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Abstract

The Riordan group is a group of infinite lower triangular matrices that are
defined by two generating functions, g and f . The kth column of the matrix has
the generating function gfk. In the Double Riordan group there are two generating
function f1 and f2 such that the columns, starting at the left, have generating
functions using f1 and f2 alternately. Examples include Dyck paths with level
steps of length 2 allowed at even height and also ordered trees with differing degree
possibilities at even and odd height(perhaps representing summer and winter). The
Double Riordan group is a generalization not of the Riordan group itself but of the
checkerboard subgroup. In this context both familiar and far less familiar sequences
occur such as the Motzkin numbers and the number of spoiled child trees. The latter
is a slightly enhanced cousin of ordered trees which are counted by the Catalan
numbers.

1 Introduction

This article is simply dedicated to Doron on the occasion of his |A5|th birthday.

In 1991, Shapiro, Getu, Woan, and Woodson introduced a group of infinite lower tri-
angular matrices called the Riordan group, see [5]. Since then about a hundred papers
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have appeared that involve the Riordan group, see [7], and typing Riordan group or Rior-
dan arrays into the Google search engine gives about 11,200 hits, albeit with considerable
duplications. The elements of the group are defined by two power series g and f , where
the coefficients of g gives the left most column and the ith column is given by the coeffi-
cients of g · f i, for i = 0, 1, 2, 3, .... We call f the multiplier function. A natural question
to ask is, “what happens when more than one multiplier function is given?” We inves-
tigate this question for two multiplier functions, f1 and f2. In Section 2, we define the
Double Riordan Group, in Section 3 the group structure is investigated, and in Section 4
combinatorial applications are given.

In this paper we consider ordinary generating functions. However, the techniques used
apply to exponential generating functions as well.

Before defining the double Riordan group we define the Riordan group, state the
Fundamental Theorem of Riordan Arrays and give some examples of elements in the
Riordan group.

Let g(z) = 1 +
∑∞

k=1 gkz
k and f(z) =

∑∞
k=1 fkz

k, where f1 6= 0. Let dn,k be the
coefficient of zn in g(z)(f(z))k. Then D = (dn,k)n,k≥0 is a Riordan array and an element
of the Riordan group. We write D = (g(z), f(z)).

Example 1.1: The identity matrix is

(1, z) =


1
0 1
0 0 1
0 0 0 1
0 0 0 0 1

. . .


Example 1.2: Pascal’s matrix is

(
1

1− z
,

z

1− z
) =


1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

. . .


Example 1.3: The Fibonacci matrix with Pascal like columns and Fibonacci row sums
is

(1, z(1 + z)) =


1
0 1
0 1 1
0 0 2 1
0 0 1 3 1

. . .


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Theorem 1. (Fundamental Theorem of Riordan Arrays): Let A(z) =
∑∞

k=0 akz
k

and B(z) =
∑∞

k=0 bkz
k and let A and B be the column vectors A = (a0, a1, a2, · · · )T and

B = (b0, b1, b2, · · · )T . Then
(g, f)A = B, if and only if B(z) = g(z)A(f(z)).

Theorem 2. Let (g, f) and (G,F ) be two Riordan arrays. Then the operation *, given by
(g, f) ∗ (G,F ) = (g(z)G(f(z)), F (f(z))) is matrix multiplication which is an associative
binary operation, (1, z) is the identity element and the inverse of (g, f) is( 1

g(f)
, f), where

f is the compositional inverse of f .

With the Fundamental Theorem of Riordan Arrays in hand one can easily prove many
combinatorial identities and the group structure gives a systematic way to invert identi-
ties. Also, other topics such as the Stieltjes transform, Hankel matrix decomposition, and
determinant sequences can be developed using the Riordan Group.

