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Abstract. The secant and tangent numbers are given (t, q)-analogs with an explicit com-
binatorial interpretation. This extends, both analytically and combinatorially, the classical
evaluations of the Eulerian and Roselle polynomials at t = −1.

1. Introduction

As is well-known (see, e.g., [Ni23, p. 177-178], [Co74, p. 258-259]), the coefficients
T2n+1 of the Taylor expansion of tanu, namely

tan u =
∑

n≥0

u2n+1

(2n + 1)!
T2n+1(1.1)

=
u

1!
1 +

u3

3!
2 +

u5

5!
16 +

u7

7!
272 +

u9

9!
7936 +

u11

11!
353792 + · · ·

are positive integral coefficients, usually called tangent numbers, while the secant

numbers E2n, also positive and integral, make their appearances in the Taylor expansion
of sec u:

sec u =
1

cos u
= 1 +

∑

n≥1

u2n

(2n)!
E2n(1.2)

= 1 +
u2

2!
1 +

u4

4!
5 +

u6

6!
61 +

u8

8!
1385 +

u10

10!
50521 + · · ·
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numbers, alternating permutations, pix, inverse major index, lec-statistic, inversion number, excedance
number.
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On the other hand, the expansion

(1.3)
1− s

exp(su)− s exp(u)
exp(Y u) =

∑

n≥0

un

n!
An(s, 1, 1, Y )

defines a sequence (An(s, 1, 1, Y )) (n ≥ 0) of polynomials with Positive Integral

Coefficients [in short, PIC polynomials], whose specializations (An(s, 1, 1, 1)) (n ≥ 0) for
Y = 1 are called Eulerian polynomials and go back to Euler himself [Eu55], while the
version An(s, 1, 1, 0) (n ≥ 0) for Y = 0 was introduced and combinatorially interpreted
by Roselle [Ro68]. The two identities

(1.4) A2n(−1, 1, 1, 1) = 0; (−1)nA2n+1(−1, 1, 1, 1) = T2n+1 (n ≥ 0);

(1.5) A2n+1(−1, 1, 1, 0) = 0; (−1)nA2n(−1, 1, 1, 0) = E2n (n ≥ 0);

are due to Euler [Eu55] and Roselle [Ro68], respectively and a joint combinatorial proof
of them can be found in [FS70], chap. 5.

The purpose of this paper is to prolong those two identities into a (t, q)-environment.
Everybody is familiar with all successful attempts that have been made for finding q-
analogs of the classical identities in analysis, using the now well-developed theory of
q-series ([GR90], [AAR00]). The main feature in the present approach is the addition
of another variable t, in such a way that properties that hold for positive integers or
PIC polynomials initially considered, also hold, mutatis mutandis, for the polynomials
having the further variables t and q.

The (t, q)-extensions of (1.4) and (1.5) will be obtained by the discoveries of three
classes of PIC polynomials (An(s, t, q, Y )), (T2n+1(t, q)), (E2n(t, q)) (n ≥ 0) such that
the following diagram holds

An(s, t, q, Y ) - An(s, 1, 1, Y )

? ?

An(−q−1, t, q, Y ) - An(−1, 1, 1, Y )

t=1, q=1

t=1, q=1

s=−q−1 s=−1

Fig. 1

together with the identities:

(1.4)tq A2n(−q−1, t, q, 1)=0; (−1)nA2n+1(−q−1, t, q, 1)=T2n+1(t, q);

(1.5)tq A2n+1(−q−1, t, q, 0)=0; (−1)nA2n(−q−1, t, q, 0)=E2n(t, q).

Note that the latter identities imply: T2n+1(1, 1) = T2n+1 (the tangent number) and
E2n(1, 1) = E2n (the secant number).

The sequence ((An(s, t, q, Y )), further defined in (1.12), is a slight modification of a
class ((A∗

n(s, t, q, Y )) of polynomials (see (4.1)) that have been thoroughly studied and
used in our previous paper [FH08]. However, the extensions T2n+1(t, q) and E2n(t, q)
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of tangent and secant, as true PIC polynomials, are to be truly constructed. This is,
indeed, the main goal of the paper.

