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Abstract

Using the approach suggested in [2] we present a sufficient condition guaranteeing
that two collections of patterns of permutations have the same exponential generating
functions for the number of permutations avoiding elements of these collections as
consecutive patterns. In short, the coincidence of the latter generating functions is
guaranteed by a length-preserving bijection of patterns in these collections which is
identical on the overlappings of pairs of patterns where the overlappings are considered
as unordered sets. Our proof is based on a direct algorithm for the computation of
the inverse generating functions. As an application we present a large class of patterns
where this algorithm is fast and, in particular, allows us to obtain a linear ordinary
differential equation with polynomial coefficients satisfied by the inverse generating
function.

1 Introduction

In recent years, the theory of consecutive pattern avoidance for permutations has experienced
a rapid development since the publication of the important paper [5]. Among the latest
publications one should mention [1], [9], [12], [4] where a number of special cases has
been treated and the corresponding exponential generating functions explicitly found. The
present text is devoted to the same topic and is an extension of the application of homological
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methods to this theory (initiated in [2]). We investigate a natural analog of the notion of Wilf
equivalence for consecutive pattern avoidance and obtain a rather general sufficient condition
guaranteeing that this natural analog of Wilf equivalence holds. Most of the definitions below
are borrowed from [2] and are rather standard in this area.

1.1 Notation and definitions

A permutation of length n is a sequence s = s(1), s(2), ..., s(n) containing each of the num-
bers {1, . . . , n} exactly once. To every sequence s consisting of n distinct positive integers,
we associate its standardization st[s], also known as the reduced form of s, which is the
permutation of length n uniquely determined by the condition that s(i) < s(j) if and only if
st[s](i) < st[s](j). In other words, st[s] is the unique permutation of length n whose relative
order of entries is the same as that of s. For example, st[573] = 231. In what follows we will
refer to distinct integers forming a permutation as its entries.

We say that a permutation σ of length n contains a permutation π of length l 6 n as
a consecutive pattern if for some i 6 n − l + 1 the standardization st[σ(i) . . . σ(i+ l − 1)]
coincides with π. If σ contains π as a consecutive pattern we say that π divides σ and use the
notation π|σ. If π|σ and i = 1 (respectively i = n− l+1) we say that π is a left (respectively
right) divisor of σ. The main notion in the theory of pattern avoidance for permutations
is as follows. We say that a permutation σ avoids a given permutation π as a consecutive
pattern if σ is not divisible by π. (Throughout this paper we only deal with consecutive
patterns: the word “consecutive” will therefore be omitted.)

The central problem of the theory of pattern avoidance is to count the number of permuta-
tions of a given length avoiding a given collection Π of forbidden patterns or, more generally,
containing a given number of occurrences of patterns from Π . This problem naturally leads
to the following equivalence relation on collections of patterns defined in the simplest case
by H. Wilf in [14]. Two collections of patterns Π1 and Π2 are said to be Wilf equivalent
(denoted by Π1 ≃W Π2) if for every positive integer n, the number of Π1-avoiding permu-
tations of length n is equal to the number of Π2-avoiding permutations of length n. We say
that two collections of patterns Π1 and Π2 are strongly Wilf equivalent if for every positive
integer n and every nonnegative integer 0 6 q 6 n, the number of permutations of length n
with q occurrences of patterns from Π1 equals the number of permutations of length n with
q occurrences of patterns from Π2. In the set-up of consecutive pattern avoidance we will
still speak about Wilf equivalent (respectively strongly Wilf equivalent) collections. (We use
the notation: Π1 ≃W Π2 for strongly Wilf equivalent collections.)

Remark 1.1. Throughout this paper we assume that every collection of patterns Π is reduced,
i.e., no two permutations π, π′ ∈ Π are divisible by one another. Notice that if π|π′ ∈ Π

then Π \ {π′} is strongly Wilf equivalent to Π .

Following [5] consider two exponential generating functions in one and two variables
respectively:

Π(x) :=
∑

n

αn
xn

n!
and Π(x, t) :=

∑

n,k

αn,q
xn

n!
tq,
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associated to a given collection of patterns Π . Here αn (respectively, αn,q) is the number
of permutations of length n avoiding all (respectively, containing exactly q occurrences of)
patterns from Π . Obviously, Π(x) = Π(x, 0).

Remark 1.2. Hilbert series very similar to Π(x) and Π(x, t) are often considered in the
theory of associative algebras. The well-known method of their study is based on the so-
called bar-cobar duality which roughly means that a graded associative algebra A and the
A∞-coalgebra TorAq (k, k) are dual with respect to the functor Tor. As a corollary of this
duality, one gets the fact that the Hilbert series of A and of TorAq (k, k) are the inverses of
each other, i.e., their product equals 1. (See [13] for the details on different computational
methods for the Hilbert series of associative algebras and their homology.) It seems highly
plausible that for an associative algebra with few relations, a combinatorial description of
its homology is simpler than that of the algebra itself. However, for algebras with many
relations, the situation is the opposite one.

Recall that the set of permutations avoiding an arbitrary fixed collection Π has an impor-
tant additional structure (see the appendix in [2]). Namely, in a suitable monoidal category
it can be considered as the monomial basis of an algebra with monomial relations. (We
refer the interested reader to the above appendix in [2] and references therein for the details.
In particular, one can find the definition of the homology functor in the latter appendix.)
Therefore, it seems natural to use the above mentioned homological duality in the theory of
pattern avoidance. Combinatorial data appearing in this context is based on a generalization
of the so-called cluster method of I. Goulden and D. Jackson, [6]. We explain below how
one can get combinatorial information (for example, about the coefficients of the generating
functions) of the corresponding graded homological vector spaces for collections of patterns
with few entries.

