tree pairs which feature mutually independent solu-
tions. It so happens that this possibility also exists in some cases where the subject tree pair is
not decomposable in the sense of [3], such as the following simple one.

In Section 5.3 of [3] the decomposability of path tree pairs with common top leaf (i.e.taking
the same ordinal position in the leaf ordering in the two trees) is pointed out, so these pairs
are reducible. One may equivalently say that path tree pairswith covariant (that is, equally
oriented) top (internal) edges are reducible. This statement is amenable to a small generaliza-
tion, where reducibility is warranted unless the 2-edge toppaths consist of edge pairs that are
covariant in each tree andcontravariant(that is, not covariant) with respect to the other tree.
Edges hereafter referred to are internal ones, unless otherwise stated.

Proposition 2.1. If a path tree pair (s, t) has a shared duplication at the top, or if at least one
of their pairs of top leaves is not duplicated, then (s, t) is reducible.

Proof.
The shared duplication case is an instance of the decomposability case mentioned in Section
5.3 of [3], thus only the case where top edges are contravariant deserves further consideration,
with at least one of the trees having its top leaf pair not duplicated by hypothesis. Without loss
of generality, one may assume source trees to be duplication-free at top level (otherwise the
following argument applies to the converse pair, with reversibility of successful reassociation
sequences completing the proof). Then reassociation of thetop edge ofs makes this edge
covariant with the top edge oft, with both trees having the same leaf at the top level, and
the (s, t) solvability problem then reduces to that of the smaller tree pair (s′, t′), wheres′ is
the subtree just below the top edge in the tree resulting fromthe reassociation, whilet′ is the
subtree oft just below its top edge. Ife is the top edge ofs andα is a successful reassociation
sequence for (s′, t′), theneα is a successful reassociation sequence for (s, t), whereα exists by
size induction hypothesis, sinces′ is unconstrained.

It is instructive to see why the path tree pair explicitly considered in the proof of Prop. 2.1
fails to be decomposable in the general case. Figure 4(a) displays the first, top edge reassocia-
tion move, in the backbone-only representation of path trees, for one of the two possible relative
orientations of contravariant top edges of the two trees (the other case being the chirally sym-
metric one). It is apparent that the target path tree,e.g. the left-hand-side tree in Figure 4(b),
does form a decomposable pair with thee-derivativeof the source tree,i.e. the tree resulting
from thee-reassociation move, rather than with the source tree as given; while the derivative is
a constrained tree, the produced constraint is confined to the upper, 1-edge subpath of the tree
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backbone. This already matches the corresponding subpath of the target backbone, so no fur-
ther change is needed there, while the rest of the source treebackbone is wholly unconstrained.
Figure 4(b) ilustrates top edge reassociation as first move when the first two top edges in the
source tree are covariant, viz. the tree has a top level duplication; the derivative is not a path
tree in this case, which fact motivates the choice of the pathtree with nonduplicated top leaves
as source tree in the proof.
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Figure 4: Top edge reassociation as first move

A special case of decomposability of general binary trees, proven in Prop. 9 of [3], gives
the opportunity to introduce a basic tool in the developmentof the present work. The statement
under consideration asserts the reducibility of any pair ofbinary trees (of the same size, this
will be henceforth understood) that share a pair ofbottom leaves, viz. consecutive leaves that
are each other’s sibling. For example, in Figure 2(b), leaves 1,2 are bottom leaves in the left-
hand-side tree, whereas this property is recognized in leaves 3,4 of the right-hand-side tree.
A bottom leaf pair shows up in the backbone-only representation of binary trees as the pair of
leaves attached to abottom edgein the backbone, that is a backbone edge with no backbone edge
underneath. For example, edgee is a bottom edge of the right-hand-side tree in Figure 4(b).

While the cited statement points out the possibility toexpandany solvable pair of trees by
replacing any shared leaf (i.e. leaves that take the same ordinal position in the leaf ordering in
the two trees) with a shared pair of bottom leaves, the converse operation, which may be termed
bottom edge contractionin the present context, turns out to be a useful solution search tool. This
operation may be applied to both trees in a pair when they share a bottom leaf pair; it consists
in replacing the bottom leaf pair, together with the bottom edge incident with it, by a single leaf
(by a terminal edge actually, not displayed in the backbone representation of the binary tree),
hereby obtaining a pair of trees of smaller size. This operation is applicable regardless of any
constraint on the contracted bottom edge in either tree. Thesingle leaf (attached to the terminal
edge) which replaces the contracted bottom edge, is referred to as anabstraction leaf.

Bottom edge contraction plays also a rôle in a simple proof of yet another reducibility case
from [3] (Prop. 10 there), viz. that of any pair of trees wherea pair of bottom leaves in either
tree is duplicated in the other. This amounts to a reassociation move on the edge joining the
duplicated leaves, that turns them into a pair of bottom leaves, thus enabling the subject edge
contraction. Such a move is always allowed if it is the first reassociation of the edge in question,
otherwise it is only allowed if the edge is labelled by the “=”constraint. In the present context,
where the choice of the source tree for the reassociation sequence is made aforehand, it is useful
to distiguish betweentarget bottom edge contraction, when the duplicated pair of leaves is in the
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source tree (while it is a bottom leaf pair in the target tree), andsource bottom edge contraction
in the other case. Ife is the contracted edge andα is a successful reassociation sequence for the
contracted tree pair, theneα is a successful reassociation sequence for the original tree pair in
the case of target bottom edge contraction, whereasαe is such a sequence in the case of source
bottom edge contraction. In the latter case, sincee has no occurrence inα, the reassociation
move, that is needed to turn the bottom leaf pair into a duplicated one after theα reassociation
sequence, is always allowed if edgee is unconstrained in the source tree before its contraction.

Reduction to a pair of smaller trees by the aforementioned three cases of bottom edge con-
traction may be expressed by using the following notation. Letc∈{B,SB,TB} denote the bottom
edge contraction type, resp. sharedBottom leaves,SourceBottom edge,TargetBottom edge. We

write (s, t)
[e]
→
c

(s′, t′) if one of the following conditions holds:

• c is B and s′, t′ resp. result from contraction of bottom edgee in s, and of the corre-
sponding bottom edge int, i.e. that which has the leaf pair in the same ordinal position
underneath int;

• c is TB, e is the connecting edge, not labelled by “6=”, of two duplicated leaves in source
trees that are bottom leaves in target treet, ands′, t′ resp. result from contraction of edge
e in s and of the corresponding bottom edge int;

• c is SB, e is an unconstrained bottom edge in source trees, while its corresponding edge
in target treet is the connecting edge of two duplicated leaves, ands′, t′ resp. result from
contraction of edgee in s and of the corresponding edge int.

Tree pair reduction by bottom edge contraction may occur iteratively, in which case the abstrac-
tion leaf resulting from a previous reduction step may itself be involved in further contractions.
It is then useful to introduce a convenient notation for abstraction leaves which result as a
cumulative outcome of a sequence of edge contractions. Since leaves which are joined in a con-
traction step are always consecutive ones in the leaf order,it proves handy to let (m–n) denote
the abstraction leaf resulting from a sequence of contractions which has joined all leaves in the
closed interval [m, n], with m < n. Of course, this notation does not tell how the abstraction
leaf is to be expanded to the subtree it stands for, neither inderivatives of the original source
tree nor in the original target tree. This information may berecovered from the context, viz.
the sequence of individual contraction steps which produced the subject abstraction leaf; the
respectively corresponding expansion steps then apply in reverse order.

With path tree pairs, reduction to a pair of smaller trees is also viable whenever the top leaf
is on the same side as in the target tree, such as it happens,e.g., after the reassociation move
in Figure 4(a), with a target tree structure as on the left-hand-side of Figure 4(b). The reduced
path tree pair then consists of the subtrees under the respective top edges, which are removed
in the reduced tree pair together with the pair of top leaves.Actually, this reduction technique
also applies to general binary tree pairs, provided their backbones have only one edge at the
top, these top edges in the two trees being covariant. Most often this condition is met by an
e-derivative of the source tree, wheree is one of its top edges. In reduction steps it is thus
convenient to adopt a similar notation as for bottom edge contraction, by convening thatT is
the top edge contraction type designator. There is a difference, though; the designated edge in
a reduction by bottom edge contraction isnot reassociated, whilst it is so, by our notation, in a
reduction by top edge contraction.
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Figure 5 displays a 5-step reduction sequence, whose outcome is a pair of trees of identical
structure. The last two steps combine two reassociation moves with a reduction step by top
edge contraction. The resulting reassociation sequence isthenα = eabcaf. Reduction of
the B type requires no reassociation move, and thus producesno constraint. This explains
why α has nod occurrence. Most of the produced constraints are not visible in the reduction
sequence, since they apply to edges which are removed in reduction steps. The constrained
α-derivative specifies a set of two solutions, correspondingto the (in)equality label assigned to
the unconstrainedd edge. The reconstruction of the produced constraints, and of the solutions
determined by reverse reassociation, is left to the reader as an exercise.
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Figure 5: Combined reassociation moves and reduction steps

3 Reducibility of path tree pairs with triplications

Two reducibility results are presented in this section. Thefirst one is a reformulation of Theorem
17 from [3] in the present framework, that establishes the reducibility of binary tree pairs with
shared triplications. This effort is useful, since it provides the constraint conditions which
are to be met in order to apply the related edge pair contraction to constrained trees as well.
The second result is novel; it establishes the reducibilityof path tree pairs, with turns in their
backbones, where one of the two trees has a triplication at the first turn below the top level. The
triplication need not be a shared one.