Using the traditional q-ascending factorial (t; q)n := (1− t)(1 − tq) · · · (1 − tqn−1)
for n ≥ 1 and (t; q)0 = 1, Jackson [Ja04] (also see [GR90, p. 23]) introduced both q-sine

“sinq(u)” and q-cosine “cosq(u)” as being the q-series:

sinq(u) :=
∑

n≥0

(−1)n u2n+1

(q; q)2n+1
;

cosq(u) :=
∑

n≥0

(−1)n u2n

(q; q)2n
;

so that the q-tangent “tanq(u)” and q-secant “secq(u)” can be defined by the q-
expansions:

tanq(u) :=
sinq(u)

cosq(u)
=

∑

n≥0

u2n+1

(q; q)2n+1
T2n+1(q);(1.1)q

secq(u) :=
1

cosq(u)
=

∑

n≥0

u2n

(q; q)2n
E2n(q).(1.2)q

The coefficients T2n+1(q) and E2n(q) occurring in those expansions are called q-tangent

numbers and q-secant numbers, respectively, and known to be PIC polynomials, such that
T2n+1(1) = T2n+1, E2n(1) = E2n. See, e.g., [AG78], [AF80], [Fo81], [St97, p. 148-149].

For each r ≥ 0 we introduce the q-series:

sin(r)
q (u) :=

∑

n≥0

(−1)n (qr; q)2n+1

(q; q)2n+1
u2n+1;(1.6)

cos(r)q (u) :=
∑

n≥0

(−1)n (qr; q)2n

(q; q)2n
u2n;(1.7)

tan(r)
q (u) :=

sin(r)
q (u)

cos
(r)
q (u)

;(1.8)

sec(r)
q (u) :=

1

cos
(r)
q (u)

;(1.9)

and define the (t, q)-analogs of the tangent and secant numbers as being the coefficients
T2n+1(t, q) and E2n(t, q), respectively, in the following two series:

∑

r≥0

tr tan(r)
q (u) =

∑

n≥0

u2n+1

(t; q)2n+2
T2n+1(t, q);(1.1)tq

∑

r≥0

tr sec(r)
q (u) =

∑

n≥0

u2n

(t; q)2n+1
E2n(t, q).(1.2)tq

the electronic journal of combinatorics 18(2) (2011), #P7 3



Theorem 1.1. The (t, q)-analogs T2n+1(t, q) and E2n(t, q), defined in (1.1)tq and

(1.2)tq, have the following properties:

(a) they are PIC polynomials;

(b) furthermore,

T2n+1(1, q) = T2n+1(q); E2n(1, q) = E2n(q);(1.10)

T2n+1(1, 1) = T2n+1; E2n(1, 1) = E2n.(1.11)

The first values of those PIC polynomials are next listed.

T1(t, q) = t; T3(t, q) = t2q(1 + q);
T5(t, q) = t2q2(1 + q)(1 + tq(1 + 2q + 2q2 + q3) + t2q6);
T7(t, q) = t2q3(1 + q)(1 + tq(2 + 5q + 7q2 + 7q3 + 5q4 + 2q5)

+ t2q3(1 + 4q + 10q2 + 15q3 + 18q4 + 15q5 + 10q6 + 4q7 + q8)
+ t3q8(2 + 5q + 7q2 + 7q3 + 5q4 + 2q5) + t4q14);

E0(t, q) = 1; E2(t, q) = t; E4(t, q) = t2q(1 + 2q + q2 + tq3);
E6(t, q) = t2q2(1 + 2q + q2 + tq(1 + 4q + 8q2 + 10q3 + 8q4 + 4q5 + q6)

+ t2q5(2 + 5q + 6q2 + 5q3 + 2q4) + t3q10);
E8(t, q) = t2q3(1 + 2q + q2 + tq(2 + 9q + 20q2 + 30q3 + 34q4 + 30q5 + 20q6

+ 9q7 + 2q8) + t2q3(1 + 6q + 21q2 + 48q3 + 81q4 + 110q5 + 122q6

+ 110q7 + 81q8 + 48q9 + 21q10 + 6q11 + q12) + t3q8(3 + 14q + 35q2

+ 62q3 + 86q4 + 96q5 + 86q6 + 62q7 + 35q8 + 14q9 + 3q10)
+ t4q14(3 + 9q + 15q2 + 18q3 + 15q4 + 9q5 + 3q6) + t5q21).

The proof of (a) is a consequence of Theorem 1.1a that follows. The proof of (b)

will be fully given at the end of Section 3. It uses the following argument: as tan
(r)
q (u)

(resp. sec
(r)
q (u)) tends to tanq(u) (resp. secq(u)) when r tends to infinity (by using the

topology of formal power series), we can multiply both (1.1)tq and (1.2)tq by (1− t) and
let t = 1 (see, e.g., [FH04a], p. 163, the “t = 1” Lemma) to obtain the identities

tanq(u) =
∑

n≥0

u2n+1

(q; q)2n+1
T2n+1(1, q);

secq(u) =
∑

n≥0

u2n

(q; q)2n
E2n(1, q);

so that T2n+1(1, q) = T2n+1(q) and E2n(1, q) = E2n(q), by comparison with (1.1)q and
(1.2)q.