To describe our results we need to recall the definition of a combinatorial gadget called
clusters in [6]. They generalize the notion of a linkage given below.

A permutation σ of length n is called a linkage of an ordered pair of (not necessarily
distinct) patterns (π, π′) of lengths l and l′ if (i) n < l + l′; and (ii) the standardizations
st[σ(1) . . . σ(l)] and st[σ(n − l′ + 1) . . . σ(n)] are equal to π and π′ respectively. Since the
length of σ is less than the sum of the lengths of π and π′ one has that the standardizations
of a right truncation of π and a left truncation of π′ are the same. Setting k = (l + l′ − n),
we say that a pair (π, π′) has a k-overlapping (or that (π, π′) k-overlaps). In other words, a
pair (π, π′) k-overlaps whenever the standardization st[π(l − k + 1) . . . π(l)] is equal to the
standardization st[π′(1) . . . π′(k)]. Notice that there can be several different linkages of two
given patterns π and π′.

A cluster is a way to link together several patterns from a given set. More precisely, a
q-cluster w.r.t. a given collection of patterns Π is a triple (σ; π1, . . . , πq; d1, . . . , dq) where σ
is a permutation, {πi} is a list of (not necessarily distinct) patterns from Π , and {di} is a
list of positive integers such that

(i) for every j = 1, . . . , q, st[σ(dj), . . . , σ(dj + lj − 1)] = πj ∈ Π , where lj is the length
of πj (here dj labels the beginning of the pattern πj in σ);
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(ii) dj+1 > dj (patterns are listed from left to right) and dj+1 < dj + lj (adjacent patterns
are linked);

(iii) d1 = 1, and the length of σ is equal to dq + lq − 1 (i.e., σ is completely covered by the
patterns π1, . . . , πq).

Denote by cln,q(Π) the number of q-clusters of length n in a collection Π and introduce the
exponential generating function

Πcl(x, t) = x+
∑

n>1,q>1

cln,q
xn

n!
tq.

(Here we use a natural convention that there always exists exactly one (fictitious) 0-cluster
and, therefore, the above generating function starts with x.)

The following result is an immediate consequence of the general cluster method of
I. Goulden and D. Jackson, [6] and its homological proof for the case of permutations can
be found in [2].

Theorem 1.3. In the above notation, one has:

Π(x, t) =
1

1 −Πcl(x, t− 1)
. (1.4)

Corollary 1.5. The exponential generating function Π(x) := Π(x, 0) of the number of
permutations avoiding the patterns from a given collection Π satisfies the relation:

Π(x) =
1

1 −Πcl(x,−1)
. (1.6)

Remark 1.7. In general, the problem of counting the number of q-clusters in a given collection
of patterns Π does not seem to be easier than counting the number of permutations of a
given length avoiding Π . On the other hand, there exist natural classes of collections for
which counting q-clusters is an easier task, see Section 3.

One can guess that since clusters can be described in terms of linkages of pairs of patterns
the number of clusters can also be determined in terms of the combinatorics of possible
intersections of these linkages. Exploiting the latter idea, we were able to prove the following
theorem which is the main result of this paper.

Theorem 1.8. Two collections of patterns Π1 and Π2 are strongly Wilf equivalent if there
exists a bijection ϕ : Π1 → Π2 respecting the following three properties:

• (lengths) For any π ∈ Π1 its length equals to that of ϕ(π) ∈ Π2;

• (linkages) A pair of patterns (π, π′) from Π1 has a linkage of length n if and only if the
pair of its images (ϕ(π), ϕ(π′)) from Π2 has a linkage of the same length n.
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• (overlapping sets) For each overlapping of any pair of patterns from Π1 the bijection
ϕ preserves the subsets of entries that overlap. More precisely, for any pair (π, π′) of
patterns π, π′ ∈ Π1 of lengths l and l′ respectively and an arbitrary positive integer
k 6 min(l, l′), the coincidence of the standardizations st[(π(l − k + 1) . . . π(l))] =
st[(π′(1) . . . π′(k))] implies the coincidence of the sets:
{π(l − k + 1), . . . , π(l)} = {ϕ(π)(l − k + 1), . . . , ϕ(π)(l)},
and {π′(1), . . . , π′(k)} = {ϕ(π′)(1) . . . ϕ(π′)(k)}.

The simplest case where Theorem 1.8 applies is to collections with a single pattern having
no self-overlappings of length exceeding 1. The following result implied by Theorem 1.8 was
first conjectured by S. Elizalde in [3] and later proven in [2] by homological methods and,
simultaneously, by J. Remmel whose methods were based on [10]. Namely,

Corollary 1.9. Two collections of patterns each containing a single permutation without
nontrivial self-overlappings are strongly Wilf equivalent if

(i) the lengths of the permutations coincide;

(ii) the first entry and respectively the last entry of the permutations coincide.

A series of particular examples covered by Theorem 1.8 can be found in Section 5 of [1].
These examples are related to pairs of permutations having the separation property. We say
that a pair of permutations α ∈ Sk and β ∈ Sk′ has a separation property if β avoids the
pattern α(1) . . . α(k)k + 1 ∈ Sk+1 and α avoids 1β(1) + 1 . . . β(k′) + 1 ∈ Sk′+1.

