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Abstract

We view a linear code (subspace) C' <! as alight pattern on the n-dimensional
Berlekamp Board T with ¢" light bulbs. The lights corresponding to elements of
C are ON, the others are OFF. Then we allow axis-parallel switches of complete
rows, columns, etc. We show that the dual code Ct contains a vector v of full
weight, i.e. v1,v9,...,v, # 0, if and only if the light pattern C' cannot be switched
off. Generalizations of this allow us to describe anti-codes with maximal weight ¢
in a similar way, or, alternatively, in terms of a switching game in projective space.
We provide convenient bases and normal forms to the modules of all light patterns of
the generalized games. All our proofs are purely combinatorial and simpler than the
algebraic ones used for similar results about anti-codes in Z} . Aside from coding
theory, the game is also of interest in the study of nowhere-zero points of matrices
and nowhere-zero flows and colorings of graphs.

1 Introduction

Berlekamp’s Switching Game was invented in the 1960s by Elwyn Berlekamp. The single-
player game is played on a matrix of 10 x 10 light bulbs. An initial light pattern is set
up, using 10 x 10 individual hidden switches. Then one has to switch off as many lights
as possible using 10 row and 10 column switches, which invert the state of each bulb
in the corresponding row or column. The smallest possible number of remaining burning
lights, if one starts from a worst case initial pattern, is the covering radius of the binary
code generated by row and column switches; see, e.g., [FiSl, CaSt, RoVi|. Actually, this
binary Berlekamp Code was a main motivation for the study of the game so far.
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In this paper, we will examine a very different connection to coding theory and new
game-theoretic questions. We are interested in the question if a given light pattern can
be switched off completely or not, since this switchability will turn out to be important
in applications. We work in a more general framework, and consider an n-dimensional
version of Berlekamp’s game with ¢ x ¢ x --- X ¢ many light bulbs. Here, we restrict ¢ to
prime-powers, so that we can identify the light bulbs with the points in the vector space
F,". This will enable us to use some linear algebra arguments. Furthermore, we do not
just allow the 2 states ON and OFF for any of the ¢™ light bulbs. It is more general to
examine a modulo r version, with Z, := Z/rZ as the set of possible states of a light bulb.
We even allow r =0 with the integers Z, := Z as the set of possible states of the points
v e B A (light) patterns is a map U: F' — Z,, and an elementary move increases
or decreases the state of the bulbs along an axis-parallel affine subspace of dimension m .
Already the axis-parallel affine m-dimensional subspace may be called elementary move or
m-move. For example, if (n,q,m,r) = (3,7,2,0) then (x,5,%):={(z,5,y) | =,y € K} is
an elementary 2-move on the 3-dimensional board F’ over I . Application of this move
transforms a pattern U: Fy —» Z, either into U+ (x,5,%) orinto U—(x*,5, ), as we will
write it. So [U =+ (x,5,%)](1,5,3) = U(1,5,3) =1, but [U + (x,5,%)](1,6,3) = U(1,6,3).
In Berlekamp’s original version of the game (n,q,m,r) was (2,10,1,2). We call the
generalized game Berlekamp or Affine Berlekamp modulo r of order q and dimension
n with m-mouves, for short AB""(I,) .

Switchability is connected to linear anti-codes. A linear anti-code of length n over
[, is simply a linear code, i.e. a subspace, U < F,". The prefix “anti” just expresses
that we are not interested in the minimal weight, but in the mazimal weight ¢, i.e.,
the maximum of the weights w(u) := |supp(u)| over all elements u € U. Codes with
low maximal weight § can be used to construct information-theoretically good codes,
i.e. codes with big minimal weight, see [MWS, Chapter 17 §6]. We investigate the dual
mazimal weight, which would be the maximal weight of the dual (orthogonal) code U*.
Our discovery is that, if we view a subspace U < F;' as a 0-1 pattern on the board F;',
U can be switched off with m-moves if and only if its dual maximal weight is at most
n — m. More precisely, it will turn out that U can be switched off modulo r if and
only if it can be switched off modulo any other »’, provided that r and 7’ do not divide
|U| . We just use the term m-switchability when we refer to any of these equivalent cases,
including the case r =10.

We hope that the new connection from anti-codes to Berlekamp’s Game will lead to
new insights about liner codes, and that the game can become a useful tool in coding-
theory. One case of particular interest was already investigated in our paper [Sch1]. There,
we examined the existence of full weight vectors in codes that arise from graph theory.
Using the connection to Berlekamp’s Game, we saw that a graph G has a nowhere-zero
k-flow if and only if the Z;-bond space of G cannot be switched off. The graph G has a
vertex coloring with £ colors if and only if a certain corresponding code over Zj; cannot
be switched off. Similar statements could be proven for Tait colorings and for nowhere-
zero points of matrices. We also introduced normal forms to equivalence classes of light
patterns, and obtained new equivalents for the existence of full weight vectorsin U*. This
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led to new equivalents, e.g., for the Four Color Problem, Tutte’s Flow Conjectures and
Jaeger’s Conjecture. Two of our equivalents for colorability and existence of nowhere zero
flows of graphs included as special cases results by Matiyasevich, by Balazs Szegedy and by
Onn. Alon and Tarsi’s sufficient condition for vertex colorability also arose, remarkably,
as a generalized full equivalent. In our present paper, we do not deal with such graph-
theoretic problems, and there are also three main differences on the game-theoretic side:

1. Here, we work over F;' as board, which requires ¢ to be a prime-power. In [Schl],
we worked over the board Z;', with no further restriction on % .