Now, let (An(s, t, q, Y )) (n ≥ 0) be the sequence of coefficients occurring in the
following factorial expansion:

(1.12)
∑

r≥0

tr
1− sq

1

(usq; q)r
−

sq

(u; q)r

1

(uY ; q)r
=

∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
.
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Theorem 1.2. For each n ≥ 0 the coefficient An(s, t, q, Y ) in (1.12) is a PIC polynomial.

Furthermore, the diagram of Fig. 1 holds, together with identities (1.4)tq and (1.5)tq.

The fact that each An(s, t, q, Y ) is a PIC polynomial is a consequence of the further
Theorem 1.2a, while the proofs of identities (1.4)tq and (1.5)tq are given in Section 5.

Several combinatorial methods have been developed in Special Functions for
proving inequalities, essentially expressing finite or infinite sums as generating functions
for well-defined finite structures by positive integral-valued statistics. See the pioneering
works by Askey and his followers [AI76], [AIK78], [IT79]. Very soon, Zeilberger, following
his mentor Gillis [EG76], has brought his decisive contribution to the subject [GZ83],
[GRZ83], [FZ88].

The method of proof used in this paper is very much inspired by these papers. Both
Theorems 1.1 and 1.2, of analytical nature, will get combinatorial counterparts, namely
the next Theorems 1.1a and 1.2a, where all three families (T2n+1(t, q)), (E2n(t, q)) and
(An(s, t, q, Y )) (n ≥ 0) will be shown to be generating polynomials for some classes
of permutations by well-defined statistics. The underlying combinatorial set-up can be
described as follows. As introduced by Désiré André [An79, An81], each permutation
σ = σ(1) · · ·σ(n) of 1 2 · · · n is said to be alternating (resp. falling alternating) if
the following properties hold: σ(1) < σ(2), σ(2) > σ(3), σ(3) < σ(4), etc. (resp.
σ(1) > σ(2), σ(2) < σ(3), σ(3) > σ(4), etc.) in an alternating way. The set of alternating
(resp. falling alternating) permutations of order n is denoted by Tn (resp. by T′

n).
Désiré André’s main result was to show that tangent and secant numbers were true

enumerators for all alternating permutations: #T2n+1 = #T
′
2n+1 = T2n+1 and #T2n =

#T′
2n = E2n. It is remarkable that by counting those alternating permutations by the

usual number of inversions “inv,” the underlying generating polynomial
∑

σ∈Tn
qinv σ

is equal to Tn(q) (n odd) or En(q) (n even) (see [AG78], [AF80], [Fo81], [St97, p. 148-
149]). As “inv” is a traditional q-maker, it was tantalizing to pursue our t-extension with
“inv,” and add another suitable statistic counted by the variable t. In fact, it was far
more convenient to continue with another q-maker having the same distribution over Tn

as “inv,” as is now explained.
For each permutation σ = σ(1)σ(2) · · ·σ(n) from the symmetric group Sn let IDES σ

(resp. ides σ) denote the set (resp. the number) of all letters σ(i) such that for some j < i
the equality σ(j) = σ(i) + 1 holds and let imajσ :=

∑

σ(i)∈IDES σ σ(i). It is known that
“imaj” and “inv” are equally distributed on each set Tn, a result that can be proved
by means of the so-called second fundamental transformation [FS78]. The most natural
statistic that can be associated with “imaj” is then “ides.” It is again remarkable that
Désiré André’s set-up will also provide the appropriate combinatorial model needed for
our (t, q)-extension, as is now stated.

Theorem 1.1a. The (t, q)-analogs T2n+1(t, q) and E2n(t, q) of the tangent and secant

numbers defined by (1.1)tq and (1.2)tq have the following combinatorial interpretations:

T2n+1(t, q) =
∑

σ∈T2n+1

t1+ides σqimaj σ;(1.13)
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E2n(t, q) =
∑

σ∈T2n

t1+ides σqimaj σ.(1.14)

In particular, they are PIC polynomials.

The combinatorial interpretations of the coefficients An(s, t, q, Y ) are based on
the model introduced in our previous paper [FH08]. Each word w = x1x2 · · ·xm, of
length m, whose letters are positive integers all different, is called a hook if x1 > x2

and either m = 2, or m ≥ 3 and x2 < x3 < · · · < xm. As proved by Gessel [Ge91],
each permutation σ = σ(1)σ(2) · · ·σ(n) admits a unique factorization, called its hook

factorization, pτ1τ2 · · · τk, where p is an increasing word and each factor τ1, τ2, . . . , τk

is a hook. Define pixσ to be the length of the factor p. Finally, for each i let inv τi be
the number of inversions of τi and define: lec σ :=

∑

1≤i≤k inv τi.