The Riordan Group has many interesting and important subgroups. The set of all
elements (g, f), such that g is even (with leading one) and f odd, is called the Checker-
board Subgroup. The terminology comes from the fact that (g, f) has the appearance of
a checkerboard. We also say that a generating function or an array is aerated if it has
alternating zeros. Other subgroups are defined in Section 3.

2 Double Riordan Arrays

In a Riordan array we use one multiplier function. Hence, to move from one column to
the next we multiply by f to make the change. Suppose alternating rules are used to
generate an infinite matrix similar to a Riordan array. To consider this case we use two
multiplier functions. So, if g gives column zero and f1 and f2 are the multiplier functions,
then the first column is gf1, the second is gf1f2, the third is gf1f2f1, and so on. In general
the set of double Riordan arrays is not closed under multiplication. However if we require
that g be an even function and f1 and f2 be odd functions we can develop an analog of
the fundamental theorem and thus obtain a group structure.

Definition 1. Let

g(z) =
∞∑
k=0

g2kz
2k, f1(z) =

∞∑
k=0

f1,2k+1z
2k+1, and f2(z) =

∞∑
k=0

f2,2k+1z
2k+1.

Then the double Riordan matrix (or array) of g, f1 and f2, denoted by (g; f1, f2), has
column vectors

(g, gf1, gf1f2, gf
2
1 f2, gf

2
1 f

2
2 , · · · ),

The set of all aerated double Riordan matrices is denoted as DR.
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Theorem 3. (The Fundamental Theorem of Double Riordan Arrays): Let
g(z) =

∑∞
k=0 g2kz

2k, f1(z) =
∑∞

k=0 f1,2k+1z
2k+1, and f2(z) =

∑∞
k=0 f2,2k+1z

2k+1.

Case 1: If A(z) =
∑∞

k=0 a2kz
2k and B(z) =

∑∞
k=0 b2kz

2k, and A = (a0, 0, a2, 0, · · · )T

and B = (b0, 0, b2, 0, · · · )T are column vectors. Then (g, f1, f2)A = B if and only if
B(z) = g(z)A(

√
f1(z)f2(z)).

Case 2: If A(z) =
∑∞

k=0 a2k+1z
2k+1 and B(z) =

∑∞
k=0 b2k+1z

2k+1 with (g, f1, f2)A = B

then B(z) = g(z)
√

f1/f2A(
√

f1(z)f2(z)).

Proof. Case 1: A (z) is an even function. Then

(g, f1, f2)A =



↑ 0 0 0 0 0
↑ 0 0 0 0

↑ 0 0 0
↑ 0 0 · · ·

g gf1 gf1f2 gf 2
1 f2 ↑ 0

↓ ↓ ↓ ↓ . . .
...





a0
0
a2
0
a4
0
a6
. . .


⇔

(a0g + a2gf1f2 + a4gf
2
1 f

2
2 + ...) = g(a0 + a2f1f2 + a4f

2
1 f

2
2 + ...) = g(z)A(

√
f1(z)f2(z))

Case 2: A (z) is an odd function. Similarly
(g, f1, f2)A⇐⇒ (a1gf1 + a3gf

2
1 f2 + a5gf

3
1 f

2
2 + ...)

= g(a1f1 + a3f
2
1 f2 + a5f

3
1 f

2
2 + ...) = (g/f2)(a1f1f2 + a3f

2
1 f

2
2 + a5f

3
1 f

3
2 + ...)

= (g/f2)(a1
√
f1f2

2
+ a3
√
f1f2

4
+ a5
√
f1f2

6
+ ...)

= (g/f2)
√
f1f2(a1

√
f1f2 + a3

√
f1f2

3
+ a5
√
f1f2

5
+ ...)

= g(z)
√

f1(z)/f2(z)A(
√

f1(z)f2(z))

Using the Fundamental Theorem of Double Riordan Arrays, we can define a binary
operation on DR. The development of this algebraic structure is similar to what was
done with single Riordan arrays.