With each pair of permutations α ∈ Sk, β ∈ S ′
k and a natural number l one can associate

the subset Π(α, β; l) ⊂ Sk+l+k′ of permutations defined by the following two properties. We
say that π ∈ Π(α, β; l) iff

(i) the standardizations of the k first and k′ last entries coincide with α, and β respectively;

(ii) the k first entries are strictly smaller than the k′ last entries; the k′ last entries are
strictly smaller than the remaining entries of π in the middle. In other words, π(i) <
π(j) < π(s) for any triple of indices (i, j, s) such that 1 6 i 6 k < s 6 k + l < j 6

k + l + j.

Corollary 1.10. Fix a pair of permutations α and β having a separation property and a
d-tuple of natural numbers (l1, . . . , ld). Then all collections of d distinct patterns {π1, . . . , πd}
such that πi ∈ Π(α, β; li) are strongly Wilf equivalent.

Proof. The elements in the middle of each pattern never appear in the overlapping sets.

Let us present a few more examples illustrating how our theorem works in practice.
The following patterns

1734526 ∼W 1735426 ∼W 1743526 ∼W 1745326 ∼W 1753426 ∼W 1754326
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are pairwise Wilf equivalent. They have self-overlappings of lengths 1 and 2 and coinciding
pairs of the first two and the last two entries.

The following pair of Wilf equivalent patterns

143265987 ∼W 134265897 (1.11)

have self-overlappings of lengths 1 and 4, and the corresponding subsets of their initial and
final entries of lengths 1 and 4 coincide while their initial and final subwords are different.

Finally, here is an example

{145623, 13452} ∼W {145623, 13542} ∼W {146523, 13452} ∼W {146523, 13542}

of Wilf equivalent collections with 2 patterns in each.
In Section 2 we prove Theorem 1.8 and in Section 3 we apply our main construction to a

class of collections of patterns and obtain a system of linear ordinary differential equations
satisfied by Πcl(x, t) together with a set of similar generating functions defined below. In the
follow-up [8] of the present paper we plan to study different asymptotic properties of Π(x, t)
using the suggested approach.

Acknowledgements. The authors are sincerely grateful to S. Kitaev for e-mail correspondence
concerning this subject. We want to thank the anonymous referee for considerable efforts
which allowed us to substantially improve the quality of the initial exposition.

2 Proofs

Our proof of Theorem 1.8 consists of an algorithm computing the cluster generating function
Πcl(x, t) of a given collection of patterns Π . It will then be relatively easy to see that this
algorithm uses only the lengths and the overlapping subwords for pairs of patterns from Π

considered as sets. To start with, we define for an arbitrary collection of patterns Π a certain
directed graph with labelled vertices and edges. The important fact is that the number of q-
clusters with fixed initial and final subwords will be equal to the number of properly weighted
paths of length q in this graph with fixed initial and final vertices. The required weights can
be computed using the edge labels. As a consequence, this graph uniquely determines the
generating functions Πcl(x, t) and, therefore, Π(x, t) (see Theorem 1.3).

Given an arbitrary collection of patterns Π define its directed graph G(Π) with labelled
vertices and edges as follows. The vertices of G(Π) will be labelled by permutations (of, in
general, different lengths) and the labels of the edges are defined below.

• To define the vertices assume that some permutation v is a left divisor of a pattern
πα ∈ Π and, at the same time, a right divisor of a (not necessarily different) pattern
πβ ∈ Π . Then we assign to v a vertex kv of G(Π) and, naturally, label this vertex
by v. Notice that the same v can arise from different pairs (πα, πβ . In particular, the
trivial 1-element permutation 1 comes from an arbitrary pair of not necessarily distinct
patterns. i1 is called the distinguished vertex of G(Π) and the set of all vertices of
G(Π) is denoted by V(Π) ∋ i1 .)
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• To define the edges take a pattern π ∈ Π of some length l and a pair (πi, πj) of its
initial and final subwords of lengths k and k′ (i.e., πi := (π(1) . . . π(k)) and πj :=
(π(l−k′ +1) . . . π(l))) such that standardizations st[πi], st[πj] are the vertices of G(Π).
Let µi and µj be the subsets of entries which appear in πi and πj respectively (i.e.,
µi := {π(1), . . . , π(k)} and µj := {π(l − k′ + 1), . . . , π(l)}). The triple (π, πi, πj) then
defines a directed edge from the vertex st[πi] to the vertex st[πj ] which we label by the
triple (µi, µj; l).

Remark 2.1. Notice that µi and µj are considered as unordered sets.

Notation. The vertices of G(Π) are labelled by permutations of different lengths. To distin-
guish the vertices from their underlying permutations we show them as encircled permuta-
tions, see e.g. Figure 1. Throughout the whole text, we will try to denote similar quantities
by the same letter adding extra indices if required. For example, l will typically mean the
length of a pattern π from a collection, k will denote the length of a permutation v which
labels a vertex of G(Π) originating from a k-overlapping, n will stand for the length of a
cluster.

Four examples of G(Π) are given below. The upper left example is constructed from
the collection Π1 = {1342765, 152364} of two patterns with no nontrivial overlappings. The
upper right example comes from the single pattern {132679485} having self-overlappings of
lengths 1 and 3. The meaning of two other examples will be clear now.