Theorem 1. If a binary tree pair (s, t), with s a constrained binary tree, has a shared tripli-
cation, where neither of the edges which connect the triplicated leaves ins is labelled by “=”,
then (s, t) is reducible.
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Proof.
The solvability of (s, t) is reduced to that of (s′, t′), which is obtained from (s, t) by contraction
of the triplicated leaves, together with their pair of connecting edges to a single leaf, hereafter
referred to as atriplication leaf. Since the corresponding expansion is to a 2-edge straight path,
it proves necessary to distinguish between its two possibleorientations. Ifi,i+1,i+2 are the trip-
licated leaves, theni/i+2 andi\i+2 denote the triplication leaf after contraction, together with
the contracted edge pair orientation.
Now, letα = e1e2...ek be a successful reassociation sequence for (s′, t′), the following proce-
dure is claimed to mapα to a successful reassociation sequence for (s, t).
Let s′0 = s′, ands′i be theei-derivative ofs′i−1, for 1 ≤ i ≤ k; let us say thatei is aneighbour
edge occurrence, henceforth abbreviatedneo, of the triplication leaf inα, if edgeei is incident
with (the terminal edge leading to) it, as either parent or sibling, in s′i−1. The triplication ex-
pansion procedure replaces each suchneowith a 3-edge sequence, and progressively applies
an appropriate edge renaming permutation to theα suffix following thatneo, possibly already
renamed by previous applications of the same procedure. Both the 3-edge expansion sequence
and the permutation depend on what kind of neighbour, viz. parent or sibling, the edge de-
noted by theneois, in the relevant derivative tree; furthermore, in the case of parent edge, the
permutation also depends on the relative orientation of parent edge and triplication leaf (of its
contracted edge pair, actually). Lets0 = s, andsi be the expanded tree which corresponds to
s′i, for 1 ≤ i ≤ k. Lethi andli respectively denote the higher and lower edge of the 2-edge path
connecting the triplicated leaves insi−1. Let gi be the image ofei under sequential composition
of the renaming maps associated to the precedingneo’s of the triplication leaf inα. The 3-edge
expansion ofneoei is gihili if edgeei is the parent of the triplication leaf ins′i−1, whereas it is
gilihi if ei is its sibling edge. The edge renaming permutation is definedby the following maps
in the three subject cases, and is the identity elsewhere:

(i) covariant parent edge:gi ↔ li;
(ii) contravariant parent edge:gi 7→ li, li 7→ hi, hi 7→ gi

(iii) sibling edge:gi 7→ hi, hi 7→ li, li 7→ gi

Figure 6 illustrates the application of the expansion rulesin the three subject cases, justifies the
previous definition of the edge renaming map, and is helpful to quickly see the validity of the
stated claim. First, it is apparent that both edges connecting the triplicated leaves after appli-
cation of an expansion rule are labelled “6=”, and that this is to be their label, if any, before
application of the rule; the hypothesis about triplicationedge constraints is so justified. Fur-
thermore, expansion rules are context-preserving, under the edge renaming maps, with respect
to not only context tree structure, but also neighbour edge constraints, as it may be inspected in
the picture. Expansion rules obviously preserve triplication of the expanded leaves, which are
thus triplicated in the final derivative produced by the expansion ofα. This coincides with the
triplication expansion ofs′k, under the edge renaming map resulting from the sequential com-
position of the renaming maps associated to the triplication leafneo’s in α, by induction on the
number of thoseneo’s.

Any tree pair where one of the trees has a turnfree path backbone is easily solvable; in the
case of path trees, with a turnfree backbone target, the solution set is found by the top-down
sequence of reassociation moves, starting from the highestsource edge that is contravariant
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Figure 6: Triplication expansion rules

with the target backbone edge between the same levels. The following result applies to path
tree pairs where both tree backbones have turns.

Theorem 2. If either tree in a path tree pair (s, t) has a triplication at the first turn below the
top, then (s, t) is reducible.
Proof.
In view of the fact established by Prop. 2.1, path tree pairs are assumed to have a nonshared
duplication at the top of both trees. Letn be the number of backbone edges in either path tree,
thus havingn+2 leaves. Without loss of generality (by closure of reducibility of binary tree
pairs under chiral symmetry), assume the target tree has thesequence of consecutive, pairwise
duplicated leaves 1, 2, . . . ,ht, with leaf 1 at the top level and leavesht, ht+1 not duplicated,
whereas the source tree has the sequence of consecutive, pairwise duplicated leavesn+3-hs,
n+3-(hs-1), . . . ,n+2, with leafn+2 at the top level and leavesn+2-hs, n+3-hs not duplicated,
and bothht≥2 andhs≥2 by the stated assumption.
Let ks=1 if leaves 1, 2 are not duplicated in the source, otherwise let 1,2,. . . ,ks be the sequence
of consecutive, pairwise duplicated leaves in the source such that leavesks, ks+1 are not du-
plicated. Similarly, letkt=1 if leavesn+1, n+2 are not duplicated in the target, otherwise let
n+3-kt,n+3-(kt-1),. . . ,n+2 be the sequence of consecutive, pairwise duplicated leaves in the
target such that leavesn+2-kt, n+3-kt are not duplicated.
By Theorem 1, the tree pair may be assumed to have no shared triplication; this entails the
following implications hold:ks > 2 ⇒ ht = 2, andkt > 2 ⇒ hs = 2. Now, assumekt > 2
and consider first the caseks = 1, viz. tree backbones as in Figure 7(a). Then the 2-move reas-
sociation sequencee2e1 yields a source tree derivative as in Figure 7(b), that shares triplication
n/n+2 with the target tree, featuring a constraint on the connecting 2-edge path that agrees with
the hypothesis of Theorem 1, and with top edge that is covariant with the target tree top edge,
whence further reduction is enabled. The solvability of thegiven pair thus reduces to that of a
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pair of smaller, unconstrained path trees in the caseks = 1.
Consider now the caseks > 1, where tree backbones are as in Figure 8(a). Then the 4-move
reassociation sequencee2e1e3e2 shows reducibility in this case as well, where the argument de-
pends on whetherks = 2 or ks > 2. In both cases the source tree derivative is as in Figure 8(b).
In the first case, this shares triplicationn/n+2 with the target tree, again featuring constraints
that allow triplication reduction, and furthermore it shares the top level duplication of leaves 1, 2
with the target tree, whereby reduction to a pair of smaller,unconstrained path trees is achieved.
Whenks > 2, one hasht = 2 by the previously stated implications, whereby the source tree
derivative shares the two top level duplications of leaves 1, 2, andn+2,n+1, with the target tree,
and the consequent reduction is again to a pair of smaller, unconstrained path trees.
Finally, the statement also holds in the case wherekt ≤ 2 andks > 2, by considering the re-
verse pair of chiral images of the given trees, and by reversibility of successful reassociation
sequences.

e
2

e
1s

e
2

e
1

=/

.
.

.
.

. =

n+2

n+1

n

1
e
1

e
2

.

.

.

.
.

n+2

n+1

n

1

s:

.
.

.
.

.

.

t
h

n+2

n+1

n

1

(a) (b)

t:

Figure 7: Reducibility in theks = 1 case

.

.

t
h

.
.

.

t:

n+2

n+1

n

1

.
e
2

e
1

e
3

e
2s

e
1

.
.

e
2

e
3

.
.

.
n+2

n+1

1

s:

2
.

.
=/

=/ e
1

e
2

e
3

.
.

.
1

2

n+1

n+2

=

(a) (b)

Figure 8: Reducibility in theks > 1 case

the electronic journal of combinatorics 18(2) (2012), #P32 12



4 Strategies and tactics for constrained reassociation of bi-
nary trees

Strictly speaking, in the context of formal derivation systems, a strategy is a function that selects
a 1-step derivative out of the set of 1-step derivatives of any well-formed formal expression,
whenever that set is nonempty. This concept may be rendered,in the context of the general
problem of constrained reassociation of binary trees of thesame size, as a deterministic criterion
to select a reassociation move out of those allowed for trees, for any given pair (s, t) of binary
trees, wheres generally bears (in)equality constraints on its edges. It is useful, though, to
consider a 2-level articulation of the strategy concept, where a strategy, in this refined sense,
operates at the global level by selecting atactical goalout of a set of viable ones, whereas
tactics, which may be seen as local strategies in the former sense, select reassociation moves,
and are aimed at achieving those goals. The conceptual framework may be further broadened
to includenondeterministicstrategies, where nondeterminism may be introduced at either or
both levels: at the local one, by tactics that select asetof allowed reassociation moves,e.g.to
explore parallel search of alternatives to achieve the goal, and/or at the global one, by a strategy
that selects a set of tactical goals,e.g.to explore parallel search of alternative blends thereof.
Finally, multimove tacticsselect allowedsequencesof reassociation moves, rather than single
moves, and may be deterministic (a single sequence) as well as nondeterministic (selecting a
set of allowed sequences of reassociation moves).

The bottom-up joining of target bottom leaves, henceforth referred to as theBU strategy,
is a first, fairly simple case of locally nondeterministic strategy. The tactical goal here is to
get a source tree derivative where a deterministically chosen pair of consecutive leaves that
are bottom leaves in the target tree become siblings (hence bottom leaves) in the source tree
derivative as well. The choice is necessarily deterministic for path trees, where there is only
one pair of bottom leaves, and may be made deterministic in the general case of binary trees, if
so desired, by selecting the target leaf pair on the basis of leaf order.

LetEs(i, i+1) be the set of edges in the cycle-free path linking target bottom leaves (i, i+1) in
(possibly constrained) source trees. A convenient, nondeterministic tactics for the BU strategy
selects the set of reassociation moves with edges inEs(i, i+1) that are not labelled by “6=” in
s, and iterates this selection until emptiness of the selected set. Each such reassociation move
shortens by 1 the length of that path, for it removes the reassociated edge fromEs(i, i+1).
Thus, the produced reassociation sequences for the given tactical goal are of length at most
k, and the goal is achieved if at least one sequence of lengthk is produced. Such a locally
successful sequence may happen to fail globally, however, precisely in the case that the source
tree derivatives′ it delivers, forms an unsolvable pair (s′, t) with the given target tree.

Locally unsuccessful sequences may be swept out of sight by defining the nondeterministic,
multimove tactics for the BU strategy as that which selects the set of reassociation sequences
which are permutations of the edges inEs(i, i+1) and are allowed by the constraints on them
in s. Of course, such a set may well happen to be empty. When this does not happen, the
achievement of the goal enables a bottom edge contraction oftype B, by the classification
introduced in Section 2 (this does not entail reducibility of the given pair, since the reduced

the electronic journal of combinatorics 18(2) (2012), #P32 13



source tree derivative may bear constraints on its edges). In general binary trees, the abstraction
leaf obtained after contraction is not necessarily a bottomleaf in the target tree, but it does
happen to be such in path trees; here the strategy progressively moves the target abstraction leaf
upwards, along the backbone path.

Finally, one may note that the set of reassociation sequences selected by the multimove
tactics, will often contain equivalent alternatives, under the kernel equivalence introduced in
Section 1. For example, this surely happens whenEs(i, i+1) has at least 3 edges and these are
all unconstrained ins, since 3! = 6 while the Catalan numberC3 = 5 is an upper bound for
the number of distinct tree derivatives out of reassociation sequences that are permutations of
the edges inEs(i, i+1), when|Es(i, i+1)| = 3. Implementations of nondeterministic, multi-
move tactics ought to take the aforementioned equivalence into account, to prevent unnecessary
computational effort.