Definition 2. Let (g, f1, f2) and (G,F1, F2) be elements of DR. Then
(g; f1, f2)(G;F1, F2) = (gG(

√
f1f2);

√
f1/f2F1(

√
f1f2),

√
f2/f1F2(

√
f1f2)).

The following theorem is analogous to Theorem 2.

Theorem 4. (DR, ∗) is a group.

Proof. The matrix (1; z, z) is the identity. Matrix multiplication is associative.
Let (g; f1, f2) be in DR and let h =

√
f1f2 and also denote by h̄ the compositional

inverse of h. Then ((1/g(h̄); zh̄/f1(h̄), zh̄/f2(h̄)) is the inverse of (g; f1, f2).

Example 2.2: If (g, f) is an element of the Riordan group with g even and f odd
then (g; f, f) = (g, f) is an element of DR. In particular (1, z) = (1; z, z) is the identity
matrix. In fact, the mapping (g; f)→ (g; f, f) is an isomorphism from the Checkerboard
subgroup of the Riordan Group to DR.
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The following theorem shows how to find the generating function, Σ(z), for the row
sums of a double Riordan array.

Theorem 5. Let D = (g(z); f1(z), f2(z)) be a double Riordan array. Then

Σ(z) =
g(1 + f1)

1− f1f2
=

g

1− f1f2
+

gf1
1− f1f2

Proof. According to the Fundamental Theorem of Double Riordan Arrays (Theorem 3),
we should distinguish the sums of even and odd rows, since they are associated with
different formulas. Thus B(z) = BE(z) + BO(z).
For even rows, AE(z) = (1− z2)

−1
= 1 + z2 + z4 + z6 + ..., so we get

BE(z) =
g(z)

1− f1(z)f2(z)
.

For odd rows, AO(z) = z (1− z2)
−1

= z + z3 + z5 + z7 + ... and we get

BO(z) =
g(z)f1(z)

1− f1(z)f2(z)
.

Hence,

Σ(z) = BE(z) + BO(z) =
g(z)

1− f1(z)f2(z)
+

g(z)f1(z)

1− f1(z)f2(z)
.

3 Special Subgroups

For any functions f and g such that (g, f) is a Riordan array, we can map (g(z), f(z))

to (g(z2); f(z2)
z

, f(z
2)

z
). Hence, the Riordan group, R, can be mapped one-to-one onto a

subset of DR. This will not give us an isomorphism, consider the Pascal matrix squared.
Question: Is there a subgroup of the double Riordan group that is isomorphic to the
Riordan group? Since this obvious approach does not work it remains an open question.

Many subgroups of R have been studied, both for their combinatorial and algebraic
properties, for example the Bell subgroup which is given by {(g, f) ∈ R : f = zg} =
{(g, zg)}, the Associated subgroup, given by {(g, f) ∈ R : g = 1} = {(1, f)}, and the
Appel subgroup, given by {(g, f) ∈ R : f = z} = {(g, z)}. Of these subgroups of R, the
Appel subgroup is normal. Note that for all functions f and g, (g, f) = (g, z)(1, f). Thus
R is the semidirect product of the Associated and Appel subgroups. A natural question
is, can we find a similar subgroup structure in DR?

Theorem 6. Let A={(g; f1, f2) ∈ DR : g = 1} and
B1={(g; f1, f2) ∈ DR : f1 = zg} and B2={(g; f1, f2) ∈ DR : f2 = zg}. Then B1, B2

and A are subgroups of DR.
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Theorem 7. {(g; z, z) ∈ R} is a normal subgroup of DR and DR is the semidirect prod-
uct of {(g; z, z) ∈ R : f = z} and A.

We see that DR has some of the same subgroup properties as R.

4 Combinatorial Examples

In this section we look at three places where double Riordan arrays occur. Sloane’s EIS
[6] is an excellent source for some of these examples and the A-numbers mentioned refer
to this source.