1

({1}, {5}; 7) ({1}, {4}; 6)

Π1 = {1342765, 152364}

1

({1}, {5}; 9)

132

({1, 2, 3}, {4, 5, 8}; 9)

({1, 2, 3}, {5}; 9)

({1}, {4, 5, 8}; 9)

Π2 = {132679485}

1

({1}, {4}; 5)

132

({1}, {3}; 7)

({1, 2, 3}, {4}; 5)

({1}, {2, 3, 4}; 7)

Π3 = {1576243, 13254}

1

({1}, {5}; 6)

132

({1}, {4}; 5)

({1}, {4, 5, 6}; 6)

({1, 2, 3}, {5}; 6)

Π4 = {12354, 132465}

({1, 2, 3}, {4, 5, 6}; 6)
({1}, {3, 4, 5}; 5)

Figure 1: Four examples of G(Π).

Our main technical result is as follows.

Theorem 2.2. The graph G(Π) uniquely determines the generating function Πcl(x, t).

The following corollary immediately implies Theorem 1.8.
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Corollary 2.3. Two collections of patterns Π1 and Π2 having isomorphic graphs G(Π1) and
G(Π2) are strongly Wilf-equivalent. (Here by an “isomorphism” we mean a graph isomor-
phism preserving the labels of edges. The labels of vertices can change.)

Proof. To prove Theorem 2.2 we present a natural algorithm calculating the number of q-
clusters in a given collection Π using its graph G(Π). Namely, each vertex kv and a positive
integer n uniquely determine the subset Clv,n,q consisting of all q-clusters (σ; π1, . . . , πq;
d1, . . . , dq), such that the length of σ is equal to n and the standardization of the initial
subword of σ is equal to v. Moreover, with each word p̄ := (p1 . . . pk) of length k (where k is
the length of v) one can associate the subset Clv,n,q[p̄] ⊂ Clv,n,q consisting of those clusters
in Clv,n,q which have p̄ as their initial subword. We will explain how one can compute the
cardinalities of Clv,n,q[p̄] by induction on q using the edge labels in G(Π). Therefore, the
cardinalities of Clv,n,q can also be computed inductively as the sums over different p̄. Since
the standardization of any word of length 1 equals (1) the set Cl(1),n,q coincides with the set
of all q-clusters of length n. (The cardinality of the latter set is one of the coefficients in the
cluster generating function Πcl(x, t).)

Let us now return to the induction step. Take an arbitrary vertex kv ∈ V(Π) and let
kv π17→ lv1 ,. . . , kv πd7→ lvd be the list of all edges in G(Π) starting at the vertex kv . Denote by
kj the length of the permutation vj labeling the vertex lvj and denote by lj the length of
the pattern πj. We present below a recurrence relation expressing the cardinality clv,n,q[p̄] of
the set Clv,n,q[p̄] in terms of the cardinalities clvj ,n−lj+kj ,q−1[p̄

′] of Clvj ,n−lj+kj ,q−1[p̄
′] with the

summation taken over a certain subset of words p̄′. Using this relation we can inductively
calculate each clv,n,q[p̄] and then obtain the required clv,n,q by summation over different p̄.
It will be convenient to subdivide the sets Clv,n,q and Clv,n,q[p̄] into subsets indexed by the
edges starting at the vertex kv . For example, Cl

v
πj
7→vj ,n,q

is the subset of q-clusters formed by

linkages of length n between the pattern πj and a (q − 1)-cluster from Clvj ,n−lj+kj ,q−1. One
has

clv,n,q =
∑

16p1,...,pk6n,

st[(p1...pk)]=v

clv,n,q[p1 . . . pk] =
∑

16p1,...,pk6n,

st[(p1...pk)]=v

d
∑

j=1

cl
v
πj
7→vj ,n,q

[p1 . . . pk]. (2.4)

Therefore, it is sufficient to find recurrence relations expressing the terms cl
v
πj
7→vj ,n,q

[. . .] in

the right-hand side of (2.4) using clvj ,n−lj+kj ,q−1[...]. To avoid very cumbersome notation let
us take the case of a single edge starting at kv which is equivalent to fixing vj in the above

formulas. Let kv π
7→ lv′ be an edge in a graph G(Π) coming from a pattern π of length l and

let k and k′ be the lengths of the permutations labeling kv and kv′ respectively. To explain
our recurrence we need to introduce the following extra notation associated to π.

Let l > k+ k′ and let ψ ∈ Sk+k′ be the permutation which is the inverse of the standard-
ization of the k first and the k′ last entries of π and let ψ be the composition of ψ with the
shifting map shk,k′ 7→l : {1, . . . , k, k + 1, . . . , k + k′} → {1, . . . , k} ∪ {l − k′ + 1, . . . , l} defined
by the formula:

shk,k′ 7→l(j) =

{

j, if j 6 k,

j + l − k − k′ + 1, if j > k.
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In other words, ψ prescribes the rule how to write down the k first and the k′ last entries of
the pattern π in the increasing order:

{π(ψ(1)) < π(ψ(2)) < . . . < π(ψ(k + k′))} = {π(1), . . . , π(k)} ∪ {π(l − k′ + 1), . . . , π(l)}.

The following statement gives the required recurrence.