As an example of the functioning of the BU strategy, considerthe path tree pair (s, t) dis-
played in Figure 9(a). Two solutions are found by the BU strategy for this pair, respectively dis-
played in Figure 9(c.1) and 9(c.2). Figure 9(b.1) and 9(b.2)illustrate the respective derivation
and reduction steps leading to these solutions. The notation adopted is similar to that employed
in Figure 5, except that target tree reducts are omitted (as mentioned above, they are easily ob-
tained by stepwise moving the target abstraction leaf upwards, along the backbone path), and
so is the indication of the default contraction type, which is TB, inherently to tactical goals in
the BU strategy, except that when the abstraction leaf happens to have the same leaf sibling in
the source reduct as in the target one, then reduction takes place by an edge contraction of type
B, in which case the contraction type is explicitly indicated(no reassociation move goes along
with the reduction in this case).

Each of the reassociation and reduction steps displayed in Figure 9(b.1) and 9(b.2) relates to
the choice of a multimove reassociation sequence out of the set of the allowed ones selected by
the BU tactics. The initial set consists of the two sequencesde anded, respectively developed in
Figure 9(b.1) and 9(b.2). The former features a set of four allowed multimoves after the second
step, but two of them are equivalent, viz.bdc anddbc; this fact is represented by specifying the
two sequences using the shuffle operator “|”, with left-associative parsing. Furthermore, two
out of the three reduced derivatives turn out to have the empty set of allowed multimoves for the
fourth step, as represented by the “φ” occurrences in the picture. The third reduced derivative
out of the third step, on the contrary, proves globally successful eventually. Similar notes apply
to the two developments in Figure 9(b.2), only one of which yields a solution for the given
tree pair. The reader may verify that the two successful finalderivative path trees are those de-
picted on the right of Figure 9(c.1) and 9(c.2), respectively produced by reassociation sequences
defcbdac andedfecbfcaf, and that application of the respective reverse sequences to these
path trees yields the solutions depicted on the left of Figure 9(c.1) and 9(c.2), respectively.

The top-down resizing of sibling subtrees, henceforth referred to as theTD strategy, is a
second, somewhat more complex case of locally nondeterministic strategy. The tactical goal
here is to get a source tree derivative where the left subtreeof the root has the same size as
that in the target tree, and therefore similarly does the right subtree with respect to its target
counterpart. Top-down iteration of the tactical goal alongthe tree structure, when successful,
eventually results in identical tree structures.
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Figure 9: Solutions by the BU strategy

The identification of effective tactics for the TD strategy requires some extra care, in com-
parison with the BU strategy case, for the achievement of thetactical goal generally requires the
transfer of a certain number of leaves from one of the two top subtrees to the other. A couple of
definitions and related facts will enable a quick identification of appropriate multimove tactics
for the TD strategy.

Definition 1. Let (s, t) be a pair of binary trees of the same size, wheres has ls leaves in its
top left subtree andt haslt leaves in its top left subtree. Theresizing edge set ofs to t, Es,t,
is defined as the empty set ifls = lt, otherwise as the set of edges ofs in its resizing path tot,
that is the path linking the root ofs to its resizing bottomvertex, which is the closest common
ancestor of leaveslt, lt+1 in s.

Note that the resizing bottom is the parent of leaflt if both lt andlt+1 are left leaves ins,
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while it is the parent of leaflt+1 if both lt andlt+1 are right leaves ins. If ps,t is the resizing
path ofs to t, we let|ps,t| = |Es,t| denote its length.

As we are going to see, certain permutations of the edges inEs,t define reassociation se-
quences that, if allowed by constraints ins, yield derivatives where the respective sizes of the
two top sibling subtrees are the same as in the target tree. Since not all permutations ofEs,t

edges always enjoy this property, it is useful to characterize those which do. To this purpose,
the language ofpostfix concatenation/shuffle expressionsis a useful tool. Terminal symbols of
this language are a set of edge names; letE be a nonterminal symbol with productionsE ::= e
for all edge namese. The subject language is then generated from the start symbol S by the
following three further productions:S ::= ǫ, S ::= SE, S ::= S|E.

The intended meaningJSK of a language expressionS is a set of sequences of edge names,
that is defined below. Two binary infix operators form language expressions, viz. juxtaposi-
tion, which denotes sequential concatenation, and “|”, which is a parallel shuffle operator. The
syntactic restriction on both operators, to take a single edge name rather than a language ex-
pression as their right argument, forces left-associativeparsing of language expressions, where
no parentheses are thus needed.

The meaningJSK of language expressions, ranged over byS, is defined by structural in-
duction, as follows. The set denoted by a shuffle-free expression is the singleton containing
that expression as the only sequence in the set. ThenJSeK consists of all sequences that are
formed by postfixinge to a sequence in the setJSK, while JS|eK consists of all sequences that
are formed by inserting ane occurrence at an arbitrary position of a sequence in the setJSK,
while keeping unchanged the relative order of the elements which form that sequence.

Definition 2. Let (s, t) be a pair of binary trees of the same size, withEs,t its resizing edge set
of s to t, ands possibly constrained.

(i) Theresizing set specification ofs to t, Ss,t, is the postfix concatenation/shuffle expression
that is obtained from the sequence of edges inEs,t in bottom-up order, from the resizing
bottom vertex up to the root, by inserting a “|” in between each pair of adjacent names
of edges that are covariant ins.

(ii) The resizing set ofs to t, Rs,t, is the subset of those sequences inJSs,tK which specify
allowed reassociation sequences, under the constraints that edges inEs,t have ins.

Once equipped with the previous definitions, the identification of a nondeterministic, multi-
move tactics for the TD strategy proves easy, as it boils downto state that the selected set is the
resizing set of the source to the target tree. Whenever this set is nonempty, the goal is achieved
by each reassociation sequence in the resizing set, as it is going to be shown, and this enables
a twofold top edge contraction of the given pair, to the respective tree pairs (with constrained
source trees) formed by the top left subtrees and by the top right subtrees of the source derivative
tree and given target tree.

Please note that, according to definitions 1 and 2, if the resizing edge setEs,t is empty, then
the resizing set specification is the empty sequence, and theresizing setRs,t is nonempty, as it
is the singleton containing the empty sequence.

One may further note that if no edge but (either or both of) thetwo top ones is constrained in
the source tree derivative, then the given given tree pair isreducible. This observation enables
the following straightforward generalization of Prop. 2.1.
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Proposition 4.1. If a binary tree pair (s, t) hasEs,t or Et,s of cardinality≤ 2, and in the case
of cardinality 2, with shuffle-freeSs,t or St,s, i.e. the 2-edge resizing path has a turn, then the
pair (s, t) is reducible.

Proof.
The resizing set is a singleton, and the constrained tree derivative which results from the speci-
fied reassociation sequence has no constraints outside the top edges, which are removed by the
subsequent top edge contraction, so the solvability of (s, t) is reduced to that of two pairs of
smaller, unconstrained trees.

It will often be useful to view a backbone path as composed of asequence ofpath segments,
where a segment is a maximal contiguous subsequence of covariant edges in the backbone path.
Segments are thus delimited byturns in the path, but for extremal segments, which are (also)
delimited by the root and by the bottom vertex in the path.

A formal motivation of the proposed tactics for the TD strategy is provided by the next
theorem, which is introduced by by a couple of useful lemmas.

Lemma 4.1. Let (s, t) be a pair of binary trees of the same size, wheres has ls leaves in its
top left subtree andt haslt leaves in its top left subtree, withls 6= lt; let ρ be a permutation of
a subsetEρ of the edges ins that specifies an allowed reassociation sequence fors. Then the
ρ-derivative ofs haslt leaves in its top left subtree only ifEs,t ⊆ Eρ.

Proof.
By hypothesis, the sequence specified byρ separates leaflt, living in the top left subtree of
theρ-derivative ofs, from leaf lt+1, living in the top right subtree of theρ-derivative ofs. By
contradiction, suppose there existse ∈ Es,t, e /∈ Eρ. Sincee ∈ Es,t, e belongs to the resizing
path ofs to t and, therefore, both leaveslt andlt+1 are in the subtree ofs rooted at the lower
vertex incident withe, for this vertex is in the resizing path, which ends at the closest common
ancestor of leaveslt and lt+1. Sincee does not occur inρ, edgee is not reassociated in the
sequence specified byρ, hence it still holds in theρ-derivative ofs that all leaves of that subtree
are the leaves of the subtree rooted at the lower vertex incident withe, therefore leaveslt and
lt+1 are in the same top subtree (left or right) of theρ-derivative ofs, against the hypothesis.

Let s be a binary tree and letp = e1 . . . en be a path ins starting from the root. For anyi,
1 ≤ i ≤ n, edgeei in p meets one and only one of the followingvariance conditions:

(i) ei is the last edge inp, i.e. i = n,
(ii) ei is not the last edge inp, i.e. i 6= n, andei is covariant withei+1,
(iii) ei is not the last edge inp, i.e. i 6= n, andei is contravariant withei+1.

Remark 4.1. Let (s, t) be a pair of binary trees of the same size and letp = e1 . . . en be the
resizing path ofs to t. Let s′ be theei-derivative ofs for somei, 1 ≤ i ≤ n, and letp′ be the
resizing path ofs′ to t. By the reassociation rule, we have that|p′| = |p| iff ei meets variance
condition(iii) in p (in which caseei belongs top′), and that|p′| = |p| − 1 iff ei meets either
variance condition(i) or (ii) in p (in both casesei does not belong top′).

Lemma 4.2. Let (s, t) be a pair of binary trees of the same size, wheres has ls leaves in its
top left subtree andt haslt leaves in its top left subtree, withls 6= lt. Let ρ = ei1 . . . ein be a
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permutation ofEs,t that specifies an allowed reassociation sequence fors. Moreover, lets0 = s,
let sj be theeij -derivative ofsj−1, for 1 ≤ j ≤ n, and letpj be the resizing path ofsj to t, for
0 ≤ j ≤ n. Then theρ-derivative ofs haslt leaves in its top left subtree iff, for every1 ≤ j ≤ n,
eij does not meet variance condition(iii) in pj−1.

Proof.
It suffices to observe that theρ-derivative ofs, viz. sn, haslt leaves in its top left subtree iffpn,
the resizing path ofsn to t, has length0. But this is true iff, for every1 ≤ j ≤ n, |pj| = |pj−1|−1
(since|p0| = |Es,t| = n) iff, by Remark 4.1, for every1 ≤ j ≤ n, eij does not meet variance
condition (iii) in pj−1.