2. In the present paper, we present simple combinatorial proofs. In [Schl], over the
rings Zj; , more complicated algebraic proofs where required.

3. In [Schl], we restricted ourselves to the case m = 1. The treatment of the general
case would have been possible, but would have made the algebraic proofs there even
more complicated.

Based on our study of the vector space F,' as board of the game, we may also wonder
if the game can be transferred to finite projective spaces, with one light bulb at any
projective point. We are only interested in the switchability of subspaces U of F,
and they correspond to subspaces U' of PG,_;(F,) := PG(E,;"). Therefore, one might
expect that it is straight forward to find an equivalent game in projective space. However,
our moves in AB"~"™(F,) are usually not linear subspaces, and in the construction of
PG, 1 out of F' one just discards the zero 0 € F;'. Therefore, on one hand, there
are some difficulties in constructing a projective equivalent, but, on the other hand, if
the game on PG, _;(F,) just would be a straight copy of the game on F,', it would
not be very interesting. We will work out a simple and nice definition of the allowed
moves in Projective Berlekamp. Our projective m-moves will be switches of subspaces
of PG, _i(F,) that run through at least m of the n coordinate axes (e;), (es), ...,
(en) , viewed as independent projective points in PG, _;(F,). Over finite fields F, with
more then 2 elements, ¢ > 2, our new Projective Berlekamp PBffl’m(Fq) will turn out
to be an equivalent to Affine Berlekamp AB! "™ (F,). Hence, U' can be switched off in
PB"~"™(F,) if and only if U' has maximal weight at most n —m.

With the described connections to anti-codes, our Berlekamp Games have the potential
to become a helpful tool in coding theory and combinatorics. At least, we think that they
are simple enough to be attractive. One thing that has already proven to be useful,
are normal forms to the equivalence classes of switchable patterns. In [Schl], we even
provided some formulas to calculate them (for m = 1). In this paper, we do not look
at these formulas, but we present generalized normal forms for arbitrary m. Also of
interest may be the connection to the Combinatorial Nullstellensatz, which can be proven
using a kind of Berlekamp Game, see [Sch2, Section 7]. The connection to the polynomial
manipulation techniques in this paper was, in fact, the starting idea behind our first paper
about Berlekamp’s Game [Sch1].

We formally introduce Affine Berlekamp in the next section, Section 2. In Section 3,
we work out the connections to coding theory. This study of linear subspaces (linear
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codes), as light patterns, will lead the way to projective spaces and Projective Berlekamp,
which we examine in Section 4.

2 Affine Berlekamp

We start here with a more general situation than described in the introduction. We take
any finite set I (of light bulbs) as board, and any system M C Z! of (light) patterns (i.e.
maps U: I — Z, ) as our collection of elementary moves:

Definition 2.1 (General Berlekamp). A pair (I, M) of a finite set I and a system
M C Z! of patterns is a (General) Berlekamp on the board I. The elements of M are
its (elementary) moves. The elements of its Z-linear span (M) < Z' are its switchable

patterns or composed moves, they can be switched off by a sequence of moves. By replacing
Z =: Zy with Z, :=Z/rZ, we obtain (I, M), , (General) Berlekamp modulo r .

In what follows, we mostly work over Zy = Z and may interpret the results modulo
r afterwards. We identify subsets U C I with their characteristic functions I — {0,1}

as 0-1 light patterns, i.e.,
1 ifvelU
Uv) = ’ 1
(v) {0 if vgU. (1)

This is used extensively. It simplifies notation, but can lead to unusual expressions. For
example, the one-point sets {v} (v € I') are also viewed as 0-1 patterns

{v}: I —{0,1}, ur— {v}(u) . (2)

These one-point sets form the standard basis of Z.