Theorem 1.2a. The coefficients An(s, t, q, Y ) (n ≥ 0) defined by identity (1.12) have

the following combinatorial interpretations:

(1.15) An(s, t, q, Y ) =
∑

σ∈Sn

slec σtides σ+χ(σ(1)=1)qimaj σY pix σ,

where χ(σ(1) = 1) = 1 if σ(1) = 1 and 0 otherwise. Accordingly, they are PIC

polynomials.

In the next section we recall a result on permutation lignes of routes derived in a
previous paper of ours [FH04], then we prove Theorem 1.1a in Section 3. For the proof
of Theorem 1.2a, given in Section 4, we actually show that the factorial generating
function for the polynomials defined by (1.15) satisfy identity (1.12). Identities (1.4)tq

and (1.5)tq are derived in Section 5. We conclude the paper by indicating that besides
(1.13) each polynomial T2n+1(t, q) may be given two other combinatorial interpretations
involving a triple of statistics.

2. Lignes of route

Let L = {ℓ1 < · · · < ℓk} be a subset of the interval {1, 2, . . . , n−1}. By convention,
ℓ0 := 0 and ℓk+1 := n. Designate by Wr(L, n) the set of all words w = x1x2 · · ·xn, of
length n, whose letters are nonnegative integers satisfying the inequalities:

r ≥ x1 ≥ · · · ≥ xℓ1 ≥ 0; r ≥ xℓ1+1 ≥ · · · ≥ xℓ2 ≥ 0; · · ·

(2.1) r ≥ xℓk+1 ≥ · · · ≥ xn ≥ 0;

xℓ1 < xℓ1+1, xℓ2 < xℓ2+1, . . . , xℓk
< xℓk+1.

Say that the ligne of route of a permutation σ = σ(1)σ(2) · · ·σ(n) is equal to L,
and write Ligne σ = L, if and only if σ(i) > σ(i + 1) whenever i ∈ L. Notice that
IDES σ and ides σ are simply the ligne of route and the number of descents of the inverse
permutation σ−1, respectively.
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The next identity requires some classical techniques on stardardizations of words.
It is proved in the forementioned paper ([FH04] Propositions 8.1 and 8.2) and reads

(2.2)

∑

σ, Ligne σ=L

tides σqimaj σ

(t; q)n+1
=

∑

r≥0

tr
∑

w∈Wr(L,n)

qtot w (n ≥ 1),

where totw stands for the sum of all letters of w.
When L = {2, 4, 6, . . .} the set of all permutations σ from Sn such that Ligne σ = L

is the set T of all alternating permutations. We then have the subsequent result.

Theorem 2.1. With L = {2, 4, 6, . . .} the following identity holds:

(2.3)

∑

σ∈Tn

tides σqimaj σ

(t; q)n+1
=

∑

r≥0

tr
∑

w∈Wr(L,n)

qtot w (n ≥ 1).

For each r ≥ 1 and each n ≥ 1 the set Vr(L, n) := Wr(L, n) \Wr−1(L, n) consists
of all words w = x1x2 · · ·xn such that (2.1) holds (in particular, for L = {2, 4, 6, . . .})
with the further property that at least one of the letters x1, xℓ1+1, xℓ2+1, . . . is equal
to r. Let maxw the maximum letter in w. Then,

(2.4) w ∈ Vr(L, n) =⇒ maxw = r and totw −maxw ≥ 0.

Note that the sets Vr(L, n) are disjoint and

(2.5)
∑

r

Vr(L, n) =
∑

r

Wr(L, n) =: W (L, n).

Proposition 2.2. For each n ≥ 1 we have

(2.6) (1− t)

∑

σ∈Tn

tides σqimaj σ

(t; q)n+1

∣

∣

∣

∣

{t=1}

=

∑

σ∈Tn

qimaj σ

(q; q)n
.