Theorem 3. Let (s, t) be a pair of binary trees of the same size, wheres hasls leaves in its top
left subtree andt haslt leaves in its top left subtree, withls 6= lt; let ρ be a permutation ofEs,t

that specifies an allowed reassociation sequence fors. Then theρ-derivative ofs haslt leaves
in its top left subtree iffρ ∈ Rs,t, viz. iffρ ∈ JSs,tK.

Proof.
Let p = e1 . . . en be the resizing path ofs to t, and supposeρ = ei1 . . . ein . Let s0 = s, and letsj

be theeij -derivative ofsj−1 andpj be the resizing path ofsj to t, for 0 ≤ j ≤ n. By Lemma 4.2,
it suffices to show thatρ ∈ JSs,tK iff for every 1 ≤ j ≤ n, eij does not meet variance condition
(iii) in pj−1.
Suppose first thatp is turnfree; then, by the reassociation rule, noeij -reassociation in the se-
quence specified byρ may change the orientation of any edge inpj with respect to that which
it has inpj−1 (the orientation ofeij itself does change, buteij does not belong topj), therefore
everypj is turnfree, for0 ≤ j ≤ n, which entails that noeij may ever meet variance condition
(iii) in pj−1, for 1 ≤ j ≤ n, while, on the other hand, every permutation ofEs,t is in JSs,tK,
sincep is turnfree.
Suppose now thatp is not turnfree, hence there is an edgeeh, with 1 ≤ h < n, that meets
variance condition (iii) inp. For any edge below it inp, sayek with h < k ≤ n, let f0 = eh and
f1, . . . , fm be the possibly empty, not necessarily contiguous subsequence ofp that consists of
those edges which followeh and precedeek in p, and meet variance condition (iii) inp.
Assume noeij meets variance condition (iii) inpj−1, for 1 ≤ j ≤ n. Then, for each0 ≤ q ≤ m,
the reassociation of every edge in the segment just following fq in p must precede that offq in
the sequence specified byρ, since the orientation offq may only change by its own reassocia-
tion (the alternative being a reassociation of its contravariant predecessor edgeeij in somepj−1,
against the current assumption), while if some of the edges in the segment followingfq in p is
not reassociated beforefq, then the reassociation offq would violate the current assumption.
We may thus infer thatek precedesfm in ρ, and, if m > 0, that fq precedesfq−1 in ρ, for
1 ≤ q ≤ m, whenceek precedesf0 = eh in ρ by precedence transitivity. Since this holds for
everyeh that meets variance condition (iii) inp and everyek that followseh in p, we may con-
clude thatρ ∈ JSs,tK, by the semantics of postfix concatenation/shuffle expressions, recalling
their left-associative reading and the waySs,t is obtained from the resizing pathp.
Conversely, assumeρ ∈ JSs,tK, then the aforementioned semantics entails thatek precedeseh in
ρ whenevereh meets variance condition (iii) inp, for all h < k ≤ n. By contradiction, assume
eij meets variance condition (iii) inpj−1 for some1 ≤ j ≤ n, and consider the smallest suchj.
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Then, one of the following cases should be inferred about thesuccessor ofeij in pj−1: 1) It is
reassociated beforeeij , but still is in the resizing pathpj−1 (cf. Remark 4.1); then this successor
edge should beeij′

, for somej′ < j, and it should meet variance condition (iii) inpj′−1, against
the stated minimality ofj; clearly, this case is to be rejected. 2) The successor ofeij in pj−1 is
reassociated aftereij ; by the stated minimality ofj, for every1 ≤ j′ < j, eij′

meets variance
condition (i) or (ii) in pj′−1, which fact entails that every edge inpj−1 has the same orientation
it has inp, and that their relative ordering inpj−1 is the same as inp; then, the occurrence of
eij in ρ precedes inρ that of an edge, its successor inpj−1, that is contravariant with it inp, by
the aforementioned preservation of edge orientation, and where it followseij , by the aforemen-
tioned preservation of edge relative ordering in the resizing path. Two final subcases arise from
this inference: 2.1)eij meets variance condition (iii) inp, in which caseρ /∈ JSs,tK, against the
assumption; 2.2)eij meets variance condition (ii) inp, in which case all edges below it in its
segment inp are reassociated before it (since it meets variance condition (iii) in pj−1), including
the lowest one of them, saye′; this one is thus reassociated beforeeij , which is reassociated
before its successor inpj−1; then, by precedence transitivity,e′ is reassociated before the suc-
cessor ofeij in pj−1, but the latter edge followse′ in p, wheree′ meets variance condition (iii);
whence the same absurd conclusion is drawn as in the previoussubcase, viz.ρ /∈ JSs,tK.

The specialization of the TD strategy for path trees enjoys the property that each tactical
goal boils down to get that all leaves but one be placed in one of the two top-level subtrees, the
other consisting of the top leaf. The achievement of the goalthen enables top edge contraction,
whereby the root of the reduced target tree progressively moves downwards, along the backbone
path. In the case of path trees, thus, BU and TD strategies feature a sort of symmetric dynamics.
Figure 10 illustrates the application of the TD strategy to the same path tree pair considered in
Figure 9, with similar notational conventions, except thathere the default contraction type is
T. When no edge reassociation is required for top edge contraction, viz. Rs,t = {ǫ}, then this
fact is made explicit by subscripting the reduction step with “≡”. Three solutions are found by
the TD strategy in the subject example, resp. depicted in Figure 10(c.1), 10(c.2), 10(c.3); none
of them coincides with any of those found by the BU strategy. The reader may verify that the
path trees on the right of Figure 10(c.1), 10(c.2), 10(c.3),are respectively produced by reasso-
ciation sequencesabdcaefd, abcdacfeaf, abcdacefae, and that application of the respective
reverse sequences to them yields the solutions on the left ofFigure 10(c.1), 10(c.2), 10(c.3),
respectively.

The nondeterminism of tactics employed in both strategies introduced above, entails that
either of them may deliver a set of solutions, not only because the final target constraint assign-
ment may be partial, but also because a set of not necessarilyequivalent reassociation sequences
may prove globally successful. This possibility raises theprinciple question whether any of
these strategies iscomplete, that is, able to deliver the whole set of solutions for any given pair
of binary trees. The examined case settles the answer to thisquestion in the negative, both for
the BU and for the TD strategy, where either strategy proves unable to find solutions found by
the other. This motivates the consideration of a third strategy, which subsumes the previous
ones, while featuring a higher degree of nondeterminism at the global level. This strategy es-
sentially is thenondeterministic combination of BU and TD strategies, hereafter shortly referred
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Figure 10: Solutions by the TD strategy

to as theBU|TD strategy. The set of tactical goals selected at each step consists of those defined
by either of the BU and TD strategies, while each goal is pursued by the corresponding tactics
as previously defined.

The definition of the BU|TD strategy entails that the set of solutions it delivers always in-
cludes those delivered by the standalone BU and TD strategies; however, it may also contain
solutions found by neither of them. This is hard to testify inthe previous case, wheree.g.
the BU|TD strategy gets the solution displayed in Figure 11, by the reassociation sequence
edfeabcfac. It appears, though, that this solution is the same as the third one delivered by
the TD strategy, resulting from the reassociation sequenceabcdacefae, as displayed in Fig-
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Figure 11: An equivalent reassociation sequence by the BU|TD strategy

ure 10(c.3). The resulting constrained source trees are identical, whereas the constrained target
trees only differ by a permutation of edge names. However, such a difference is irrelevant in
terms of sign assignments to tree internal vertices, hence the two reassociation sequences are
equivalent. This offers the opportunity to point out that the image of the map mentioned in
Section 1 consists of (partially) constrained trees withunnamed edges. Edge names are a con-
venient means to specify reassociation moves and thereby tofind solutions, but these abstract
from those names, as they only refer to tree structure.

The path tree pair presented in Figure 12(a) testifies to the fact that the BU|TD strategy may
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Figure 12: An additional solution by the BU|TD strategy

deliver solutions that are found by neither the BU nor the TD strategy. The reader may verify
that, in this case:
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(i) the BU strategy finds only one solution, that is displayedin Figure 12(b), by the reasso-
ciation sequencefedcbgfcafg;

(ii) the TD strategy finds two solutions, as displayed in Figure 12(c.1) and 12(c.2), respec-
tively by reassociation sequencesba(cb|ed)fegbec andbadcbefgbfcd;

(iii) the BU|TD strategy also finds the solution displayed in Figure 12(e), by the reassociation
sequencefebadcbfgb, whose development is presented in Figure 12(d). It is apparent
that this reassociation sequence is not equivalent to any ofthose found by the BU and TD
strategies.

The question about completeness of the BU|TD strategy is open. A perhaps more interest-
ing principle question relates to theeffectivenessof the subject strategies, where a strategy is
effective if it always finds some solution for solvable tree pairs. It is not yet known whether
any of the strategies defined above is effective. Note that these questions are independent of
the validity of the EK Conjecture, since neither completeness nor effectiveness of any strategy
ensures that the set of solutions is never empty.

5 Strategies that solve path tree pairs with a shared bottom
leaf

While solution search strategies considered so far are nondeterministic, and apply to pairs of
general binary trees, in the rest of this work deterministicstrategies are investigated, that prove
suitable tosolvespecific classes of path tree pairs. The first such class consists of those pairs
of path trees which share a bottom leaf. Pairs that share bothbottom leaves are reducible, since
they are decomposable (by an instance of Proposition 9 in [3]), while pairs that share only one
bottom leaf are known to be solvable, by Proposition 8 in [3],where the existence of a common
parse word for the subject path trees is shown. The translation of that proof in the present
framework proves very instructive and fruitful, since it

• uncovers two related deterministic strategies that alwaysfind a successful reassociation
sequence, for any pair in the subject class,

• enables a general characterization of the solutions found by the aforementioned strategies,
that only depends on path tree structure,

• provides a basis for the investigation of other, related deterministic strategies, that prove
suitable to solve certain classes of path tree pairs which share no bottom leaf (as it is
shown in the next section).

These goals justify the fact that, in this section, neither decomposable pairs nor otherwise re-
ducible pairs are excluded from consideration, since strategies and solutions to be dealt with,
apply to the whole class of equally sized path tree pairs witha shared bottom leaf. The second
item in the previous list is first addressed, by proposing thefollowing definition.