Lemma 2.5. The following relations hold:

• for l > k + k′ set π̃ = st[π(1) . . . π(k)π(l − k′ + 1) . . . π(l)]. Then

cl
v
π
7→v′,n,q

[p1 . . . pk] =
∑

pk+1,...,pk+k′ :

st[(p1...pk+k′)]=π̃

(

pψ(1) − 1

π(ψ(1)) − 1

)

×

×

[

k+k′−1
∏

j=1

(

pψ(j+1) − pψ(j) − 1

π(ψ(j + 1)) − π(ψ(j)) − 1

)

]

×

(

n− pψ(k+k′)

l − π(ψ(k + k′))

)

×

× clv′,n−l+k′,q−1[pk+1 − π(l − k′ + 1) + v′(1), . . . , pk+k′ − π(l) + v′(k′)]. (2.6)

• for l 6 k + k′ one has:

cl
v
π
7→v′,n,q

[p1 . . . pk] =

=
∑

pk+1,...,pl :
st[(p1...pl)]=π

clv′,n−l+k′,q−1[pl−k′+1 − π(l − k′ + 1) + v′(1), . . . , pl − π(l) + v′(k′)].

(2.7)

Remark 2.8. The range of summation in (2.6) can be easily derived from our convention on
the binomial coefficients claiming that

(

N

M

)

= 0 if either N < 0 or M > N . Moreover, we
assume that pj’s are pairwise different positive integers not exceeding n. For the induction
base we use the following initial data:

Clv,n,0 =

{

{1}, if v = 1 and n = 1,
∅, otherwise.

Proof. We show how to prove (2.6). In formula (2.6) one has the summation over all patterns
σ ∈ Cl

v
π
7→v′,n,q

such that the word (σ(1) . . . σ(k)σ(l − k′ + 1) . . . σ(l)) is fixed and coincides

with (p1 . . . pk+k′). Indeed, the numbers pj are ordered by the permutation ψ as follows:

pψ(1) < . . . < pψ(k+k′). Therefore, there are
( pψ(1)−1

π(ψ(1))−1

)

choices of entries less than pψ(1) among

the first l entries of σ; there are
( pψ(2)−pψ(1)−1

π(ψ(2))−π(ψ(1))−1

)

choices of entries greater than pψ(1) and

less than pψ(2), . . .; there are
( n−pψ(k+k′)

l−π(ψ(k+k′))

)

choices of entries greater than pψ(k+k′) among the

first l entries of σ; and clv′,n−l+k′,q−1[pk+1−π(l−k′ +1)+v′(1), . . . , pk+k′ −π(l)+v′(k′)] ways
to choose the remaining standardization of the last (n− l + k′) entries of σ.

In (2.7) the union of the k initial entries and the k′ final entries of π covers the whole list
of entries of π, i.e., the set {1, . . . , l}. Therefore, all binomial coefficients appearing in (2.6)
are equal to 1 which leads to (2.7).
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As an immediate consequence of Lemma 2.5 one can see that the numbers cl
v
π
7→v′,n,q

[. . .]

of (q+1)-clusters depend only on the length, the k first and the k′ last entries of π considered
as sets. This justifies the information we use as the edge labels of the graph G(Π). The
formulas expressing clv,n,q[. . .] in terms of cl q, q,q−1[. . .] depend only on the labeling of the
edges starting at kv . Therefore, these cardinalities can be computed by induction on q using
the edge labels of the graph G(Π). Finally, as we mentioned before, the set of all q-clusters
of length n of the whole collection Π is equal to the set Cl(1),n,q .

2.1 The case of a single pattern

Let us consider separately the situation when Π contains just a single pattern, since in this
case some simplifications of our construction can be done.

First of all the following observation explains why the graph G({π}) is not required.

Lemma 2.9. Let π be a pattern of length l and let (2l − k1),. . . ,(2l − kd) be the list of all
distinct lengths of possible self-linkages of π, i.e., k1, . . . , kd is the list of distinct lengths of
self-overlappings of π. Then G({π}) is a complete directed graph on d vertices with loops and
with lengths of the underlying permutations being equal to k1, . . . , kd. Each ordered pair of
(not necessary distinct) vertices of G({π}) are connected by exactly one directed edge labeled
by the corresponding initial and final subwords of π.

It is obvious that k1 = 1 and denote by k (k = kd) the length of the largest overlapping.
Let vs be the standardization of the ks first entries of π (i.e., vs is the labeling permutation
of the s-th vertex in G({π})). Since all patterns involved in any cluster coincide with π, the
standardization of the initial subword of any cluster is always the same. Hence for different
vs and fixed n and q all the sets Clvs,n,q coincide. Therefore, it makes sense to denote by
cln,q and cln,q[p1 . . . pk] the cardinalities of the set of q-clusters of length n and those having
(p1 . . . pk) as their initial subword respectively. We introduce the same set of notations for
the self-overlappings of π similar to what we have used in Lemma 2.5 for the case ks < l−k.

Namely, for l > k + ks let ψ ∈ Sk+ks be the permutation which is the inverse of the
standardization of the k first and the ks last entries of π; for l 6 k+ks let ψ be the inverse of
π. Let ψs be the composition shk,ks 7→l ◦ψs using which one gets the following rearrangement
of the first k and last ks elements of π in increasing order:

{π(ψs(1)) < π(ψs(2)) < . . . < π(ψs(k + ks))} = {π(1), . . . , π(k)} ∪ {π(l − ks + 1), . . . , π(l)}.

Additionally, let π̃s be the standardization of the k first and ks last entries of π.
In the case of a single pattern Lemma 2.5 implies the following result.