Proof. We have:

(1− t)

∑

σ∈Tn

tides σqimaj σ

(t; q)n+1
=

∑

σ∈Tn

tides σqimaj σ

(tq; q)n

= (1− t)
∑

r≥0

tr
∑

w∈Wr(L,n)

qtot w [by (2.3)]

=
∑

w∈W0(L,n)

qtot w +
∑

r≥1

tr
∑

w∈Vr(L,n)

qtot w [by definition of Vr(L, n)]

= 1 +
∑

w∈W (L,n)

tmax wqtot w [by (2.4) and (2.5)]

= 1 +
∑

w∈W (L,n)

(qt)max wqtot w−max w.
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As totw − maxw ≥ 0 for all w ∈ W (L, n) by (2.5), it makes sense to have the
substitution tq ← q in the last expression, that is, 1← t in

∑

σ∈Tn

tides σqimaj σ/(tq; q)n to
obtain

∑

σ∈Tn

qimaj σ/(q; q)n.

3. Proof of Theorem 1.1

For the proof of identity (1.14) we shall start with the definition of cos
(r)
q (u) given

in (1.7), and express sec
(r)
q (u) = 1/ cos

(r)
q (u) as a generating series for a class of words

with nonnegative integral letters. For this purpose we introduce the set NIWn(r) of all
monotonic nonincreasing words c = c1c2 · · · cn, of length n, whose letters are nonnegative
integers at most equal to r: r ≥ c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Also, designate the length (resp.
the sum of all the letters) of each word w by λw (resp. totw).

The next identity is classical (see, e.g., [An76, chap. 2]):

(3.1)
(qr; q)n

(q; q)n
=

∑

w∈NIWn(r−1)

qtot w.

Using (3.1) we get:

cos(r)q (u) =
∑

m≥0

(qr; q)2m

(q; q)2m
(−1)mu2m = 1−

∑

m≥1

(−1)m−1u2m
∑

w∈NIW2m(r−1)

qtot w.

Hence,

(3.2)
1

cos
(r)
q (u)

= 1 +
∑

n≥1

u2n
∑

(m1,...,mk)
(w1,...,wk)

(−1)m1+···+mk−kqtot(w1···wk),

where the second sum is over all sequences (m1, . . . , mk) and (w1, . . . , wk) such that
m1 + · · ·+ mk = n and wi ∈ NIW2mi

(r − 1) (i = 1, . . . , k).
Each sequence (w1, . . . , wk) in the above sum is said to have a decrease at j if

1 ≤ j ≤ k−1 and the last letter of wj is greater than or equal to the first letter of wj+1

[in short, L wj ≥ F wj+1]. If the sequence has no decrease and all the factors wj are
of length 2, then k = n. If it is not the case, let j be the integer with the following
properties:

(i) λw1 = · · · = λwj−1 = 2;
(ii) no decrease at 1, 2, . . . , j − 1;
(iii) either λwj ≥ 4, or
(iv) λwj = 2 and there is a decrease at j.

Say that the sequence is of class Cj (resp. C′
j) if (i), (ii) and (iii) (resp. (i), (ii)

and (iv)) hold. If the sequence is of class Cj , let wj = x1x2 · · ·x2m (remember that
r − 1 ≥ x1 ≥ · · · ≥ x2m) and form the sequence

(w1, . . . , wj−1, x1x2, x3 · · ·x2m, wj+1, . . . , wk)

having (k+1) factors. As L x1x2 = x2 ≥ x3 = F x3 · · ·x2m, the j-th factor is of length 2
and there is a decrease at j. It then belongs to C′

j . This defines a sign-reversing involution
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on the set of those sequences. By applying the involution to the above sum, the remaining
terms correspond to the sequences (w1, w2, . . . , wn), such that λwi ∈ NIW2(r − 1)
(i = 1, 2, . . . , n) and L w1 < F w2, L w2 < F w3, . . . , L wn−1 < F wn. In particular,
k = n, m1 = · · · = mn = 1 and there is no more minus sign left on the right-hand side
of (3.2).

Those sequences are in bijection with the set Wr−1(L, 2n), described in (2.1), when
L = {2, 4, . . . , (2n− 2)}. Referring to (3.2) we then have:

∑

(m1,...,mk)
(w1,...,wk)

(−1)m1+···+mk−kqtot(w1···wk) =
∑

w∈Wr−1(L,2n)

qtot w,

so that

(3.3)
1

cos
(r)
q (u)

= 1 +
∑

n≥1

u2n
∑

w∈Wr−1(L,2n)

qtot w;

and then by using (2.3)

∑

r≥0

tr
1

cos
(r)
q (u)

= 1 +
∑

r≥1

tr
1

cos
(r)
q (u)

= 1 +
∑

r≥1

tr
(

1 +
∑

n≥1

u2n
∑

w∈Wr−1(L,2n)

qtot w
)

=
1

1− t
+

∑

n≥1

u2n
∑

r≥1

tr
∑

w∈Wr−1(L,2n)

qtot w

=
1

1− t
+

∑

n≥1

u2n

∑

σ∈S2n,Ligne σ=L

t1+ides σqimaj σ

(t; q)2n+1

=
1

1− t
+

∑

n≥1

u2n

∑

σ∈T2n

t1+ides σqimaj σ

(t; q)2n+1

and this proves (1.14) with the convention E0(t, q) = 1.