Based on General Berlekamp we can now introduce Affine Berlekamp, and later Pro-
jective Berlekamp. For Affine Berlekamp on boards of the form [ :=1; x I x --- x I,
or I := Z; see [Schl]. Here we only study the n-dimensional ¢ x ¢ x --- X ¢ board
I := F;". This board carries the structure of a vector space, an F,-modulo. Since the
set of light patterns Z’ is also a module, this time over Z as ring of scalars, we have
to be careful with the notation. Subsets of [ are usually viewed as 0-1 patterns in
Z' and added in (Z',+), while elements of I = F;" or a combination of one element
and one subset of F,' are always added in (E',+), e.g. (0,1) + (1,0) = (1,1) but
{(0,1)} + {(1,0)} = {(0,1),(1,0)}. Similar rules are used for the two scalar multiplica-
tions. The two linear spans are denoted differently. We use (...) in the module Z’ and
(...) in the vector space F,'. With this notational basis, we define:

Definition 2.2 (Affine Berlekamp). We write AB™™ = ABj"™(IF,) for the Berlekamp
(F', AM,,) — called Affine Berlekamp with m-moves — where AM,, is the set of all
affine axis-parallel m-dimensional subspaces v + (ej,, €j,,...,¢e;, ) of F'. In the modulo
r case, with Z, := Z/rZ in the place of Z =: Zy, we write AB}"" with r as index.
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We also provide a simpler notation for moves. If v € F’ and J C {1,2,...,n}, we
set
vlJ == v+ (e;) where e;:={e;|j€J} . (3)

For example, an elementary 3-move trough a point v = (v1,vs,...,vs) in Ef parallel to
3 axes (ej),say j € J:={2,4,5}, may be written as

UrJ = (Ul,*,?}3,*,*,?}6) = {’Ul} X Fq X {U3} X Fq X Fq X {’Us} . (4)
2,0 O 6 Two moves are highlighted:
1 [O o lo (x,1) = (0,1)1 := (0,1)[{1} = B x {1} as a 0-1 pattern,
oo olo (2,%) = (2,0)]2 = (2,1)2 = {2} x B as a 0-1 pattern.
'l

Figure1: AB*'(E)

0 7 O ©)

Figure 2: The basis vector By, :=
es| ker(es) = (0,0,1)1{1,2} over B

The patterns
By, = vlker(v) with ker(v) := {jjv; =0} = {1,2,...,n}\supp(v) , (5)

where v = (v1, vg,...,v,) runs through F," (see Figure?2), form a basis By of the module
of all light patterns Z%. Indeed, the change of bases matrix from B, to the standard
basis {{v} | v € F'} is triangular with ones on the diagonal. We just have to choose a
suitable linear ordering on the set F," of indices of the two bases, in order to turn them
into appropriately ordered bases. We do this by selecting the linear order < on F," such
that the weight function w: v — w(v) = n— |ker(v)| becomes a monotonous decreasing
function, i.e.

w(v) > w(v') < |ker(v)| < |ker(v))] = v<o . (6)

In this way, By, = v[ker(v) only contains elements u that come before v (u < v),
ensuring zeros below/above the diagonal. We even see that, for any k < n,

(BsFy = ({v} | v e, with |ker(v)] <k > , (7)
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where
Bs* == {By, ! veF with |ker(v)] <k} . (8)

This basis has the advantage that it contains a basis of the submodule of all
m-switchable light patterns,

(Bz™) = (AM,.) , 9)

where B;™ is analogues to B3* above. This is easily verified: To prove the inclusion
(BZ™)y D (AM,,), let v]J € AM,,. We may assume [J| = m > 0 and n € J
as the case m = 0 is trivial. Now let v := (vy,v9,...,0, 1), then ¢'[(J\n) is an
(m—1)-dimensional move on the (n—1)-dimensional board. Using an induction argument,
we realize that this move is a linear combination of certain By (y, ..., ;) With at least m—1
zero entrees wu; . The corresponding linear combination of the extended By (y,, . u,_,0) €
BOZm is then equal to v[.J, so that (BOZm) D AM,,. The opposite inclusion can be
proven similarly. Actually, any axis-parallel affine subspaces of dimension at least m is
m-switchable, and this is just a special case of our Lemma 3.1 further below.

The existence of a basis with the described properties has an important consequence:

Theorem 2.3. The Z-submodule of all switchable patterns in AB™™(F,) is saturated,
i.e., its elementary divisors are units. In particular, if the multiple 2U: v — zU(v)
(z € Z\O ) of a pattern U can be switched off, then U can be switched off.

Our two-tier basis By = By™ W Bs™ also gives rise to a normal form N: U —
N§*(U) to the equivalence classes of patterns U € Z%' | where two patterns are equivalent
if there is a sequence of m-moves that transforms one into the other:

Theorem 2.4. The Z-submodule {{v} | |ker(v)| < m) = (Bs™) < Z% of all those
patterns U: B, — Z which are zero on all (n—m)-dimensional coordinate subspaces
(€, €4ys vy )y < B, is a complement to the Z-submodule of all m-switchable patterns

(AM,) = (B;™),
({v} | [ker(v)| < m) & (AM,,) = YA

In particular, {{v} | |ker(v)] <m) is a set of representatives NJ"(U) to the equivalence
classes U+ (AM,,,) € Z%/{AM,,) of patterns U € Z% with respect to m-switches.