Definition 3. A (partial) assigment of (in)equality constraints to backbone edges of a path tree
is sequentialif every nonbottom edge in the backbone is either unconstrained or constrained by

(i) “=” if it is contravariant with the adjacent edge below it,
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(ii) “6 =” if it is covariant with the adjacent edge below it.

The following lemma is a first, useful tool to prove the present reformulation of Proposition
8 of [3].

Lemma 5.1. Let s be a path tree with sequential constraint assignment, ande either the back-
bone bottom edge not constrained by “6=”, or a nonbottom edge that is contravariant with the
adjacent edge below it. Then thee-derivative ofs is a path tree with sequential constraint
assignment.

Proof.
Immediate from Def. 3 and the properties of reassociation under the stated assumptions about
edgee.

Any constraint assignment to the bottom edge of the backbonepath plays no rôle in the
previous definition, but it does play an essential one in the characterization of those sequential
constraint assignments that warrant solvability of a pair (s,t) of path trees that share exactly one
bottom leaf, and where either tree in the pair may be constrained. A trivial remark is a useful
introduction to the forthcoming definition, viz. that if twopath trees of equal size share just one
bottom leaf, then this lies on opposite sides in the two trees.

Definition 4. A pair of path trees of equal size, with contravariant top edges and that share
exactly one bottom leaf, is

(i) a majority pair if the shared bottom leaf lies on the same side as the top leaf,in both
trees;

(ii) a minority pair if the shared bottom leaf lies on the opposite side to that of the top leaf,
in both trees.

Top leaves in a pair of path trees with contravariant top edges lie on opposite sides, therefore,
by the previous remark, the single shared bottom leaf must lie either on the same side as the top
leaf in both trees, or on the opposite side, again in both trees. The terminology adopted in the
previous definition is justified by the fact that, for any fixedpath tree size, the set of pairs of path
trees of that size, that have contravariant top edges and share a single bottom leaf, is partitioned
into the two subclasses which are resp. characterized by theconditions stated in Def. 4, and
that the first class is always larger than the second one (evenin the smallest case, viz. of 1-edge
backbone, where the majority class is populated by a single pair, up to chiral symmetry, while
the second class is empty).

The followingbottom edge rulecharacterizes those sequential constraint assignments which
warrant solvability of path tree pairs with contravariant top edges, a single shared bottom leaf,
and where either tree in the pair may be constrained, thanks to a forthcoming result. It is just
amazing that the dichotomy drawn by this rule is essentiallydetermined by the relative orienta-
tion of the two farthest edges in the backbone path. Please note that there is no loss of generality
in the contravariance assumption about top edges, since moveless top edge contraction applies
to pairs with covariant top edges, and any partial constraint assignment that solves the pair of so
reduced path trees does also solve the original pair, with the top edge left unconstrained. This
preserves sequentiality of the constraint assignment, according to Def. 3.
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Definition 5. A sequential constraint assigment to backbone edges of either path tree, in a
pair of equal-size path trees that have contravariant top edges and share a single bottom leaf,
satisfies thebottom edge ruleif the bottom edge is either unconstrained, or else

(i) constrained by “=” iff it is covariant with the top edge inthe backbone path, when the
given pair is a majority pair;

(ii) constrained by “=” iff it is contravariant with the top edge in the backbone path, when
the given pair is a minority pair.

The forthcoming terminology is based on the notion of path segment, introduced above.
The following acronyms (kept lowercase for typographical convenience) will designate two
deterministic strategies for path tree pairs, as defined below:

tdbus: top-down (strategy with) bottom-up (tactics for multimove reassociation of) segments;
butds: bottom-up (strategy with) top-down (tactics for multimove reassociation of) segments.

Definition 6. Let (s, t) be a pair of path trees of the same size. Then two deterministic sequential
strategiesare defined as follows:

(i) the tdbusstrategy is the deterministic specialization of the TD strategy for path trees,
where tactics only select multimove reassociation of edgesin bottom-up order, when this
is allowed, otherwise the selection is undefined;

(ii) the butdsstrategy is the deterministic specialization of the BU strategy for path trees,
where tactics only select multimove reassociation of edgesin top-down order, when this
is allowed, otherwise the selection is undefined.

The next lemma tells in what sense do sequential strategies prove effective under, and pre-
serve, validity of the bottom edge rule.

Lemma 5.2. Let (s, t) be a pair of equal-size path trees that have contravariant top edges
and share a single bottom leaf, with a sequential constraintassignment ins that satisfies the
bottom edge rule. Letα be the edge reassociation sequence selected ons by the tactics of either
sequential strategy as per Def. 6. Thenα is allowed by the constraints ins, and the path trees
in the pair (s′, t), with s′ the α-derivative ofs, either have identical tree structure or reduce
without further reassociation to a pair (s′′, t′) of equally sized, smaller path trees that either
have identical tree structure, or have contravariant top edges, share a single bottom leaf, and
with a sequential constraint assignment ins′′ that satisfies the bottom edge rule.

Proof.
Each subsequent move of theα sequence satisfies the hypothesis of lemma 5.1, so, if allowed,
α preserves sequentiality of the constraint assignment. Figure 13 displays multimove reassoci-
ations by the two kinds of sequential strategy defined above,in the case when the sequence of
reassociated edges does not include the bottom edge; it is apparent that, in this case,α is always
allowed, thanks to sequentiality of the constraint assignment in the source path tree and because
α starts with a nonbottom edge that is contravariant with the adjacent edge below it, and this
condition is preserved for all subsequent edges inα in the corresponding derivative trees. Note
that, whenk =1, the optional constraint on edgee1 in the source tree of Figure 13(a) is “=”, and
so is the resulting constraint on edgee1 in the derivative tree in in Figure 13(b).
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Figure 13: Multimove reassociations by sequential strategies: (a)tdbus, (b) butds.

Similar pictures represent multimove reassociations by a sequence that includes the backbone
bottom edge, by dropping edgeek+1 and taking edgeek to be the bottom edge. In this case,
however, the sequence is allowed whenek is either unconstrained or constrained as shown in
the picture, but the latter condition is not warranted by thesequentiality hypothesis alone, rather
also by that of validity of the bottom edge rule. This goes as follows. For thetdbusstrategy,
according to Figure 13(a) without edgeek+1, leaf j+1 is the shared bottom leaf, hence validity
of the bottom edge rule in the constrained source tree entails that the constraint onek is “=”
both in the case of top edge covariant with the bottom one, since the tree pair is a majority pair,
and in the opposite case, where the tree pair is a minority pair. Again, this also holds when
k =1, as noted above. For thebutdsstrategy, as in Figure 13(b) without edgeek+1, leaf j-1 is
the shared bottom leaf, and a similar reasoning leads to the same conclusion. Moreover, in both
strategies, by chiral symmetry the validity of the conclusion does not depend on the displayed
orientation of the reassociated edge sequences.
It remains to be shown that validity of the bottom edge rule ispreserved as stated. It is con-
venient, to this purpose, to consider the combined outcome of the α reassociation sequence
together with the subsequent, nonempty sequence of moveless edge contractions, which are top
edge contractions in thetdbusstrategy, bottom edge contractions in the other strategy. The two
strategies are dealt with separately, as follows.
In the tdbussequence of multimove reassociations, the first bottom-up multimove ends at the
top edge of the source tree, since the given trees have contravariant top edges, and each subse-
quent bottom-up multimove ends at the top edge of the reducedsource tree which results from
the sequence of moveless top edge contractions that followsthe previous multimove, where the
reduced tree pair also has contravariant top edges. Letα be the bottom-up sequence of edges
selected by thetdbustactics at any step of the strategy, with moveless top edge contractions as
already mentioned. Then,α always includes the top edge, as just argued. If it also includes the
bottom edge, then theα multimove is the last one in thetdbussequence, the source tree it acts
upon is turn-free, and the resulting derivative has the sametree structure as the target, so the
statement holds. Ifα does not include the bottom edge, but it includes the edge just above it,
then the source tree has a single turn, placed between this edge and the bottom one, and theα
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multimove changes both orientation and constraint of the bottom edge, but not the bottom leaf
pair. The top edge of the reduced source tree which results from the subsequent moveless top
edge contractions has the same orientation as the top edge ofthe source tree before the multi-
move, therefore the majority/minority status of the tree pair is not changed, thus validity of the
bottom edge rule is preserved. Finally, consider the case whenα includes neither the bottom
edge nor that just above it. Then neither orientation nor constraint of the bottom edge change
after the multimove. Depending on where do the subsequent moveless top edge contractions
end up in the source path, the top edge orientation of the resulting reduced source tree derivative
may have the same or opposite orientation as the top edge of the source tree before the multi-
move, viz. the majority/minority status of the tree pair maystay the same or may change, but
neither orientation nor constraint of the bottom edge change, so validity of the bottom edge rule
is preserved in both cases.
In thebutdssequence of multimove reassociations one has an almost dualsituation, but not ex-
actly, so a detailed analysis is badly needed. The first top-down multimove ends at the bottom
edge of the source tree, and moveless bottom edge contraction after the multimove makes the
abstraction leaf to be a shared bottom leaf in the reduced tree pair. If also its sibling bottom leaf
is shared, viz. the abstraction leaf is on the same side in both trees, then further moveless bottom
edge contraction takes place, until the bottom leaf pairs inthe two progressively reduced trees
share one leaf only, that is the abstraction leaf. This happens as soon as the bottom edges in
the two trees are contravariant, while sharing both bottom leaves; then, moveless bottom edge
contraction still takes place, but the resulting abstraction leaves are on opposite sides in the so
reduced tree pair, which thus only features the abstractionleaf as a shared bottom leaf. Let
α be the top-down sequence of edges selected by thebutdstactics at any step of the strategy,
with moveless bottom edge contractions as already mentioned. Then,α always includes the
bottom edge, as just argued. If it also includes the top edge,then theα multimove is the last
one in thebutdssequence, the target tree is turn-free, and the resulting derivative has the same
tree structure as the target, so the statement holds. Ifα does not include the top edge, then
contravariant top edges in the reduced tree pair have the same orientations as in the tree pair
before the multimove, but orientation and/or constraint ofthe source bottom edge may differ,
depending on where do the moveless bottom edge contractionsafter the multimove end up in the
source path, and the majority/minority status of the tree pair may or may not change, depending
on whether does or does not change the side of the shared bottom leaf (in both trees). Validity of
the bottom edge rule in the reduced tree pair holds iff eitherthe bottom edge is unconstrained,
or else either none or (exactly) two of the following three properties hold: the abstraction leaf
is on the same side as the top leaf, top edge and bottom edge arecovariant, the bottom edge
constraint is “6=”. This turns out to be the case indeed, when the bottom edge inthe reduced
source tree is constrained, as a consequence of the constraint sequentiality hypothesis (and al-
ready shown preservation), and because the last moveless bottom edge contraction, yielding the
subject reduced tree pair, refers to contravariant bottom edges, as argued above, while the tree
pair before the last moveless bottom edge contraction shares both bottom leaves. Figure 14
illustrates the case analysis that completes the proof, under the assumption that the source top
leaf is on the right side. The assumption is harmless, since validity of the statement only de-
pends on the relative orientation of top edge and bottom edgein the source tree, hence a similar
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Figure 14: Bottom edge rule validity under thebutdsstrategy.