For the proof of (1.13) we use the same techniques, in particular identities (3.1)
and (3.3). We have:

1

cos
(r)
q (u)

sin(r)
q (u) =

∑

j≥0

u2j
∑

w∈Wr−1(L,2j)

qtot w ×
∑

i≥0

(−1)iu2i+1
∑

v∈NIW2i+1(r−1)

qtot v,

making the convention that the first sum is equal to 1 for j = 0. Hence,

1

cos
(r)
q (u)

sin(r)
q (u) =

∑

n≥0

u2n+1
∑

j+i=n

(−1)i
∑

w∈Wr−1(L,2j)
v∈NIW2i+1(r−1)

qtot wv.

Say that the pair (w, v) is of class (D) (resp. class (D′)) if L w < F v and λv ≥ 3 (resp.
L w ≥ F v). If (w, v) is of class (D), write v = v1v2 with λv1 = 2. Then, define w′ := wv1
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and v′ := v2. As v is monotonic nonincreasing, we have L w′ = L v1 ≥ F v2 = F v′, so
that the pair (w′, v′) is of class (D′). Moreover, if i = (λv − 1)/2 and i′ = (λv′ − 1)/2,
we have: i = i′ +1, so that (−1)iqtot wv +(−1)i′qtot w′v′

= 0. Consequently, the mapping
(w, v) 7→ (w, v′) is a sign-reversing involution. When the involution is applied to the
above sum, only remain the pairs (w, v) such that λv = 1 (one-letter word) and
L w < F v = v. In particular, v ≤ r − 1. The corresponding sign (−1)i is also equal to
(−1)(λv−1)/2 = 1. We then get

1

cos
(r)
q (u)

sin(r)
q (u) =

∑

n≥0

u2n+1
∑

w∈Wr−1(L,2n+1)

qtot w,

with L = {2, 4, 6, . . . , 2n}. By using (2.3) we can then conclude:

∑

r≥0

tr tan(r)
q (u) =

∑

n≥0

u2n+1

∑

σ∈T2n+1

t1+ides σqimaj σ

(t; q)2n+2
.

To complete the proof of Theorem 1.1 (b) we proceed as follows. Let ar := tan
(r)
q (u)

(resp. sec
(r)
q (u)) and a := tanq(u) (resp. secq(u)) and for each pair (i, j) let ar(i, j) (resp.

a(i, j)) be the coefficient of qiuj in ar (resp. in a). A simple calculation shows that ar−a
can be expressed as qrc, where c is a formal series in q, u. Hence, ar(i, j)− a(i, j) = 0
for all r ≥ i+1 and then limr ar = a. Let b(t) =

∑

r≥0 trbr := (1− t)
∑

r≥0 trar, so that
b0 = a0 and br = ar − ar−1 for r ≥ 1. For all r ≥ i + 2 we then have br(i, j) = ar(i, j)−
ar−1(i, j) = a(i, j)−a(i, j) = 0 and the finite sum b0(i, j)+b1(i, j)+ · · ·+br(i, j) is equal
to a0(i, j) + (a1(i, j)− a0(i, j)) + · · ·+ (ai+1(i, j)− ai(i, j)) = ai+1(i, j) = a(i, j). This
proves that the sum

∑

r br is convergent and converges to a, that is, b(1) =
∑

r br = a.

Thus, (1−t)
∑

r≥0

tr tan
(r)
q (u)

∣

∣

∣

t=1
= tanq(u) and (1−t)

∑

r≥0

tr sec
(r)
q (u)

∣

∣

∣

t=1
= secq(u). This

achieves the proof of Theorem 1.1 (b) in view of Proposition 2.2 and the combinatorial
interpretations derived in Theorem 1.1a.

4. Proof of Theorem 1.2a

In our previous paper [FH08] we have calculated the factorial generating function
for the polynomials

(4.1) A∗
n(s, t, q, Y ) =

∑

σ∈Sn

slec σtides σqimaj σY pix σ (n ≥ 0),

and found

(4.2)
∑

n≥0

A∗
n(s, t, q, Y )

un

(t; q)n+1
=

∑

r≥0

tr
1− sq

1

(usq; q)r
−

sq

(u; q)r

1

(uY ; q)r+1
.
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Notice that the generating functions for the polynomials An(s, t, q, Y ) and A∗
n(s, t, q, Y )

differ only by the fraction 1/(uY ; q)r for the first one (see (1.12)) and 1/(uY ; q)r+1

for the second. From (4.2) we can obtain the factorial generating function for the
polynomials An(s, t, q, Y ) themselves in the following manner. Starting with definition
(1.15) we can write:

An(s, t, q, Y ) =
∑

σ∈Sn,
σ(1)6=1

slec σtides σqimaj σY pix σ +
∑

σ∈Sn,
σ(1)=1

slec σtides σ+1qimaj σY pix σ.