Lemma 2.10. For a single pattern the recurrence formula for the numbers of q-clusters is

the electronic journal of combinatorics 18(2) (2011), #P9 10



as follows:

cln,q[p1 . . . pk] =
∑

s :
ks<l−k

∑

16pk+1,...,p2k6n,

st[(p1...pk+ks)]=π̃s

(

pψs(1) − 1

π(ψs(1)) − 1

)

×

×

[

k+ks−1
∏

j=1

(

pψs(j+1) − pψs(j) − 1

π(ψs(j + 1)) − π(ψs(j)) − 1

)

]

×

(

n− pψs(k+ks)

l − π(ψs(k + ks))

)

×

× cln−l+ks,q−1[pk+1 − π(l − ks + 1) + vs(1), . . . , ps(k + ks) − π(l) + vs(ks), pk+ks+1, . . . , p2k]+

+
∑

s :
ks>l−k

∑

16pk+1,...,pl+k−ks6n,

st[(p1...pl)]=π

cln−l+ks,q−1[pl−ks+1−π(l−ks+1)+vs(1),...

...,pl−π(l)+vs(ks),pl+1,...,pl+k−ks ]
. (2.11)

(As above we assume that the set of 0-clusters contains the unique fictitious element of
length 1 while the set of 1-clusters contains the single pattern π.)

3 Application

In this section we discuss a specific class of collections of patterns. Our method from Section 2
allows us to construct a system of linear ordinary differential equations in variable x for the
cluster generating functions Πcl(x, t) together with a set of similar generating functions
associated to a given collection of patterns Π . The main definition is as follows.

Definition 3.1. A collection of patterns Π is called monotone if for all k > 0 and for each
pair of (not necessarily distinct) patterns (π, π′) from Π the existence of their k-overlapping
implies that the initial subword of the pattern π′ does not contain entries greater than k.

The following lemma explains how the monotonicity assumption simplifies the structure
of the set of clusters and their generating functions.

Lemma 3.2. Let σ be a linkage of a pair of patterns (π, π′). Suppose that the initial subword
of π of length k does not contain entries greater than k and that the initial subword of π′ of
length k′ does not contain entries greater than k′ (where k′ is the length of the overlapping of
the pair (π, π′) in σ). Then the initial subword of length k of σ is equal to the initial subword
of π, i.e., σ(j) = π(j) for 1 6 j 6 k.

Proof. Let l and l′ be the lengths of π and π′ respectively. Then the length of σ equals to
n = l + l′ − k′. Set j = π−1(1) and j′ = π′−1(1) respectively. The number j is the minimal
entry of π and therefore is less than or equal to k (j′ 6 k′ respectively). Therefore, σ(j) is
the smallest entry among the l first entries of the linkage σ and σ(n− l′ + j′) is the smallest
entry among the l′ last entries of σ. In particular, σ(j) < σ(n − l′ + j′). This implies that
σ(j) is the smallest entry in the whole of σ and hence σ(j) = π(j) = 1. Similar arguments
based on simple properties of standardizations imply that σ(π−1(2)) is the only entry in σ

greater than 1, etc.
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Lemma 3.2 implies that for an arbitrary vertex kv ∈ V(Π) all clusters in the subset
Clv,n,q always have v as their initial subword. This means that the number clv,n,q[p1 . . . pk] is
non-vanishing if and only if [p1 . . . pk] = [v(1) . . . v(k)], where k is the length of v. Consider
two vertices kv and lv′ of lengths k and k′ connected by an edge kv π

7→ lv′ in G(Π). We can
simplify formula (2.6) using our assumption on the intersections of clusters. At first consider
the case when the length l of the pattern π is greater than k+ k′. One observes that in this
case, there is no summation in (2.6) since the summands in the left-hand and the right-hand
sides of (2.6) are non-vanishing if and only if for 1 6 j 6 k one has that pj = v(j) = π(j) and
for 1 6 j 6 k′ one has that pk+j = π(l− k′ + j). Therefore, only the last binomial coefficient
in the product in the right-hand side of (2.6) is different from 1. Denote by m the maximal
entry of the final subword of π. (In notation of Lemma 2.5 we have m = π(ψ(k+k′)).) Since
we do not have to specify the arguments of the functions clv,n,q[. . .], the resulting recurrence
relation for the cardinalities of the set of clusters is:

cl
v
π
7→v′,n,q

=

(

n−m

l −m

)

clv′,n−l+k′,q−1. (3.3)

The case l 6 k+ k′ is also covered by (3.3) since in this case the maximal entry m equals to
the length l of the permutation π and the corresponding binomial coefficient is equal to 1.

Introduce the following family of generating functions:

yv(x, t) :=
∑

n,q

clv,n,q
xn

n!
tq,

one for each vertex kv of G(Π). Let kv π17→ lv1 ,. . . , kv πd7→ lvd be the list of all edges in V(Π)
starting at kv . Denote by lj the length of the pattern πj ; denote by kj the length of vj ,
and, finally, denote by mj the maximal entry among the kj last entries of πj . Formula (3.3)
implies the following reccurence relation:

clv,n,q =
d

∑

j=1

(

n−mj

l −mj

)

clvj ,n−lj+kj ,q−1; clv,n,0 =

{

1, v = 1

0, v 6= 1.
(3.4)

Theorem 3.5. Given a monotone collection of patterns Π one has that the cluster generating
function Πcl(x, t) = y1(x, t) together with all yv(x, t), kv ∈ V(Π) solve the following system
of linear ordinary differential equations in x:

dm

dxm
yv(x, t) = t

d
∑

j=1

dm−mj

dxm−mj

(

xlj−mj

(lj −mj)!

dkj

dxkj
yvj (x, t)

)

. (3.6)

Here m := max{mj} and kv runs over the set V(Π) of all vertices of G(Π). (Boundary
conditions for each yv(x, t) can be easily determined in each particular case using the initial
terms in (3.4).)