case analysis applies under the opposite assumption, by chiral symmetry. As it may be seen in
the picture, eight subcases are to be considered for the treepair before the last moveless bottom
edge contraction, but these can be paired, each pair of subcases yielding the same reduced tree
pair. With the notation established in Section 2, (h–j) denotes the abstraction leaf after the last
moveless bottom edge contraction, withh<j. The bottom edge of the resulting reduced source
tree is assumed to be constrained (otherwise the bottom edgerule is satisfied), conforming to
the constraint sequentiality hypothesis, while neither any other constraint, nor the orientation of
the target bottom edge after the last moveless bottom edge contraction, are displayed, since this
information is irrelevant to validity of the bottom edge rule in the resulting, reduced tree pair.
For the sake of simplicity, neither edge names nor the contraction type subscript (B, of course)
are displayed in the picture.

And here is the main justification for the title of the presentsection.

Theorem 4. Let (s, t) be a pair of path trees of equal size, with contravariant topedges, leafi a
bottom leaf in both trees, and a sequential constraint assignment ins. Then the pair is solvable,
and both sequential strategies as per Def. 6, applied tos, find a solution for it, if either of the
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following conditions holds:

(i) s andt share both bottom leaves;
(ii) i is the only bottom leaf shared bys and t, and the constraint assignment ins satisfies

the bottom edge rule.

Proof.
Under condition (i), the two path trees have the same number of left leaves (hence also the
same of right leaves), thus no reassociation of the backbonebottom edge is needed. Multimove
reassociations by either sequential strategy that excludethe bottom edge are allowed by the
constraints ins, as shown in the first paragraph of the proof of lemma 5.2, and preserve both the
number of left leaves and constraint assignment sequentiality, by lemma 5.1. Under condition
(ii), the statement follows from lemma 5.2 by induction.

An easy corollary of the previous theorem is the solvabilityof every pair of unconstrained
path trees that share (exactly) one bottom leaf, viz. the exact translation of Proposition 8 of [3]
in the present framework; this holds because the empty constraint assignment is sequential and,
for path trees with contravariant top edges, it satisfies thebottom edge rule. More can be said
about the class of path tree pairs that share either or both bottom leaves, however, as well as
about the examined sequential strategies for them.

Consistently with the concept in [3], say that a level below the top one is adecomposition
level for a pair of path trees if these have the same subsequence of leaves under that level. In
particular, the backbone bottom level is a decomposition level iff the two path trees share both
bottom leaves. By the following result, one gets an easy way to count the number of distinct
sequential solutions found by either sequential strategy for any given path tree pair that shares
at least one bottom leaf; the proof uncovers a very easy way todraw the partial constraint
assignment that specifies the set of solutions found by either sequential strategy, with no need
to perform any reassociation whatsoever.

Theorem 5. Both sequential strategies, tdbus and butds, are effectivefor the class of path tree
pairs that share either or both bottom leaves. They yield thesame partial constraint assignment
for any given pair in the class, that thus specifies the same (nonempty) set of solutions. This set
has cardinality 2k, wherek is the number of decomposition levels for the given path treepair.

Proof.
It is enough to show that 1) the partial constraint assignment found by any strategy for a path tree
pair in the subject class, may leave unconstrained only those backbone edges which are located
just above a decomposition level, and 2) either sequential strategy leaves all those edges uncon-
strained. These two statements together entail that the partial constraint assignments found by
the two sequential strategies coincide, since either of them delivers a partial constraint assign-
ment that is sequential and, in the case of single shared bottom leaf, that satisfies the bottom
edge rule; such an assignment is then uniquely determined bythese properties outside the set of
unconstrained edges.
The truth of statement 1) is easy to see from the fact that an edge is left unconstrained in the
partial constraint assignment delivered by a reassociation sequence iff it does not occur in that
sequence; in such a case there is no flow of leaves across the level just below that edge, therefore
the reassociation sequence is a successful one only if the subject level is a decomposition level.
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Statement 2) may be proven by induction on the backbone length. The two sequential strategies
coincide in the basis case, where the backbone is empty, and so is the constraint assignment, of
course. For the inductive step, if the tree pair has no decomposition level, then both strategies
deliver a partial constraint assignment where all edges areconstrained, by statement 1), so as-
sume the tree pair has at least one decomposition level. Then, by decomposition at this level,
both component source trees have smaller backbones than theoriginal, composite one, since the
decomposition level lies below the top by definition, and thesource backbone edge just above
it is a terminal edge in the upper component tree, so it belongs to neither component source
backbones. The induction hypothesis thus applies to both component tree pairs, and the set of
edges of the original source backbone that are left unconstrained by either strategy is the union
of those left unconstrained for the smaller component backbones, together with the edge just
above the decomposition level.

Finally, we conjecture that both sequential strategies arenot only effective but also complete
for the class of path tree pairs that share either or both bottom leaves. A proof of this statement
would amount to show that every solution must be a sequentialconstraint assignment, satisfying
the bottom edge rule in the case of single shared bottom leaf,since no other edge may be
left unconstrained by any solution strategy besides those so left by either sequential strategy,
according to the two statements in the proof of Theorem 5.

6 A class of solvable pairs of weakly mutually crooked path
trees

The results presented in Section 5 prove also useful to solvecertain pairs of path trees that
share no bottom leaf. The basic idea here is to attack the problem by atwo-phase strategy,
where the first phase is aimed at yielding a reduced path tree pair with a shared bottom leaf
and a sequential constraint assignment that satisfies the bottom edge rule in the reduced source
tree derivative. A successful outcome of this kind from the first phase, enables adoption of a
sequential strategy in the second phase, or just direct inference of the remaining part of the final,
partial constraint assignment, by the latest remark beforeTheorem 5.

Path tree pairs of present interest are indecomposable, weakly mutually crooked (i.e. share
no triplication), have at least three segments each (thus not solvable by Theorems 11 and 12 of
[3], which have essentially the same proofs in the present framework), with contravariant top
segments of length at least 2 (thus not reducible by Prop. 2.1) and second segments from the top
of length at most 2 (thus not reducible by Theorem 2), share nobottom leaf, and neither pair
of bottom leaves is duplicated in the other tree. Within thisclass of path tree pairs, a subclass
is isolated that proves solvable by a two-phase, deterministic strategy of the aforementioned
kind. The hypotheses which characterize this class give it afairly narrow outlook, but it may be
interesting to anticipate that it even includes a subclass of mutually crooked path tree pairs (i.e.
sharing no duplication).

Before embarking on the characterization of the subject class, it may be useful to give a
flavour of the method by a contrived example, where a mutuallycrooked path tree pair is solved.
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Figure 15: A solvable pair of mutually crooked path trees sharing no bottom leaf

The path tree pair in Figure 15(a) meets all aforementioned assumptions, and shares no
duplication. The first phase sequence of reassociations andreductions, as displayed in Fig-
ure 15(b), is determined by thebutdsstrategy, in this example. In the general case of forth-
coming interest, the first phase strategy will be BU, but witha deterministic tactics that selects
either the top-down or the bottom-up sequence, throughout the whole phase, depending on
which alternative hypotheses are met. Not every intermediate reduced source tree derivative
gets a sequential constraint assignment, since there is no shared bottom leaf in the given pair,
but the final outcome of the displayed phase does so, it satisfies the bottom edge rule (as the bot-
tom edge is unconstrained, in this case), and it shares a bottom leaf, viz. leaf 5, with the reduced
target tree, hence the given pair is solvable. The constraint assigment inferred from the first
phase outcome, by constraint sequentiality and bottom edgerule, is displayed in Figure 15(c).
Note that only edges that are contracted in the first phase mayeventually get constraints that
violate constraint sequentiality.

As it will be shown, the following definition characterizes constraint assignments in the
reduced source tree derivatives throughout the first phase,for path tree pairs of the intended,
solvable class.

Definition 7. A (partial) constraint assigment to backbone edges of a pathtree isnear sequen-
tial if at most one of the constrained edges violates constraint sequentiality as per Def. 3.

The next definition generalizes the terminology introducedwith Def. 4.

Definition 8. A pair of path trees of equal size, with contravariant top edges and that do not
share both bottom leaves, is

(i) a majority pair if either tree has more leaves on its top leaf side than the other tree on the
same side;

(ii) a minority pair if either tree has fewer leaves on its top leaf side than the other tree on
the same side.

One of the reasons which justify the term “sequential” for the strategies introduced in Sec-
tion 5 is that all tree derivatives they determine, for a pathtree pair sharing a bottom leaf, are
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path trees. This is no longer the case with first phase strategies considered here, not even in
the case of top-down tactics (that is thebutdsstrategy), because of the lack of a shared bot-
tom leaf. However, thereducedtree derivatives they determine are path trees. In other words,
each tree derivative resulting from a multimove reassociation has at most one edge that violates
“pathness” of the internal edge backbone, but this undergoes bottom edge contraction in the
subsequent reduction.

It is fairly easy to see that, whichever of the two sequentialtactics, viz. bottom-up or top-
down, is chosen for the first phase BU strategy, the reduced source tree derivative resulting from
the first multimove reassociation and bottom edge contraction has a near sequential constraint
assignment. Since neither of the target bottom leaves is a bottom leaf in the given source tree,
the abstraction leaf out of the first reduction is not a bottomleaf in the reduced source tree
derivative, and this has one edge violating sequentiality of the constraint assignment iff the
multimove consists of at least two moves,i.e. the target bottom leaves are not duplicated in the
source tree, which is one of the nonreducibility assumptions stated above. This one edge is the
sibling of the terminal edge ending in the abstraction leaf if the tactics is bottom-up, otherwise
it is the parent edge of that terminal edge.