Example 1: Consider ordered trees with no branch points at odd heights. This is
discussed in [3]. There is another view that is more applied. Consider a plant species that
reproduces in the summer but during the winter at most survives. Thus a vertex at odd
(or winter) height has outdegree 0 or 1. Let the generating function be m(z) or simply m.
Then by looking at the left most branch we get, m = 1 + zm + z2m2. Here 1 counts the
trivial tree consisting of just the root, zm counts trees whose left most principal subtree is
just one edge, and z2m2 counts trees whose left hand branch has at least two edges. This
is the generating function equation that defines the Motzkin numbers. See [3] where there
is a bijective proof involving complete binary trees, and [2] and [8] for more information
about the Motzkin numbers.

If we convert these ordered trees to Dyck paths we have Dyck paths with no valley
at odd height and z becomes z2, since down and up edges are both counted. We define
M (z) = m (z2) and the key generating function identity becomes M = 1 + z2M + z4M2

and M = 1 + z2 + 2z4 + 4z6 + 9z8 + 21z10 + ..., A001006. Thus

M =
1− z2 −

√
1− 2z2 − 3z4

2z4

If we look at paths with no valleys at odd heights, but ending at height k, we get the
following matrix where d (n, k) is the number of paths with n edges that end at height k.

D = (d (n, k))n,k≥0 =



1
0 1
1 0 1
0 2 0 1
2 0 2 0 1
0 4 0 3 0 1
4 0 5 0 3 0 1
0 9 0 8 0 4 0 1
9 0 12 0 9 0 4 0 1
0 21 0 21 0 13 0 5 0 1
21 0 30 0 25 0 14 0 5 0 1

. . .


the electronic journal of combinatorics 18(2) (2012), #P33 6



We want to show that D is a double Riordan array. First we look at the kth column
where k = 2m is even. In this column we have the recurrence d (n, k) = d (n− 2, k − 2) +
d (n− 1, k + 1) since any path ending at height k after n steps must have finished either
with a down step or, to avoid a valley at odd height, two up steps. With a finish at odd
height with k = 2m+1 we obtain the simpler d (n, k) = d (n− 1, k − 1)+d (n− 1, k + 1) .
Thus, there exist generating functions g, f1, and, f2 such that D = (g; f1, f2). Note that
if l = 2n where n is any positive integer, then a recurrence relation for the lth column of
D is g(f1f2)

n = z2g(f1f2)
n−1 + zg(f1f2)

nf1. Hence f1f2 = z2 + zf1
2f2.

Likewise, if l = 2n+1 where n is any non-negative integer, then a recurrence relation of
the lth column of D is given by g(f1f2)

nf1 = zg(f1f2)
n+zg(f1f2)

n+1. Thus f1 = z+zf1f2.
If we set H = f1f2/z

2 these equations become

f1 = z
(
1 + z2H

)
and H = 1 + zf1H

Thus H = 1 + zH (z + z3H) so that

H = 1 + z2H + z4H2

and since this is the defining equation for M we have

H =
f1f2
z2

= M.

Then
f1 = z

(
1 + z2H

)
= z

(
1 + z2M

)
.

Next we have that z (1 + z2M) f2 = z2M , so that

f2 =
zM

1 + z2M
· 1 + z2M

1 + z2M

=
zM (1 + z2M)

1 + z2M + z4M2 + z2M

=
zM (1 + z2M)

M + z2M

=
z (1 + z2M)

1 + z2

= z + z5 + z7 + 3z9 + 6z11 + 15z13..., (Riordan numbers) A005043

To find the row sums for D, we apply Theorem 5 and get

Σ(z) =
M

1− z2M
+

f1M

1− z2M
.