Proof. Follows from (3.4).
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Remark 3.7. As an immediate consequence of Theorem 3.5 one gets that Πcl(x, t) = y1(x, t)
satisfies a certain high order linear ordinary differential equation with polynomial coefficients
(which can be obtained from the above system after the elimination of all yv(x, t), kv 6= i1 .)

In particular, one can get the following simplification of Theorem 1.8 for monotone col-
lections of patterns.

Corollary 3.8. Two monotone collections of patterns Π1 and Π2 are strongly Wilf equivalent
if there exists a bijection ϕ : Π1 → Π2 preserving the first two properties as in Theorem 1.8
(i.e., preserving lengths and linkages) and, additionally, preserving the maxima of the over-
lapping sets. More precisely, for any pair (π, π′) of patterns π, π′ ∈ Π1 of lengths l and l′

respectively and an arbitrary positive integer k 6 min(l, l′) the coincidence of the standard-
izations st[(π(l−k+1) . . . π(l))] = st[(π′(1) . . . π′(k))] implies the coincidence of the maxima
of the sets:

max{π(l − k + 1), . . . , π(l)} = max{ϕ(π)(l − k + 1), . . . , ϕ(π)(l)}.

(Two other sets {π′(1), . . . , π′(k)} and {ϕ(π′)(1) . . . ϕ(π′)(k)} coincide with the standard set
{1, . . . , k} because of the monotonicity property.)

With this in mind one can add two more strongly Wilf equivalent patterns to the
pair (1.11) discussed in the introduction. Namely,

143265987 ∼W 134265897 ∼W 143256987 ∼W 134256897.

3.1 Case of a single monotone pattern

Let us present further simplifications for monotone collections with a single pattern. As it was
shown in Section 2.1 we do not really need the graph G(Π) for collections with one pattern.
Take a monotone pattern π of length n and let 1 = k1 < . . . < kd = k be the list of all different
lengths of self-overlappings of π. Let π(l) = m1 6 . . . 6 md = m be the list of maxima among
the corresponding number of the last entries of π, i.e., mj := max{π(l − kj + 1), . . . , π(l)}.

Corollary 3.9. Given a monotone pattern π, one has the following recurrence formula for
the set of its q-clusters of length n:

cln,q =
d

∑

j=1

(

n−mj

l −mj

)

cln−lj+kj ,q−1.

Further, its cluster generating function y1(x, t) = Πcl,{π}(x, t) solves the linear ordinary
differential equation:

dm

dxm
y1(x, t) = t

d
∑

j=1

dm−mj

dxm−mj

(

xl−mj

(l −mj)!

dkj

dxkj
y1(x, t)

)

, (3.10)

with the boundary conditions: y1(0, t) = 0, y′1(0, t) = 1, y′′1(0, t) = ... = y
(m−1)
1 (0, t) = 0.
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Two particular cases covered by this corollary, namely the pattern (12 . . . l) and an ar-
bitrary pattern of the form (1 . . . a) having no nontrivial self-overlappings were considered
earlier in [5].

Finally, using these considerations we can completely describe which permutations of
length 5 (π ∈ S5) are Wilf equivalent. Our main Theorem 1.8 gives necessary and sufficient
condition for Wilf equivalence of two patterns of length 5. Notice that there are two natural
transformations of patterns preserving the cluster generating functions. The first one is the
reversion that rewrites a pattern backwards, i.e., it sends (π(1), . . . , π(n)) to (π(n), . . . , π(1)).
The second one takes the complement of a pattern, i.e., it sends (π(1), . . . , π(n)) to (n −
π(1)+1, . . . , n−π(n)+1). They generate the group Z2×Z2 acting on S5. One can easily check
that this action has 32 orbits of which 4 orbits with representatives 12345, 14325, 21354, 25314
have length 2 and the remaining 28 have length 4. Additionally, there are 14 orbits whose
permutations have no nontrivial selp-overlappings; 15 orbits with the only nontrivial self-
overlapping of length 2; 2 orbits with the only nontrivial self-overlapping of length 3, and
a single orbit with self-overlappings of length 2, 3 and 4 (see the lists of representatives in
Proposition 3.11).

Proposition 3.11. Subdividing the representatives of the Z2 × Z2-orbits on S5 into subsets
according to the lengths of their maximal possible self-overlappings, one gets the following:

• Wilf equivalent orbits having no nontrivial overlappings are enumerated by their first
and last elements:

13452 ∼W 13542 ∼W 14352 ∼W 14532 ∼W 15342 ∼W 15432;

12453 ∼W 12543; 12354 ∼W 13254; 21354 ∼W 21534; 24153 ∼W 25143.