Now, for n ≥ 1 the transformation

σ = σ(1)σ(2) · · ·σ(n− 1) 7→ τ = 1 (σ(1) + 1)(σ(2) + 2) · · · (σ(n− 1) + 1)

is a bijection of Sn−1 onto the set of permutations from Sn starting with 1 having the
property

lec τ = lec σ; ides τ = ides σ; imaj τ = imajσ + ides σ; pix τ = pix σ + 1.

Hence,

(4.3) Y A∗
n−1(s, tq, q, Y ) =

∑

σ∈Sn,σ(1)=1

slec σtides σqimaj σY pix σ,

so that, for n ≥ 1,

An(s, t, q, Y ) = A∗
n(s, t, q, Y )− Y A∗

n−1(s, tq, q, Y ) + tY A∗
n−1(s, tq, q, Y ).

It then follows that

∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1

=
1

1− t
+

∑

n≥1

(

A∗
n(s, t, q, Y )− Y (1− t)A∗

n−1(s, tq, q, Y )
) un

(t; q)n+1

=
∑

n≥0

A∗
n(s, t, q, Y )

un

(t; q)n+1
− uY

∑

n≥0

A∗
n(s, tq, q, Y )

un

(tq; q)n+1
.

Making use of (4.2) we obtain:

(4.4)
∑

n≥0

An(s, t, q, Y )
un

(t; q)n+1
=

∑

r≥0

tr
1− sq

1

(usq; q)r
−

sq

(u; q)r

1

(uY ; q)r+1
(1− uqrY ),

which is identity (1.12).
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5. The identities (1.4)tq and (1.5)tq

First, derive other expressions for cos
(r)
q (u) and sin(r)

q (u) using the q-binomial
theorem (see, e.g., [GR90], p. 9):

1

(iu; q)r
+

1

(−iu; q)r
=

∑

n≥0

( (qr; q)n

(q; q)n
(iu)n +

(qr; q)n

(q; q)n
(−iu)n

)

(5.1)

= 2
∑

n≥0

(−1)n (qr; q)2n

(q; q)2n
u2n = 2 cos(r)q (u).

Also
1

(iu; q)r
−

1

(−iu; q)r
=

∑

n≥0

(qr; q)n

(q; q)n
(iu)n −

(qr; q)n

(q; q)n
(−iu)n(5.2)

= 2i
∑

n≥0

(−1)n (qr; q)2n+1

(q; q)2n+1
u2n+1 = 2i sin(r)

q (u),

so that

(5.3) tan(r)
q (u) =

−i
1

(iu; q)r
+

1

(−iu; q)r

( 1

(iu; q)r
−

1

(−iu; q)r

)

.

Let s← −q−1, u← iu in (4.4). We get

∑

n≥0

An(−q−1, t, q, Y )
(iu)n

(t; q)n+1
=

∑

r≥0

tr
2

1

(−iu; q)r
+

1

(iu; q)r

1

(iuY ; q)r
.

Hence, by (5.1)
∑

n≥0

An(−q−1, t, q, 0)
(iu)n

(t; q)n+1
=

∑

r≥0

tr
1

cos
(r)
q (u)

=
∑

r≥0

tr sec(r)
q (u).

By definition of sec
(r)
q (u) given in (1.2)tq we deduce for n ≥ 0:

A2n(−q−1, t, q, 0)(−1)n = E2n(t, q); A2n+1(−q−1, t, q, 0) = 0.

With Y ← 1 we obtain

∑

n≥0

An(−q−1, t, q, 1)
(iu)n

(t; q)n+1
=

∑

r≥0

tr
2

1

(−iu; q)r
+

1

(iu; q)r

1

(iu; q)r
,

and with Y ← −1
∑

n≥0

An(−q−1, t, q,−1)
(iu)n

(t; q)n+1
=

∑

r≥0

tr
2

1

(−iu; q)r
+

1

(iu; q)r

1

(−iu; q)r
.
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Hence,

(5.4)
∑

n≥0

1

2

(

An(−q−1, t, q, 1) + An(−q−1, t, q,−1)
) (iu)n

(t; q)n+1
=

∑

r≥0

tr,

while

(5.5)
∑

n≥0

1

2

(

An(−q−1, t, q, 1)−An(−q−1, t, q,−1)
) (iu)n

(t; q)n+1

=
∑

r≥0

tr
1

1

(−iu; q)r
+

1

(iu; q)r

( 1

(−iu; q)r
−

1

(iu; q)r

)

=
∑

r≥0

tri tan(r)
q (u).