If E is the even part of Σ(z) and O the odd part, then E = M
1−z2M and O = f1M

1−z2M .

the electronic journal of combinatorics 18(2) (2012), #P33 7



Further, it can be shown that

E =
f1

z
√

1− 2z2 − 3z4

= 1 + 2z2 + 5z4 + 13z6 + 35z8 + ..., (directed animals) A005773

and

O =
1− z2

2z3

√
1 + z2

1− 3z2
− 1 + z2

2z3

= z + 3z3 + 8z5 + 22z7 + 61z9 + ..., A025566

Thus

Σ(z) = E(z) + O(z) =
1 + z − z2

2z3

√
1 + z2

1− 3z2
− 1 + z + z2

2z3

= 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + 22z7 + 35z8 + 61z9 + ....

Example 2: Consider Schröder paths with no level steps at odd height.
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@
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@
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@
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@
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@
@1

1

2

3

5

10

15

36

51

137

188

543

731

1 5 21 86 355

1 6 29 132

1 8 46

1 9

1

Arranging these numbers as a lower triangular array we get the following DR matrix.

S =



1
0 1
2 0 1
0 3 0 1
5 0 5 0 1
0 10 0 6 0 1
15 0 21 0 8 0 1
0 36 0 29 0 9 0 1
51 0 86 0 46 0 11 0 1
0 137 0 132 0 57 0 12 0 1

188 0 355 0 235 0 80 0 14 0 1
. . .


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We have the following relations.

g = 1 + z2g + zgf1

gf1 = zg + zgf1f2 =⇒ f1 = z + zf1f2

gf1f2 = zgf1 + z2gf1f2 + zgf1
2f2 =⇒ f2 = z + z2f2 + zf1f2

Solving this system of equations we get the following for f1, f2, and g.

g =
1− z2 −

√
1− 6z2 + 5z4

2z2(1− z2)

= 1 + 2z2 + 5z4 + 15z6 + 51z8 + ...

f1 =
1− z2 −

√
1− 6z2 + 5z4

2z
= z + z3 + 3z5 + 10z7 + 36z9 + 137z11..., (hex numbers) A002212

f2 =
1− z2 −

√
1− 6z2 + 5z4

2z(1− z2)

= z + 2z3 + 5z5 + 15z7 + 51z9 + ..., A0007317

Using Theorem 5, we can find the generating function of the row sums for S. We get

E =
1√

1− 6z2 + 5z4

= 1 + 3z2 + 11z4 + 45z6 + ..., A026375

and

O =
1

2z

(
1− z2√

1− 6z2 + 5z4
− 1

)
= z + 4z3 + 17z5 + 75z7 + 339z9 + ..., A026378

Thus

Σ(z) =
1 + 2z − z2

2z
√

1− 6z2 + 5z4
− 1

2z

= 1 + z + 3z2 + 4z3 + 11z4 + 17z5 + 45z6 + 75z7 + ...

The sequence 1, 2, 5, 15, 51, 188 ..., appears in a variety of combinatorial settings. We
will discuss three of these settings briefly and put the details in another paper. Also see [6].

a. 32-Motzkin path is one where level steps come in three colors except at level 0,
where only 2 colors are permitted. We get the following lattice diagram.
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5 51 1882 15

1 8 46 2354

5 21 86 355

1 8011

141

1

b. The Spoiled Child Tree: Consider rooted trees with the following condition. If an edge
(child) has no siblings (comes from a vertex of outdegree 1) we allow two possibilities,
the child can be spoiled or not. Thus if R (for spoiled rotten) is the generating function
counting Spoiled Child Trees, then

R(z) = 1 + 2zR(z) + z2R2(z) + z3R3(z) + ...