Now, in order to motivate the choice of tactics under appropriate hypotheses, and to justify
the hypotheses themselves, it is useful to consider conditions which preserve near sequentiality
of constraint assignment throughout the first phase. It turns out that each of the two relative
orientations of target tree segments, with respect to the top segment orientation, viz. covariant
and contravariant, has adefault tactics, which also depends on whether the path tree pair is a
majority or minority one, that ensures the aforementioned preservation, as long as the target
abstraction leaf moves up along a segment with that orientation.

More precisely, with the target abstraction leaf on a segment that is covariant with the target
top segment in a majority pair, or contravariant with it in a minority pair, bottom-up tactics
preserve near sequentiality of constraint assignment in reduced source tree derivatives, with
possible violation of constraint sequentiality in the sibling edge of the source abstraction leaf,
provided this condition holds when the target abstraction leaf is at the lower end of the segment,
and as long as it keeps staying on that segment. Conversely, with the target abstraction leaf on
a segment that is contravariant with the target top segment in a majority pair, or covariant with
it in a minority pair, top-down tactics preserve near sequentiality of constraint assignment in
reduced source tree derivatives, with possible violation of constraint sequentiality in the parent
edge of the source abstraction leaf, provided this condition holds when the target abstraction
leaf is at the lower end of the segment, and as long as it keeps staying on that segment.

Turns between adjacent target segments present the following problem. The condition stated
above, that is preserved along the lower segment by its default tactics, yields possible violation
of constraint sequentiality at an edge, either parent or sibling of the abstraction leaf, that is
other than that where it would be preserved by the default tactics for the upper segment. In
other words, the idea of switching tactics at backbone turns, to adopt default tactics for each
segment, does not work, that is, it does not preserve near sequentiality of constraint assignments
in reduced source tree derivatives.

However, it so happens that, if the sibling leaf of the lowestedge in the upper segment and
its consecutive leaf at the next lower turn (at the bottom, iif the lower segment is the bottom
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one in the target backbone) are duplicated in the source tree, then, after reduction along the
lower target segment with default tactics, either tactics select the same, 1-edge move, and this
reassociation “recovers” the constraint sequentiality violation in the reduced source tree deriva-
tive. Thereafter, if the upper segment has more than one edge, and the next pair of consecutive
leaves are not duplicated in the source tree, then the nondefault tactics, that is the same tactics as
for the lower segment, reintroduces constraint sequentiality violation in the reduced source tree
derivative on the same sort of edge (parent or sibling of the abstraction leaf) where it is found
before the aforementioned 1-edge move. Iterated occurrence of this condition, meaning that
subsequent pairs of consecutive leaves on the upper target segment are alternatingly duplicated
in the source tree, preserves near sequentiality until the segment end. A situation whereby a
successful exit out of the first phase is achieved, is that where the last first phase reduction that
yields a reduced source tree derivative sharing a bottom leaf with the reduced target, follows a
1-edge move that, together with the subsequent contractionof the reassociated edge “recover”
the single violation of constraint sequentiality.

Once armed with the intuitions exposed above, the reader mayhopefully get a grasp of the
admittedly complex formulation of the hypotheses for the forthcoming theorem. Further jus-
tification is provided in its proof, as it were. For the sake ofsimplicity, we assume definite
(contravariant) orientations of top segments in the given path trees, but this is no harm to gen-
erality, by reversibility of successful reassociation sequences solving the converse pair of path
trees.

Theorem 6. Let (s, t) be an indecomposable pair of path trees of equal size, say with n back-
bone edges, that share no bottom leaf, have at least three segments each, with contravariant top
segments of length at least 2, segments just below the top ones of length at most 2, no shared
triplication, and where neither pair of bottom leaves is duplicated in the other path tree. As-
sume leaf 1 is the top leaf in target treet, thus leafn+2 is the top leaf in source trees. Let
h, h+1 be the bottom leaves ins, andi, i+1 be the bottom leaves int. Such a path tree pair is
solvable if either occurrence of a source bottom leafl∈{h, h+1} in t, together with the given
tree structures satisfy one out of the following four sets ofalternative hypotheses:

(i) (s, t) is a majority pair, leafl is not duplicated with leafl+1 in target treet, and
• every segment contravariant with the top one int, below the level of leafl has even

length, except for the top such segment, ending with right leaf g>i+1 at the level of
(necessarily left) leafl, that has odd length;

• every pair of consecutive leaves (i+2p-1,i+2p) is duplicated in source trees, for
1≤ p ≤ g−i

2
;

(ii) (s, t) is a minority pair, leafl is not duplicated with leafl-1 in target treet, and
• every segment covariant with the top one int, below the level of leafl has even

length, except for the top such segment, ending with left leaf g < i at the level of
(necessarily right) leafl, that has odd length;

• every pair of consecutive leaves (i-2p+1,i-2p+2) is duplicated in source trees, for
1≤p≤i−g+1

2
;

(iii) ( s, t) is a majority pair, leafl = h+1 and it is duplicated with leafh+2 in target treet,
and
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• every segment covariant with the top one int, between the bottom and the parent
vertex of leafl, with the top such segment cut at that vertex, has even length;

• every pair of consecutive leaves (i-2p+1,i-2p+2) is duplicated in source trees, for
1≤ p ≤ i−l

2
;

(iv) (s, t) is a minority pair, leafl=h and it is duplicated with leafh-1 in target treet, and
• every segment contravariant with the top one int, between the bottom the parent

vertex of leafl, with the top such segment cut at that vertex, has even length;
• every pair of consecutive leaves (i+2p-1,i+2p) is duplicated in source trees, for

1≤ p ≤ l−i−1
2

.

Proof.
The claim is that a first phase BU strategy, with bottom-up tactics under hypotheses (i) or
(ii), top-down tactics under hypotheses (iii) or (iv), yields a reduced source tree derivative that
only shares leafl as a bottom leaf with the reduced target tree, and has a sequential constraint
assignment that satisfies the bottom edge rule. Validity of the claim then entails solvability of
(s, t), thanks to Theorem 4. Figure 16 depicts the situation near (the parent vertex of) leafl in
target treet, in the four cases considered in the hypotheses.
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Figure 16: Target tree case analysis for first phase exit withshared bottom leafl

The choice of tactics in the specified cases only depends on whether or not is leafl duplicated
with its consecutive leaf below it in target treet. This is motivated as follows. For the claim
to hold, by the duplication assumptions on source trees, the target leaf at the level just below
that of l must get joined with the abstraction leaf, in the reduced source tree derivative, by a 1-
edge last move of the first phase that recovers the constraintsequentiality violation. Therefore,
the nondefault tactics are to be adopted for the segment where its sibling lives. This, together
with the definition of default tactics and a quick inspectionat Figure 16 entail bottom-up tactics
when leafl is not duplicated with its consecutive leaf below it, as it happens under hypotheses
(i) or (ii), top-down tactics otherwise. This also explainsthe parity requirements on the length
of segments where these tactics are the nondefault ones.
The reader may have noticed that the stated hypotheses require duplication of alternating pairs
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of consecutive leaves, within a specified interval, in source trees, but do not require the other
pairs of consecutive leaves in the same interval not to be duplicated. This is not necessary, by
the following argument. If such a leaf pair has sibling edgesin a segment of length greater than
2 in target treet, then it is part of a triplication in this tree, that would be ashared triplication
if that pair were also duplicated in source trees, against the assumption of absence of shared
triplications in the given path tree pair (s, t). On the contrary, when the subject leaf pair has
sibling edges in a segment of length 2 in target treet, then it is not part of a triplication in this
tree, so it may well be part of a triplication in source trees. However, the net effect of this in the
reassociation with reduction process, is the preservationof the single constraint sequentiality
violation on the same edge where it occurs before the two 1-edge moves which join the leaves
out of the subject leaf pair with the abstraction leaf.
Let theproper tacticsbe bottom-up in cases (i) and (ii), top-down in the other two cases. Let
thefirst-phase final leaff be target leafg in cases (i) and (ii),l+1 in case (iii),l-1 in case (iv).
The proof is carried out by showing that

(I) every first phase BU multimove reassociation determinedby the proper tactics is allowed,
and yields a reduced source tree derivative with near sequential constraint assignment;