We conclude that An(−q−1, t, q, 1) + An(−q−1, t, q,−1) = 0 for all n ≥ 1, and
An(−q−1, t, q, 1)−An(−q−1, t, q,−1) = 0 for all n ≥ 1 even. Also (A2n+1(−q−1, t, q, 1)−
A2n+1(−q−1, t, q,−1))(−1)n = T2n+1(t, q) for all n ≥ 0. This proves (1.4)tq and (1.5)tq.

6. Concluding remarks

Recall that the number of excedances, “excσ,” of a permutation σ = σ(1) · · ·σ(n)
from Sn is defined by exc σ := #{i : 1 ≤ i ≤ n, σ(i) > i}, while the number of

descents, “des σ” (resp. the major index, “majσ”) is the number (resp. the sum) of all
elements in Ligne σ. Also, let iexc σ := exc σ−1 and let fix σ be the number of fixed points
of σ. As shown in our previous paper [FH08], the three quadruples (exc, des, maj, fix),
(lec, ides, imaj, pix), (iexc, ides, imaj, fix) are equally distributed on Sn. It then follows
that (1.4)tq implies the identity:

∑

σ∈T2n

t1+ides σqimaj σ = (−1)n
∑

σ∈S2n,
fix σ=0

(−q−1)iexc σtides σqimaj σ.

As “imaj” and “inv” are equally distributed on each set Tn, we also have

(6.1) T2n+1(1, q) =
∑

σ∈T2n+1

qinv σ, E2n(1, q) =
∑

σ∈T2n

qinv σ,

which are the traditional combinatorial interpretations of the q-tangent T2n+1(q) and
q-secant E2n(q) numbers. Now, let t = 1 in identities (1.4)tq–(1.5)tq. Taking (6.1) into
account we get:

E2n(q) = (−1)n
∑

σ∈S2n,
pix σ=0

(−q−1)lec σqimaj σ;
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T2n+1(q) = (−1)n
∑

σ∈S2n+1

(−q−1)lec σqimaj σ;

0 =
∑

σ∈S2n+1,
pix σ=0

(−q−1)lec σqimaj σ;

and for n ≥ 1

0 =
∑

σ∈S2n

(−q−1)lec σqimaj σ.

But, as the triples (lec, imaj, pix) and (lec, inv, pix) and (exc, maj, fix) are all equidis-
tributed on each Sn [FH08], the previous identities can be rewritten as:

E2n(q) = (−1)n
∑

σ∈S2n,
fix σ=0

(−q−1)exc σqmaj σ;

T2n+1(q) = (−1)n
∑

σ∈S2n+1

(−q−1)exc σqmaj σ;

0 =
∑

σ∈S2n+1,
fix σ=0

(−q−1)exc σqmaj σ;

and for n ≥ 1

0 =
∑

σ∈S2n

(−q−1)exc σqmaj σ,

four identities that were previously derived in [FH10].
The polynomials T2n+1(t, q), E2n(t, q) (n ≥ 0) introduced in this paper have been

referred to as being the (t, q)-analogs of the tangent and secant numbers, respectively.
They may be regarded as the graded forms of the traditional q-tangent and q-secant
numbers T2n+1(q), En(q) defined in (1.1)q and (1.2)q. The order of the variables t, q
matters, as other authors have spoken of (q, t)-analogs, in particular Reiner and Stanton
[RS09] in their extensions of the binomial coefficients, in connection with their study of
Hilbert series from the invariant theory of GLn(Fq). Other studies of (q, t)-analogs are
due to Garsia, Haglund, Haiman [GH96, GH02] in their works on (q, t)-Catalan numbers,
and to Haiman and Woo [HW07] in enumeration problems occurring in Geometric
Combinatorics.

At the Z = 60 conference in honor of Doron Zeilberger the attention of the first
author has been drawn by Sergei Suslov to the study of q-trigonometric functions
occurring in a new theory of basic Fourier series, based on another basic analog of
the exponential function (see [Su98], [Su03]). Several classical functions and identities
have elegant counterparts in this new q-world. For the time being, it remains to be seen
whether combinatorial techniques could bring a new light to this theory.
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