If we want to transform a pattern U: z — U(z) into its normal form N{*(U), there
is an easy way to do so. Just select a point = € supp(U) with maximal |ker(z)| and
then switch (increase) By, exactly —U(x) many times, provided that |ker(z)| > m so
that By, is m-switchable. (If —U(x) < 0 this means to decrease By, exactly U(z)
many times.) Afterwards, U(x) = 0 and, aside from this value, only values U(y) with
|ker(y)| < |ker(z)| have changed. We have eliminated x from supp(U) without adding
points y that are “as bad as x”. Repeating this step as long as possible, we will finally
reach a cleared out U with |ker(z)| < m for all x € supp(U), i.e. the initial U was
transformed into its normal form in {{v} | [ker(v)| <m}).
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If we look a bit closer to what happens in each modification step of this procedure,
we see that only values U(y) with ¥|supp(z) = T|supp(z) are modified. So, if we start with
a single point pattern U := {u}, any subsequently switched light y coincides with u on
supp(u), y; = u; for all j with u; # 0. From this we can deduce the following lemma,
which we will need in the section about Projective Berlekamp, Section 4:

Lemma 2.5. For any u € F,", we have supp(NJ*({u})) C ulker(u). In other words, if
u; #0 fora je{1,2,...,n}, then all x € supp(N§*({u})) fulfill x; =u; .

3 Switchable Codes

This section describes the connection between the mazimal dual weight of a code U < F',
i.e. the maximal weight w(v) of elements v of Ut := {v | (v-u)=0 forall uc U},
and the m-switchability of U as 0-1 pattern in AB}™(F,). We will need the simple
observation that the m-switchable subspaces of F," form a filter in the subspace lattice
of F':

Lemma 3.1. If an subspace U < F', as 0-1 pattern in ABP™(F,), contains an
m-switchable subspace, then it is m-switchable itself. In particular, this holds for the
coordinate subspaces (€j,, €y, ... €5 ), J1 <Jo <+ < Jm:

€1y €jnr- -1 €j, €U = U is m-switchable.

Proof. Let W be the m-switchable subspace of U, then U can be decomposed into affine
subspaces of the form u 4+ W. Since these shifted copies of W are still m-switchable, U
can be switched off piecemeal. O

We will also need the following well-known fact:

Lemma 3.2. Let U < F,' be a proper subspace of codimension s :=n—dim(U). Then U
is contained in ¢*~'+¢* "2+ -+¢° many hyperplanes H > U, and each point v € F,'\U
outside of U is contained in ¢* 2+ q* > +-+-+¢° many of them. In particular,

¢'U + (q5—2+...+q0)]Fqn = Z{H > U | H is hyperplane } .

Based on these lemmas, we can now prove our core theorem:

Theorem 3.3. For subspaces U <F', m € {1,2,...,n—1}, and r € {2,3,4,...} not
dividing |U|, the following are equivalent:

(i) Ut has mazimal weight at most n—m .
(i1) U can be switched off with m-moves.

(ii1) U can be switched off modulo r with m-moves.
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Proof. The implication (ii) = (i7i) is trivial. In order to prove (i) = (i), assume
that U' contains a vector f with less than m zero entrees f; = 0. Obviously, f*
contains U and is disjoint to the hyperplane fy + f*, where we are choosing f, ¢ f*.
In particular, our initial light pattern U has |U| many burning lights in f, and none
in fo + f+ This makes a difference of |U|,

> Uw) - Y Uw) = Ul #0 (modr) . (10)
vefl vE fot+fL
If we now perform an elementary m-dimensional switch v[{ji,j2,...,Jm}, each of the

two sums in this difference changes by +¢™ !, since the hyperplane f* is not parallel
to m many coordinate axes (e;) at a time, as

(f-ej) = f; =0 for less then m indices j. (11)

Therefore, the difference will not change, even if we perform a whole sequence of elemen-
tary moves. It is invariant and will never become zero. In particular, it is not possible to
switch off all lights.

It is left to prove (i) = (i) . The case U =, is trivial, F;" is always switchable.
If U+ > {0} has maximal weight at most n — m, then every hyperplane H > U
also has the property that its orthogonal space H* < U' has maximal weight at most
n —m. Hence, if H" = ((fi, f2,.--, fa)), then f; = 0 for (at least) m indices j,
say Ji,J2,---,Jm , and this means that e; ,ej,,...,¢e;, € H. Therefore, by Lemma3.1,
H can be m-switched, i.e., each hyperplane H > U can be m-switched. However, by
Lemma3.2, ¢°dm™@)-11J is basically the sum of these hyperplanes; only the full space F,'
has to be subtracted several times. Therefore, ¢®°d™U)=11/ ig switchable, and this implies
that U is switchable, as, by Theorem 2.3, the Z-submodule of all switchable patterns is
saturated. O

This theorem also follows from the following somehow interesting observation, for
which we have currently no further application:

Theorem 3.4. For given 0 <m <n, set co:=1, c1,¢9,...,¢pn1:=0 and recursively
define ¢; == — Z;;B ¢ (;) for i=m,m+1,....n. Hence, for m=1, (c;) = ((—1)").
Let U <K, be a subspace with dual mazimal weight at most n—m . Then ¢
can be switched off by adding for each subset E C {ej,eq,...,e,} with |E| > m the
m-switchable subspace (UUE) ezactly c,, g UYE) any times, followed by switching

the full board ¥ a multiple of g many times. More formally,

codim(U) U

Z Cm qcodim(UUE> <UU E> = 0 (mod qEIn) :

Eg{ela-“:en}

where the summand with E =) is the initial pattern U, those with 0 < |E| < m have
vanishing coefficients, and those with |E| > m are trivially m-switchable.

