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Abstract

We give a computer proof of Andrews’ conjecture on a 4¢3 summation and
extend the result to a family of 4¢3 summations.
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(I)n(xa u,v,y, Z) = 4¢3 qu—2n/&’ qv—2n/b’ quy yq 54
be a basic hypergeometric series with parameters =, u,v,y, z. (See [4, Section 1.2] for the
notation.) Andrews [1] proved that

a, b, —q; q)n(ab; ¢*),,

(
¢n 17 27 27 17 2 - b
( )= b g,

(1)
and conjectured that

(a,=¢; @)n(b; @)n—1(ab; ¢*)n—1
q" 1 (ab; q)n-1(a,b/q% ¢?)n(1 — abg® 1)
X (aqun’z(q2 —b) +abg" ' (1 —q)—q+ b). (2)

Guo [5] proved the conjecture by utilizing contiguous relations. Here we provide a
computer proof based on the ¢-Zeilberger algorithm [2, 7, 9].

,(3,2,4,1,2) = —
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Proof of Equation (2). Let t,; be the kth summand of ©,,(3,2,4,1,2). Notice that the

ratio

T(?’L k) _ tn,nfk _ (_bq2n + q2k+2)(_q + abq2k)q2k_n
T e T b T )

is a rational function of ¢" and ¢*. We can apply Paule’s method of creative symmetrizing

6, 8], i.e.,
Ztnk_zmz_z L (0, ) e

k=0

Now applying the g-Zeilberger algorithm to (1 + r(n, k))tmk, we find that the sum S, =
®,(3,2,4,1,2) satisfies

(1—0bg"")(1 —abg® ")(1 — abg™ *)(1 — ag™)(1 + ¢"*)P(n)S,
— (1= abg" " )(1 = ag®™)(1 — abg®"*)(1 = bg*" *)gP(n — 1)S, 11 = 0,

where
P(n) = (ab®¢*" — abg®"*? — abq™ + abq" ™ — b+ q).

Since Sy = 1, we immediately derive Equation (2). O

Remark. Applying the g-Zeilberger algorithm directly to ¢, ,, we will obtain a recursion
on n of order 2.

Let )
(a,b, —q; @)nlab; ¢*)n

q"(ab; q)n(a, b; ¢?)n

We have the following theorem on ®,,(x,u, v,y, z) with integer parameters.

Hn = q)n<1a 2a 27 172> =

Theorem 1. Let i,j, k, 0, m be integers such that
i>j+k+0+m and k,{,m>0.
Then the quotient
(25 +1,-20+2,2i, —2m + 1,2k + 2)/H,
s a rational function in q".

Proof. With the same method as in the proof of Equation (2), we can derive that the
assertion holds for

D,(—1,2,-2,1,2), ®,(1,2,0,1,2), ®,(3,2,2,1,2),
$,(—1,2,0,1,2), @,(1,2,2,1,2), ®,(3,2,4,1,2),
$,(-1,2,2,1,2), &,(1,2,4,1,2).

By the g-Zeilberger algorithm, S(v) = ®,(—1,2,2v,1,2) satisfies a recursion of the
form

P3(n)S(v+3) + Po(n)S(v+2)+ Pi(n)S(v+1) + Py(n)S(v) =0, (3)
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where each P;(n) is a polynomial in ¢”. In particular, we have

Pg(’fl) — q2n<q2v+4 . aqun)(q2v+4 . b2q2n>(q2v+4 . b)(l . aq2v+5)7
P[)(TL) — —abq6(1 o q2v+4)(q2v o ban)<q2v+4 . bq2n)(q2v+2 . bq2n)

By iterating the recursion (3), we derive that for each integer ¢ > —1, the quotient
®,(-1,2,2i,1,2)/H, is a rational function in ¢".

Now by the extended ¢-Zeilberger algorithm [3], we find that S(z,v) = ®,(z,2,v,1,2)
satisfies

b(_qm+2 +aqv)q—v+2n
_qm + Cqu2n

qx—v<_qv + bq2n+2)

S(Z‘ + 27“) = _qx + abq2n

S(x,v) +

S(z,v—2).

More precisely, the relation is built by the command gqExt_Zeil of the package EZA
(available from http://www.combinatorics.net.cn/homepage/hou):

> qExt_Zeil([subs(x=x+2,8k), Sk, subs(v=v-2,8k)], q, k);

where Sk is the kth summand of S(x,v). An alternative way is to use the com-
mand qTelescope of Riese’s package qZeil [7] with a suitable setting of the parameter
gParameterized.

By iterating the above recursion, we derive that for any integers ¢ > j > —1, the
quotient ®,,(25+1,2,2i,1,2)/H, is a rational function in ¢". We also find by the extended
g-Zeilberger algorithm that

S(x —2,v—2) = Ry(n)S(xz,v) + Ri(n)S(x,v + 2) + Ra(n)S(x,v + 4),

where R;(n) are rational functions in ¢". Thus the restriction j > —1 can be removed so
that the assertion holds for ®,(25 + 1,2, 2i, 1, 2) provided i > j.
We further find that S(z, z) = ®,(x,2,v, 1, z) satisfies

S(x,z+2) = abg® "S(x, 2) + ¢ *(¢" — abg®™)S(x + 2, 2).

Therefore, for any integers ¢ > j+k and k > 0, the quotient ®,,(2j+1,2,2i,1,2k+2)/H,
is a rational function in ¢".

By a similar discussion, the sum S(u, z) = @, (z,u,v, 1, z) satisfies
2n+2 U

S(u, z) — q

_qu + aq2n+2

aq

S(u—2,2) = 24—
(U ’Z> _qu + aq2n+2

S(u, z+2).
Thus, for any integers i > j+ k+ ¢ and k, ¢ > 0, the quotient ®,(2j + 1,2 —2¢,2i, 1,2k +
2)/H, is a rational function in ¢".

Finally, the sum S(y, z) = ®,(x, u,v,y, z) satisfies

q2

q*> — abgY

abg¥

S(y_zaz): S(y,z)— S(y,z—l—Z),

q* — abg¥
which completes the proof. O
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and

As examples, by Paule’s symmetric technique and the g-Zeilberger algorithm, we derive
that

(a,b, —q; q)n(ab; ¢*),
q"(ab/q; q)n(a, b; ¢?)y’

®,(1,2,2,-1,2) =

(aq,bq, —q¢; q)n(abg®, ¢*),

®,(—1,0,0,1,2) =
( ) (abg; q)n(ag?, bg%; ¢2)n

The second equation coincides with the last formula in [5].
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