(II) the reduced tree pair obtained by contraction of a bottom edge that has the first-phase final
leaf f as a bottom leaf, has leafl as the only shared bottom leaf, and its reduced source
tree derivative has a sequential constraint assignment that satisfies the bottom edge rule.
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Figure 17: First phase source tree reductions with default tactics: (i,ii) bottom-up, (iii,iv) top-
down.
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Figure 17 illustrates multimove reassociations with subsequent bottom edge contraction in the
source tree derivative, when the proper tactics is the default one on the target segment where
the corresponding contraction takes place. With referenceto Figure 16, letl′ = l in cases (i,ii),
l′ = g′+1 in case (iii),l′ = g′-1 in case (iv). Clearly, one hasl′ < j ≤ i < k < f in cases (i,iv),
f <j≤ i<k<l′ in cases (ii,iii). Whenj = i andk= i+1 in Figure 17, then all edges are uncon-
strained in source trees before the (first) multimove reassociation, and the genericabstraction
leaf ((j+1)–k) in Figures 17(i,iv) is actually leafi+1, while (j–(k-1)) in Figures 17(ii,iii) is ac-
tually leafi; q≥2, in this case because the target bottom leaves are not duplicated in source tree
s by hypothesis.
However,q≥2 for every multimove reassociation that has the proper tactics as the default one
on the target segment, not just for the first one, and regardless of whether leavesj andj+1 in
cases (i,iv), or leavesk-1 andk in cases (ii,iii), are duplicated in source trees. This is shown
as follows. From Figure 17 it is apparent that, when the multimove reassociation is not the
first one, in all cases the abstraction leaf gets joined to theother target bottom leaf in the re-
duced source tree derivative by moving the latter leaf toward the former. This fact has three
consequences. First, even if the moved leaf is duplicated with its consecutive leaf in the op-
posite vertical direction with respect to the abstraction leaf, the new abstraction leaf will not
be duplicated with it, which fact provesq ≥2 as stated. Second, constrained edges after the
multimove reassociation and subsequent bottom edge contraction, all have “6=” constraints and
are on the same vertical side,i.e. above or below, with respect to the abstraction leaf; only one
of them violates constraint sequentiality, and that is the sibling edge of the abstraction leaf with
bottom-up default tactics, whereas it is the parent edge of (the parent vertex of) the abstraction
leaf with top-down default tactics. Third, on condition that the moved leaf is not a bottom leaf
with bottom-up default tactics, nor the top leaf with top-down default tactics, then the first edge
in the multimove edge sequence is unconstrained before the multimove; this fact, together with
the previous one entail that the reassociation sequence is allowed, under the stated condition.
Actually, this also holds when the position of the leaf to be moved reaches the bottom, with
bottom-up default tactics, or the top, with top-down default tactics, for the first time.
With top-down default tactics, the lower bound onj in case (iv), and the upper bound onk in
case (iii) entail multimove reassociations with default tactics are allowed, provided the first of
them for the target segment is allowed. With bottom-up default tactics, the lower bound onj
in case (i), and the upper bound onk in case (ii) entail multimove reassociations with default
tactics are allowed, provided the first of them for the targetsegment is allowed. Now, the first
multimove reassociation for a target segment with default proper tactics is obviously allowed
when the segment is the bottom one, since all source edges areinitially unconstrained, but for
a nonbottom such segment, the first multimove reassociationis allowed if near sequentiality
of constraint assignment holds after the last multimove reassociation for the previous target
segment, with nondefault proper tactics, and provided the constraint assignment violates se-
quentiality on the sibling edge of the abstraction leaf, with bottom-up tactics, or on its parent
edge, with top-down tactics. The proof of statement (I) is thus completed by showing that mul-
timove reassociations for target segments with nondefaultproper tactics, except for the top one,
reaching the level of leafl in cases (i) or (ii), or cut at its parent vertex in cases (iii)and (iv),
do deliver a near sequential constraint assignment that violates constraint sequentiality on the
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required edge, when the target abstraction leaf reaches thenext turn on the target backbone,i.e.
as outcome of the last bottom edge contraction for the subject target segment.
Figure 18 illustrates multimove reassociations with subsequent bottom edge contraction in the
source tree derivative, when the proper tactics is not the default one on the target segment where
the corresponding contraction takes place, for consecutive leaf pairs that are not duplicated in
source trees. Actually, the first reassociation on such a target segment involves, by hypothesis,
a pair of consecutive leaves that are not duplicated in target tree t, but are so in source tree
s. The 1-edge move on the reduced source tree reassociates andcontracts the parent edge of
(the parent vertex of) the abstraction leaf with bottom-up proper tactics, the sibling edge of the
abstraction leaf with top-down tactics. Therefore the “6=” constraint changes to “=” on the edge
incident with (the parent vertex of) the abstraction leaf that violated constraint sequentiality.
This is the situation depicted in Figure 18 before multimovereassociation, where one sees that
reduced source tree derivatives in all cases feature again asingle violation of constraint sequen-
tiality, on the same sort of edge (sibling or parent of the abstraction leaf) where it was found
before the two-multimove sequence. Note that this also holds when the displayed reassociation
is a 1-edge one, viz. one may haveq=1 in Figure 18, when the target segment has length 2, as

. ..

/=
. .

e
q

e
1

. .
e

2
.

.

k

(j−(k−1))=

1
[e ]e

2
...e
q

. .

e
2

=/
.
(j−k)

/=
. .

.
=/..e

q
=/

(i)

. ..

..
e
q

.e1

e
2

j

/=
..

.
((j+1)−k) =

1
[e ]e

2
...e
q

/=
..

. .

.
=/

=/

e
2

=/

..e
q

.
(j−k)

(ii)

e
1
... e

q−1
e
q[   ]

.
.

.
(j−k)

=/
=/ e

1

=/
q−1
e

.
.

.
.

.
.

e
1

e
q−1

e
q

.
.

.
=..

((j+1)−k)

.
j

(iii)

.
.

.
k

e
q

e
q−1

e
1

.
.
.

=. .
(j−(k−1)) e

1
... e

q−1
e
q[   ]

.
(j−k)

.
.

q−1
e

=/

=/e
1

=/

.
.
.
.

(iv)

Figure 18: First phase source tree reductions with nondefault tactics: (i,ii) bottom-up, (iii,iv)
top-down.
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earlier argued. Finally, note that when proper tactics is not the default one, reassociation with
subsequent contraction moves the abstraction leaf toward the leaf with which it gets joined, and
all reassociated edges are unconstrained before the multimove, which is thus always allowed.
Statement (I) is thus proven, by the parity hypothesis aboutthe length of target segments with
nondefault proper tactics, togeteher with the hypotheses about alternating duplications in source
trees. However, also part of statement (II) immediately follows,since the number of reassoci-
ations on the top segment with nondefault tactics is odd by hypothesis (this also holds in cases
(iii,iv), since the sibling edge of target leafl is not contracted), which entails sequentiality of
the constraint assignment in the reduced source tree that has leafl as a shared bottom leaf with
the reduced target tree.
It remains to be seen that leafl is the only shared bottom leaf, and that the constraint assignment
satisfies the bottom edge rule. The former statement holds because leafl is on opposite sides in
the reduced tree pair. This is immediate in cases (iii) and (iv), see Figure 16, sincel =h+1 by
hypothesis in case (iii) is a right leaf in the source tree, while l=h by hypothesis in case (iv) is
a left leaf in the source tree. The same holds in case (i) whenl=h+1 and in case (ii) whenl=h.
In all these cases,l is on the same side in the reduced source tree as it is in sourcetrees, since
the bottom edge incident with it is not reassociated. This also entails that the constraint assign-
ment satisfies the bottom edge rule, in these cases, because the bottom edge is unconstrained.
The situation is a little different in case (i) whenl=h, and in case (ii) whenl=h+1. However,
the only differences are that leafl in the reduced source tree is on the opposite side to that where
it is in source trees, since the bottom edge incident withl is reassociated once in these cases,
but again Figure 16 tells that leafl in target treet and in source trees are on the same side
in these cases, therefore the shared bottom leafl is on opposite sides in the reduced tree pair.
Finally, Figure 17(i) withj = l+1= h+1, and Figure 17(ii) withk = l-1= h, tell that, in these
last two cases, when the bottom leafl changes side in the reduced source tree derivative, the
bottom edge incident with it gets a “6=” constraint and remains contravariant with the top edge
in case (i), where the tree pair is a majority pair, covariantwith it in case (ii), where the tree
pair is a minority pair, therefore the bottom edge rule is satisfied in both cases at this stage, and
it remains satisfied throughout the rest of the first phase, since by Figure 16 it is apparent that
the remaining multimoves relate to the top segment reachingthe level ofl in the target tree,
with nondefault bottom-up tactics, and therefore they willmove up the abstraction leaf even
further, hence never include the bottom edge that is incident with l in the reduced source tree
derivatives.

The reader may like to verify that the path tree pair displayed in Figure 15(a) satisfies case
(iii) of the hypotheses stated in Theorem 6; this justifies the choice of top-down tactics for the
first phase. A necessary condition for a path tree pair, that satisfies the hypotheses of Theorem 6,
to be mutually crooked, like the exemplified one, is that all segments which are required to have
even length by those hypotheses, actually have length 2.

the electronic journal of combinatorics 18(2) (2012), #P32 37



7 Conclusions

The reassociative approach toward an alternative proof of the 4CT has been explored in this
paper by recasting concepts and results from recent work by Cooper, Rowland and Zeilberger,
geared toward a language theoretic proof. The dynamical nature of the reassociative approach,
whereby solutions are delivered by reassociation sequences, has enabled us both to extend the
aforementioned results, viz. to characterize new classes of reducibile or solvable binary tree
pairs, and to open new questions for further investigation.Some of the new classes have fairly
wide extent and are obtained by simple proofs, notably Prop.2.1, Theorem 2, and Prop. 4.1.
Perhaps amazingly, some others are of narrower extent and required more substantial deductive
effort, such as Theorem 4 (with the bulk of its proof confined to Lemma 5.2) and especially
Theorem 6. Theorem 5 showcases how, also in the reassociative approach, may one count the
number of solutions for any given problem instance in a certain class—a valuable feature of the
aforementioned language theoretic approach. However, so far we may only claim having found
a lower bound to the count for path tree pairs that share a bottom leaf. To turn this into a definite
count, a positive anwer is needed to the completeness question about the sequential strategies
employed for the subject class.

If one evalutes the strength of a theorem as inversely proportional to the number of its
hypotheses, and its cost by the size of its proof, then surelyTheorem 6 scores low on the ben-
efit/cost ratio, to the point of making one wonder whether theoutcome deserves the effort. We
believe it does, for a methodological reason which leads to the final subject of these concluding
notes, relating to the new questions which arise from the present work, and the further research
directions they open.

The main open questions relate to the nondeterministic strategies and tactics introduced in
Section 4. In summary, they are: effectiveness of the BU and/or TD strategy, completeness of
the BU|TD strategy. While these questions are independent of the validity of the EK Conjecture,
settling them in the positive (the answer we expect in all three cases), would yield a solid
foundation of solution search algorithms.

Further work of ours is under way, aimed at a fast decision procedure to characterize the
subset of a given set of permutations of a set of edges, that comprises those edge reassociation
sequences that are allowed by any given (partial) constraint assignment to edges in the given
set. This, together with the result provided in Theorem 3 forthe TD strategy and with a decision
procedure for the map kernel equivalence on reassociation sequences, would deliver useful tools
to develop effective parallel implementations of algorithms for nondeterministic strategies. A
positive answer to the BU|TD completeness question would then provide an effective means to
count the number of solutions to any given problem instance.

As testified to by the work presented in Section 5, specific classes of binary tree pairs are
solvable by deterministic specializations of the aforementioned strategies. This actually holds
for specific classes of path tree pairs, so far. In this respect, we have shown both the effectiveness
and the equivalence of sequential strategies for path tree pairs sharing a bottom leaf, where the
only residual open question relates to their completeness,as recalled above (and where, again,
a positive answer is our expectation). The work presented inSection 6 is to be viewed as
a first attempt to find other effective, deterministic strategies that could expand the class of
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solvable tree pairs. The near-sequential weakening of the previously introduced concept of
sequential constraint assignment, proves useful to identify deterministic strategies that solve a
fairly narrow class of path tree pairs, as that which satisfies the hypotheses of Theorem 6. Yet
this should be viewed as a first sortie into a wide open exploration field, not necessarily limited
to path tree pairs. Other deterministic blends of strategies and tactics might prove capable of
solving further classes thereof, especially blends where the choice of tactics is not fixed for
each pair in the class, but rather takes a dynamic character,viz. it may change throughout the
reassociation sequence.
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