Proof. We may assume U < F;" , as the case m = n is trivial. Since U has dual maximal
weight at most n—m , every hyperplane H > U has dual maximal weight at most n—m
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as well. Hence, if H = (f1, fa,..., fa)", then (fi, fo,..., f») has maximal weight at most
n—m,and f; =0 for at least m many indices j € {1,2,...,n}. This means that

i == |ENH| > m , where &:={e1,ea,...,e5} . (12)

Hence, the recursive definition of ¢; applies and

i—1
Z Cp = ci—l-ch(;.) =0 forall He Hy:={H >U | H is hyperplane}, (13)
ECENH =0

so that, by Lemma 3.2,

; (¢17")
Y e @@ ™UYENTUE) =T > ey > qH = > [ e laH = 0. (14)
ECE ECE HeHy HeHy FECE
HDE ECH

4 Projective Berlekamp

We want to introduce Projective Berlekamp in a way that describes the connection to
Affine Berlekamp as directly as possible, so that we can easily transfer results from one
game to the other. For this reason, we will have to study homotety-invariant patterns in
Affine Berlekamp, i.e. patterns U: F," — Z with the property

MU = U forall A€ E\O, (15)

where

MU (A\v) := U(v) forall v e, . (16)

Such patterns U can easily be viewed as patterns U' on the projective board PG,, (F,) .
Just assign to the projective point (v) # {0} the value U'((v)) := U(v) . However, what
shall happen with the value U(0) of 0 € F," ? Well, for the time being, let us try to loose
no information. Let us introduce in Projective Berlekamp an additional light, the counter,
corresponding to the 0 in F'. We represent this counter by the subset {0} C F, so
that we can define an extended projective board PGC,,_,(F,) as the set

PGC, 1 (F) = {()|ve R}, (17)

and define the projective copy U': PGC,,_(F,) — Z of a homotety-invariant pattern
U: Fq" — 7 via

U'((v)) := U(v) forall v €, including v =0. (18)

If the homotety-invariant pattern U is given as a subset, respectively a subspace, of F',
then we also call U' a subset, respectively a subspace, of PGC,, 1(F,). Our definition
describes a bijection between homotety-invariant patterns in Affine Berlekamp AB"™ and

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P10 9

Ul
Panl

PGC, 1

Ul



patterns in Projective Berlekamp with counter, PBC;’_l’m, as we will write. However, the pBCz 2™

moves also should go well together. The moves in Affine Berlekamp do not run through
the point of origin 0 in general, but we will show that we can restrict ourselves to moves
that are vector subspaces of F;'. With this insight, it will be straight forward to define
the moves in PBCI "™ and its version PB” "™ without counter. Several examinations
are required to reach this point. We start with the following simple lemma:

Lemma 4.1. For (c,) € Z% and A € F\O holds:

U= ¢By, = MU= c-1,B, .

vely" vely

Proof. We prove this pointwise:

MUOw) € U@w) = 3 eBo(u) = 3 e Bopo () = [Z CA_leO,w] Ow) . (19)

velly vely welly
U

With this we can prove the following version of our Theorems 2.3 and 2.4 for homotety-
invariant patterns:

Theorem 4.2. The pattern B<0> = By, = Fq" together with the q;:—_ll many patterns

Z BO AU — <{U} U 6ker (v) > <€ker (v) > thh e PGn 1( )

XEF\O

form a basis B of the module Z% of all homotety-invariant patterns over F,'.

The Z-submodule of m-switchable homotety-invariant patterns on B, is spanned by
B=™ := {Byy | vel with |ker(v)]>m }. A complement, inside the Z-module of
homotety mvamant patterns, is given by ( N0 | |ker(v)| < m), which is also spanned
by B<m . B \ B>m

Proof. The linear independence of B follows from the fact that the different B(U> bundle
together disjoint sets of base vectors By, , as (v)\0N{(w)\0 = 0 if (v) # (w) . To verify
the generating property, let U = > ¢,By, be homotety-invariant, then ¢, = ¢, for all
v eF, and X € F\0, by Lemma4.1, so that we may define ¢y := ¢, for all v € F".
With this definition,

U = coBoo + Z Z cwBow = @B Z ; (20)