R(z) = zR(z) +
1

1− zR(z)

Spoiled Child trees when n = 3 are illustrated below.

qq
qq

q�
�

@
@ q qq

�
�

@
@ q qq q

�
�

@
@ q qqq

�
�

@
@ q qq q

(8) (2) (1) (2) (2)

Note that there are 15 Spoiled Child Trees when n = 3, since there are two choices for
each edge which comes from a vertex with outdegree 1. c. Consider Hex trees. The term

Hex refers to ways of joining hexagons or benzene rings together, see [4] for details. Hex
trees are rooted trees satisfying the following conditions. The outdegree of any vertex is
0, 1, or 2 and if 1, then the edge is either left, center, or right. If the outdegree is 2, then
the children are left and right (this keeps 3 hexagons from meeting in a common point).
Hence we get H(z) = 1 + 3zH(z) + z2H2(z). Solving for H yields

H(z) =
1− 3z −

√
1− 6z + 5z2

2z2

= 1 + 3z + 10z2 + 36z3 + 137z4 + ..., A002212

A Symmetric Hex tree is a Hex tree which is symmetric with respect to the vertical
line passing through the root. We define Symmetric Hex trees to have an even number of
edges. The Symmetric Hex trees when n = 4 are illustrated below.
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If Ĥ denotes the generating function counting Symmetric Hex trees then,

Ĥ(z) = 1 + z2Ĥ(z) + z2H(z2)

Ĥ(z) =
1

(1− z2)
+

z2

(1− z2)
H(z2)

Here 1
1−z2 is the generating function for the vertical stem below the split. The next

theorem can be proved by using generating functions.

Theorem 8. Ĥ(z) = R(z)

Example 3: Consider Dyck paths with two choices for down steps that start at even
heights. This example is a small modification of an array dealing with a Schröder version
of the tennis ball problem, [1]
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1

1

3

3

11

11

45

45

197

197

903

903

1 4 17 76 353

1 6 31 156

1 7 40

1 9

1

From here we get the following matrix.

S =



1
0 1
1 0 1
0 3 0 1
3 0 4 0 1
0 11 0 6 0 1
11 0 17 0 7 0 1
0 45 0 31 0 9 0 1
45 0 76 0 40 0 10 0 1
0 197 0 156 0 60 0 12 0 1

197 0 353 0 216 0 72 0 13 0 1
. . .


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It can be shown that the numbers in the zeroth column are the aerated little Schröder

numbers. Hence g = s, where

s =
1 + z2 −

√
1− 6z2 + z4

4z2
.

From the first column we get

gf1z + 1 = g

Recall that

s =
1

1− z2r
= 1 + z2 + 3z4 + 11z6 + ...

Where r is the generating function for the aerated big Schröder numbers, so that

r =
1− z2 −

√
1− 6z2 + z4

2z2
= 1 + 2z2 + 6z4 + 22z6 + ..., A006318

Also note that

s =
r + 1

2
.

Hence,

sf1z + 1 = s

s =
1

1− zf1

∴
1

1− zf1
=

1

1− z2r
.

Thus

f1 = zr.

In terms of generating functions, the path requirements translate to

gf1 = z(g + 2gf1f2) =⇒ f1 = z(1 + 2f1f2)

and

gf1f2 = z(gf1 + gf1
2f2) =⇒ f2 = z(1 + f1f2).

Hence,

f2 = z +
f1 − z

2
= z +

zr − z

2
=

z

2
(1 + r) = zs

= 1 + z3 + 3z5 + 11z7 + 45z9 + ..., A001003.
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For the row sums Σ(z), of S, we again use Theorem 5 to get

Σ(z) = (1+2z)
√
1−62+z4−1+5z2−2z3
2z(1−6z2) = 1 + z + 2z2 + 4z3 + 8z4 + 18z5 + 36z6 + 86z7 + 172z8...

Is there a triple Riordan Group? Yes, with g, f1
z
, f2

z
, f3

z
all invertible elements of C[z3]

with nonzero leading term. One example is the Riordan group element (C(z3); zC(z3))
which has the property that (C(z3); zC(z3))−1 = (C(−z3); zC(−z3)). The equivalent of

h =
√
f1f2 is h = (f1f2f3)

1
3 . For each positive integer k, the extension to the k-tuple

Riordan group is similar.

We would like to thank the referee for a careful reading and several very helpful
suggestions.
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