• among all 15 orbits with only 2-overlappings having the representatives

12435, 12534, 13425, 13524, 14325, 14523, 15324, 15423, 15234,

21453, 21543, 23514, 24513, 25314, 25413

no two are strongly Wilf equivalent to each other;

• 2 orbits with representatives 14253, 15243 having 3-overlappings are not Wilf equivalent;

• the unique orbit with overlappings of lengths 2, 3 and 4 is represented by the monotone
pattern 12345.

Proof. Besides the application of Theorem 1.8 one has to check by hand that the number of
3-clusters is distinguishing all the 15 orbits with only 2-overlappings and that the number of
2-clusters already distinguishes between the two orbits having only 3-overlappings.
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3.2 Examples of differential equations

Let us finish the paper by presenting the (system of) linear differential equations for our
examples in Fig.1. One can easily check that all the collections Π1 − Π4 shown there are
monotone. Set π1 = 1342765 and π2 = 152364 for Π1 and notice that its graph contains a
single vertex. Then, in the above notation, one has l1 = 7, m = m1 = 5, l2 = 6, m2 =
4, k = 1. Equation (3.6) for the cluster generating function y1(x, t) then takes the form:

yV
1 = t

(

x2

2
y′1 +

d

dx

(

x2

2
y′1

))

.

For the collection Π2 = {132679485} that has self-overlappings of lengths 1 and 3 one has
l1 = 9, k1 = 1, k = k2 = 3, m1 = 5, m = m2 = 8. With this data, equation (3.10) takes the
form:

yVIII
1 = t

(

d3

dx3

(

x3

3!
y′1

)

+ xy′′′1

)

.

For the collection Π3 = {1576243, 13254}, denote its edges by A = ({1}, {3}, 7), B =
({1}, {4}, 5), C = ({1}, {2, 3, 4}, 7) and D = ({1, 2, 3}, {4}, 5). Then, one has lA = 7, kA =
1, mA = 3; lB = 5, kB = 1, mB = 4; lC = 7, kC = 3, mC = 4; lD = 5, kD = 1, mD = 4. Thus,
one gets the following system of equations:

{

yIV
1 = t

(

d
dx

(

x4

4!
y′1

)

+ xy′1 + x3

3!
y′′′132

)

,

yIV
132 = txy′1.

In this case it is easy to get a linear ordinary differential equation satisfied by y1 by
dividing both sides of the first equation by x3

3!
, differentiating the result with respect to x

and equating the expressions for yIV
132 from the first and second equations. The resulting

equation has the form

6

(

x3yV
1 − 3x2yIV

1 − tx3

(

x4

4!
y′1

)′′

+ 3tx2

(

x4

4!
y′1

)′

− tx3(xy′1)
′ + 3tx3y′1

)

− tx7y′1 = 0.

Finally, for the collection Π4 = {12534, 132465}, denote its edges by A = ({1}, {4}, 5);
B = ({1}, {5}, 6); C = ({1}, {3, 4, 5}, 5); D = ({1}, {4, 5, 6}, 6); E = ({1, 2, 3}, {5}, 6), and
F = ({1, 2, 3}, {4, 5, 6}, 6). Then, one has lA = 5, kA = 1, mA = 4; lB = 6, kB = 1, mB = 5;
lC = 5, kC = 3, mC = 5; lD = 6, kD = 3, mD = 6; lE = 6, kE = 1, mE = 5; lF = 6, kF =
3, mF = 6. Thus, one gets the following system of equations:

{

yVI
1 = t

(

d2

dx2 (xy′1) + d
dx

(xy′1) + yIV
132 + y′′′132

)

,

yVI
132 = t

(

d
dx

(xy′1) + y′′′132

)

.

Let us extract from this system a linear ordinary differential equation satisfied by y1. To
simplify our notation set u = y′1, v = y′′′132. Then we get the system:

{

uV = t
(

(xu)′′ + (xu)′ + v′ + v
)

,

v′′′ = t ((xu)′ + v) .
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Since the coefficients in the left-hand sides are both equal to 1, we can eliminate v by
differentiating the first equation a number of times and substituting v′′′ from the second
equation till we can solve both equations for the remaining v and its derivative of appropriate
order. In our concrete case, differentiating the first equation twice and substituting v′′′ from
the second equation, we get

{

uVII = t((xu)IV + (xu)′′′ + t(xu)′ + tv + v′′),
v′′′ = t ((xu)′ + v) .

Differentiating the first equation in the latter system once and substituting v′′′ again, we get

{

uVIII = t((xu)V + (xu)IV + t(xu)′′ + t(xu)′ + t(v′ + v)),
v′′′ = t ((xu)′ + v) .

Finally, equating the expressions for v + v′ from the first equation in the latter system and
from the original equation for uV we get the following equation

uVIII − t(xu)V − tuV − t(xu)IV + t2(xu)′′′ − t2(xu)′′ + t3(xu)′ − t2(xu)′ = 0

containing u and its derivatives only. Substituting u = y′1 we obtain the required equation

yIX
1 − t(xy′1)

V − tyVI
1 − t(xy′1)

IV + t2(xy′1)
′′′ − t2(xy′1)

′′ + t3(xy′1)
′ − t2(xy′1)

′ = 0

for the cluster generating function.

Remark 3.12. Notice that since the leading terms in the left-hand sides of system (3.6) are
always equal to 1 elimination process similar to the one just described will always lead to an
equation satisfied by the cluster generating function Π(x, t). On the other hand, there is no
guarantee that the obtained linear ordinary equation with polynomial coefficients will have
the minimal possible order among such equations satisfied by Π(x, t).
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