< >€PGn 1 ’LUE< >\0 )EPGn 1

which shows that our basis generates all homotety-invariant patterns. Moreover, if U is
m-switchable, i.e., if all coefficients ¢, with |ker(w)| < m are zero, then all ¢, with
|ker(v)| < m are zero as well, and U € (B>™) . Hence, B>™ spans the whole submodule
of m-switchable homotety-invariant patterns, but also not more. It obviously has (B<™)
as complement, which is equal to {(v)\0 | |ker(v)| < m), in analogy to Equation (7). O
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From this follows the following corollary, which gives us a first idea about how to
define the moves in Projective Berlekamp:

Corollary 4.3. Fach of the following sets of m-switchable subspaces generates the com-
plete set of all m-switchable homotety-invariant patterns:

(i) The By := <{v} U eker(v)> and <eker(v)> with v € F' and |ker(v)| > m.
ii) The U <T," of dimension m or m-+1 that contain at least m coordinate azxes.
q

(iii) The U < T, of dimension n—1 or n that contain at least m coordinate azes,
provided r 1S non-zero and coprime to q .

Proof. We work here only with subspaces that contain at least m coordinate axes and are
m-switchable. Therefore, we only have to see that all m-switchable patterns are actually
generated by these systems of m-switchable patterns.

In the case of the first system of patterns this is obvious. We know that the patterns
B,y with |ker(v)| > m form a generating system, and each B, (except B, ) is the
difference of two elements, B,y and <eker(v)> , in our first system (B<0> = B ).

To prove that the second system is generating, it is enough to show that it generates
all subspaces which contain m coordinate axes, and, in particular, those in our first
generating system. We show this by induction. Assume that we have already proven that
subspaces of dimension s and s + 1 which contain m coordinate axes are generated,
and let V' be a subspace of dimension s+ 2 > m + 2, containing m coordinate axes.
Select any subspace V' <V of dimension s, containing m coordinate axes. Then V'
and all spaces H between V' and V, V! < H <V, have dimension s or s+ 1 and
are generated by our system. It follows that V' is generated, because V 1is a linear
combination of these spaces, as

v +V = Y{H|V'<H<V}, (21)

by Lemma3.2, assuming that, w.l.o.g.,, s+2=n, V=F".

The last generating property over AB"™ follows with exactly the same inductive ar-
gument, just top down. If V' is a given s-dimensional subspace containing m coordinate
axes, then ¢V’ is a linear combination of a fixed V' > V' of dimension s+ 2 and all H
between V' and V', as above. To show that V”’, and not just ¢V’, is generated, we need
1 to be a multiple of ¢, i.e., we need to play modulo r (coprime to ¢ ). O

With this, we are prepared to define Projective Berlekamp with Counter on the board

PGCp () = {(v) v €'} = PG () 9 {(0)} (22)
and Projective Berlekamp on the projective space PG, () :
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Definition 4.4 (Projective Berlekamp). We write PBC"™'™ = PBC{~""™(F,) for pci—tm
the Berlekamp (PGC,_(F,), PM,,) — called Projective Berlekamp with Counter and PMm,
m-moves — where PM,, is the set of all subspaces U' < PBC, (F,), i.e. U < F,
which contain at least m of the projective points (e1), {es), ..., (e,) — called azes.

We write PB" 5™ = PB{~""(F,) for the Berlekamp (PG,_(F,),PM,,) —called ppz-tm
Projective Berlekamp with m-moves — where PM,, is defined as before, but we ignore
the counter {0} and view the moves U' as subsets of PG, {(F,), and as 0-1 patterns
U': PG, () — 7.

In the modulo 7 case, with Z, := Z/rZ in the place of Z =: Z, , we write PBC" ™ ppcp="'m
respectively PB” " with r as index. pR7—Lm

Since we derived our definition from Corollary 4.3, we see that PBC"™""™(F,) is basi-
cally the same as AB"~""(F,) restricted to homotety-invariant patterns. We have:

Proposition 4.5. Let r € {0, 2,3,4,...}. A homotety invariant pattern U can be
switched off in AB™™ if and only if U' can be switched off in PBCI ™,

We also remark, that in the definition of PBC) “"(F,) all m-moves U' contain the
counter (0). If we make an increasing move, we also increase the counter, if we make a
decreasing move, we decrease the counter. This is why the counter is called counter.

Due to Corollary 4.3, it is further possible to restrict the set of moves PM,, to smaller
generating sets. Consider the moves of projective dimension m—1 and m in PBC"™ "™,
In this case, we may even calculate how many moves of each dimension we need to switch
off a switchable subspace U' < PG,,_; of projective dimension d :

Let t, respectively %5, be the number of moves of projective dimension m—1, re-
spectively m , where decreasing moves are counted negative. Then obviously

tl + tQ = —U(O) = —1 and tlpm + tgpm+1 = —|U| == —pd+1 . (23)
The solution to this system of linear equations is
tl — pdfm +pd7m71+_._+p and _t2 — pdfm _i_pdfmfl_k____i_l ) (24)

One even can show that exactly m of the ¢, “many” moves of projective dimension m
are coordinate subspaces (e;) (|J| = m + 1), provided that U' does not contain any
axis (e;) .

In the important case m = 1 (see [Schl]), one can further ignore the (m—1)-
dimensional, i.e. O-dimensional, moves (e;), and just unscrew the n light bulbs
(e1),(e2),...,{(en); they would be switchable individually, anyway. Therefore, in
PBf_l’l(IFq) we obtain particularly nice switching rules: The lines that run trough
at least one axis (e;) are the switches (see Figure3 at the end of the paper).

If, as usual, we interpret any pattern U: [, — Z as pattern F,\0 — Z on the
smaller board F,"\0, our basis B from above must contain a basis of the module of all
patterns on this smaller board. We can prove the following analog to the both theorems
2.4 and 4.2:
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Theorem 4.6. Let f € F,', e.g. f=0. Then B\Bm s a basis of the module of all ho-
motety-invariant patterns over F,"\0. The Z-submodule of m-switchable homotety-invari-
ant patterns over F;'\0 is saturated and has B=™ := { B,y | v € F' with |ker(v)| > m }
as a basis.

Proof. The rank of the free Z-module of homotety-invariant patterns over F,'\0 is obvi-
ously one smaller than the rank of the homotety-invariant patterns over F;'. Therefore,
it suffices to prove that B\B is a generating set. However, for vectors u # 0

Z (_1)\supp(v)\B<v>(u) — Z(—l)‘s“pp(”)‘Bg,v(u)

(v)EPGC_1 () veR

25
— Z (_1)\supp(v)\ _ Z (_1)|U\ -0, ( )
v:v;€{0u;} UCsupp(u)
so that
Z (_1)‘Supp(v)\B(v> = 0 on E]n\o (26)

(v)EPGCrn—1(F)

Hence, B\Bm generates B(f) and B and all the homotety-invariant patterns on F,'\0.

To prove the second statement, we observe that B=™ is a subset of the basis B\Bm
if f has full weight (ker(f) = (). Hence, B=™ is linearly independent, and obviously
generates a submodule of m-switchable patterns. It even generates all m-switchable pat-
terns. That is because, any m-switchable (homotety-invariant) pattern U over Fr\0
can be written as linear combination of m-moves. This linear combination can be viewed
as m-switchable extension U: F' — Z of U: E)\0 — Z to the full board F,". By

Theorem 4.2, the homotety-invariant extension U is generated by BZ™, so that U itself
is generated by B>, viewed as system of patterns on F,'\0. O

It would be desirable to find a “nice” complement to the submodule of m-switchable
patterns, inside the Z-module of homotety-invariant patterns on F,"\0. One can show
that, if f is a fixed full weight vector, a complement is spanned by the linearly indepen-
dent patterns (v)\0 with |ker(v)| <m and (v) € (f). Unfortunately, this complement
depends on the choice of f, it is somehow asymmetric. A normal form based on the
described compliment also would be asymmetric. In PBC" "™ the situation is different,
here we can define a symmetric normal form N™, based on the normal form Nj§* of
AB™™ via

N™(UY == N™U)" . (27)
We would like to use this definition also in PB"~"™ but the expression NZ*(U) is not
well defined over F;"\0. If we just ignore the value U(0) of 0, then we treat the patterns
U and U + ¢{0} as equal; U+ ¢{0} = U over F'\0. In this sense, N§*(U + ¢{0})
and N{"(U) would be two normal forms to the same pattern. The normal form NJ*(U)
for homotety-invariant patterns U on F,"\0 would be unique only up to a multiple of

Net(dop) = {0} - Yo (=nertiBy = N () @IB, L (28)

—o0on V:lker(v)[>m (v)EPGC,, _1(Fg)
Fg'\O ker(v)>m
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which, in the special case m =1, equals £(F,\0)". Transferred to PB"™ "™ this means
that we obtain a normal form N™(U') of a pattern U': PG, (F,) — Z via Defini-
tion (27), but it is only unique up to multiples of N{*({0})". Practically, we can transform
a given pattern U': PG,_;(F,) — Z into this normal form N™(U') in a similar man-
ner as we described it for AB™™ after Theorem 2.4. At first, we have to switch off all
projective points (v) with |ker(v)| > m. This can be done step by step. In each step,
we look for a “unfinished” point (v) with maximal |ker(v)|, and use the composed move
B<U> = <{v} Ueker(v)> — <eker(v)> to switch it off. At the end, no projective point (v) with
|ker(v)| > m is left,

[ker(v)| >m = U'((v)) =0, (29)

and the resulting normal form will be uniquely determined up to multiples of NJ*({0})!.
An example is discussed at the end of this section, and illustrated in Figure 3.

If ¢ =2 then every pattern is homotety-invariant and there is basically no difference
between the projective and affine version of the game. The projective game PB"™"'(I)
without counter is quite uninteresting. Any pattern U' in PB™ “!(I) can be switched
off, since any pattern U in AB™(F) can be switched into a singleton c¢{0}, which is
discarded in the projective game.

We want to study PB"~"™(F,) with ¢ # 2. Since we removed the artificial counter,
we will need additional assumptions to prove a statement similar to Proposition4.5. We
will see that, if ¢ # 2, the property of being a linear subspaces U < F," is strong enough.
The main theorem about the maximal weight of the dual code will hold in this case as
well. To prove this, we will need the following lemma about Affine Berlekamp; in which,
for any pattern U: F' — Z and any vector v € F,', the shifted pattern M,(U) is
defined pointwise via

M,U(x +v) := U(z) forall vel. (30)

Since usually n # 1, this definition of M, will not collide with our earlier definition of
My, with A € F,\0. We provide:

Lemma 4.7. Let ¢ # 2, r € {0, 2,3,4,...} and ¢ € Z\0. For homotety-invariant
patterns U: ;' — Z, the following switchability statements in AB["™ hold:

(i) U+ c{v} cannot be switched off, for any choice of v € ;' except possibly v =10.
(ii) U+ c{0} cannot be switched off, if M,(U) =U for one vector v € F,"\0.

Proof. The first part follows mainly from Lemma2.5. If ker(v) = (), then

Np*(c{v}) = e{v} #0 (31)

and c{v} cannot be switched off. Hence, any single-light pattern c{v} cannot be
switched off, even if ker(v) # (), because switchability obviously does not depend on
the relative position of a pattern on the board. Therefore,

supp(Ng"(c{v}) # 0 (32)
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for any choice of v € F,". Now, if j € supp(v) # 0 then, for any A € F, \ {0,1},

z € supp(Ny*(c{v})) 25, Tj =v; =  Axj F vj 25 ¢ supp(Ng"(c{v})) -

(33)

Thus, N{*(c{v}) is not homotety-invariant, if ¢ # 2; but N§*(U) is homotety-invariant,

since U is. Hence, NJ"(U + c{v}) = NJ"(U) + N§*(c{v}) is not homotety-invariant and,
in particular, not zero, i.e., U 4+ c{v} cannot be switched off.

In order to prove the second part, assume U = M, U, then U+ ¢{0} is switchable if

and only if M, (U + ¢{0}) = U + c¢{v} is switchable, but we already have seen that this

is not the case. O

We also remark that any m-switchable patterns U: F," — Z obviously fulfills

> Uw) =0 (modqg™) (34)

as any elementary m-move changes this sum by +¢™. (See [Schl] for further invariants.)
This would also lead to a simpler proof of some special cases of Lemma4.7. However, we
need the full generality of this lemma in order to show that PB"~"™(F,) behaves similar
to AB" () (always provided that we study only linear subspaces {0} # U < F",
and ¢ # 2). We can prove:

Theorem 4.8. Let g # 2 and r € {0, 2,3,4,...}. Let U:F' — Z, be a homotety-
invariant pattern with M,(U) = U for one vector v € F;'\0. Then U can be switched
off in AB™™ if and only if its projective copy U' can be switched off in PB"~"™,

Proof. If U is switchable in AB/™ then U! is switchable in PB~ "™ since it is switch-
able even in PBC" '™ as we have seen in Proposition4.5. Now assume that U' can
be switched in PB”™"™, then U can be switched into a pattern c{0} in AB™™. Thus,
U—c{0} can be switched off. However, by Lemma 4.7, this is only possible for ¢ =0 € Z,.,
so that the switchability of U in AB*™ follows. O

Using this connection to Affine Berlekamp, we can translate Theorem 3.3 into the
projective language. We obtain:

Theorem 4.9. Let q # 2. For subspaces U < F', m € {1,2,...,n—1}, and r €
{2,3,4,...} not dividing |U|, the following are equivalent:

(i) Ut has mazimal weight at most n —m .
(ii) U' can be switched off in PB"~"™,

(iii) U' can be switched off modulo r, in PBI 1™,

Proof. This follows from Theorem 3.3 and Theorem 4.8. O
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In both, Theorem 4.9 and Theorem 3.3, we assumed that r does not divide |U|. Tt
might look more natural to assume r to be coprime to ¢, but our condition is more
general. In general, one cannot drop a condition like this completely, as the following
example in PBy' () (n=3, m=1, ¢ =3, r = 3) shall demonstrate. We examine
the subspace U := ((1,1,1))* <F . On one side, it has dual maximal weight 3 £ n—m,
but, on the other side U is still m-switchable modulo 3, as the reader may check in the
following picture:

(0:1:2)

(1:0:0) (1:0:1) (1:02)

(1:0) (1) (1:12)  (41)

(1:2:0) (1:2:1) (1:22)
(0:1:)

w:19)
Figure 3: U' = ({(1,1, 1))J-)1 <PG2(B) and its (up to multiples of N§*({0})* wunique) normal form
NY(U)*, which is modulo 3 equal to ((F, \0)3)1 = —N}({0})! and equivalent to the zero pattern ()
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