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tWe view a linear 
ode (subspa
e) C � Fnq as a light pattern on the n-dimensionalBerlekamp Board Fnq with qn light bulbs. The lights 
orresponding to elements ofC are ON, the others are OFF. Then we allow axis-parallel swit
hes of 
ompleterows, 
olumns, et
. We show that the dual 
ode C? 
ontains a ve
tor v of fullweight, i.e. v1; v2; : : : ; vn 6= 0 , if and only if the light pattern C 
annot be swit
hedo�. Generalizations of this allow us to des
ribe anti-
odes with maximal weight Æin a similar way, or, alternatively, in terms of a swit
hing game in proje
tive spa
e.We provide 
onvenient bases and normal forms to the modules of all light patterns ofthe generalized games. All our proofs are purely 
ombinatorial and simpler than thealgebrai
 ones used for similar results about anti-
odes in Znk . Aside from 
odingtheory, the game is also of interest in the study of nowhere-zero points of matri
esand nowhere-zero 
ows and 
olorings of graphs.1 Introdu
tionBerlekamp's Swit
hing Game was invented in the 1960s by Elwyn Berlekamp. The single-player game is played on a matrix of 10� 10 light bulbs. An initial light pattern is setup, using 10� 10 individual hidden swit
hes. Then one has to swit
h o� as many lightsas possible using 10 row and 10 
olumn swit
hes, whi
h invert the state of ea
h bulbin the 
orresponding row or 
olumn. The smallest possible number of remaining burninglights, if one starts from a worst 
ase initial pattern, is the 
overing radius of the binary
ode generated by row and 
olumn swit
hes; see, e.g., [FiSl, CaSt, RoVi℄. A
tually, thisbinary Berlekamp Code was a main motivation for the study of the game so far.the ele
troni
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In this paper, we will examine a very di�erent 
onne
tion to 
oding theory and newgame-theoreti
 questions. We are interested in the question if a given light pattern 
anbe swit
hed o� 
ompletely or not, sin
e this swit
hability will turn out to be importantin appli
ations. We work in a more general framework, and 
onsider an n-dimensional nversion of Berlekamp's game with q� q�� � �� q many light bulbs. Here, we restri
t q to qprime-powers, so that we 
an identify the light bulbs with the points in the ve
tor spa
eFqn . This will enable us to use some linear algebra arguments. Furthermore, we do notjust allow the 2 states ON and OFF for any of the qn light bulbs. It is more general toexamine a modulo r version, with Zr := Z=rZ as the set of possible states of a light bulb. r, ZrWe even allow r = 0 with the integers Z0 := Z as the set of possible states of the points Z0v 2 Fqn . A (light) patterns is a map U : Fqn �! Zr , and an elementary move in
reases Uor de
reases the state of the bulbs along an axis-parallel aÆne subspa
e of dimension m .Already the axis-parallel aÆne m-dimensional subspa
e may be 
alled elementary move orm-move. For example, if (n; q;m; r) = (3; 7; 2; 0) then (�; 5; �) := f(x; 5; y) � x; y 2 F7g is (�; 5; �)an elementary 2-move on the 3-dimensional board F73 over F7 . Appli
ation of this movetransforms a pattern U : F73 �! Z0 either into U+(�; 5; �) or into U�(�; 5; �) , as we will U + (�; 5; �)write it. So [U � (�; 5; �)℄(1; 5; 3) = U(1; 5; 3)� 1 , but [U � (�; 5; �)℄(1; 6; 3) = U(1; 6; 3) .In Berlekamp's original version of the game (n; q;m; r) was (2; 10; 1; 2) . We 
all thegeneralized game Berlekamp or AÆne Berlekamp modulo r of order q and dimensionn with m-moves, for short ABn;mr (Fq ) . ABn;mrSwit
hability is 
onne
ted to linear anti-
odes. A linear anti-
ode of length n overFq is simply a linear 
ode, i.e. a subspa
e, U � Fqn . The pre�x \anti" just expresses U � Fqnthat we are not interested in the minimal weight, but in the maximal weight Æ , i.e., Æthe maximum of the weights w(u) := jsupp(u)j over all elements u 2 U . Codes with w(u)low maximal weight Æ 
an be used to 
onstru
t information-theoreti
ally good 
odes,i.e. 
odes with big minimal weight, see [MWS, Chapter 17 §6℄. We investigate the dualmaximal weight, whi
h would be the maximal weight of the dual (orthogonal) 
ode U?. U?Our dis
overy is that, if we view a subspa
e U � Fqn as a 0-1 pattern on the board Fqn ,U 
an be swit
hed o� with m-moves if and only if its dual maximal weight is at mostn � m . More pre
isely, it will turn out that U 
an be swit
hed o� modulo r if andonly if it 
an be swit
hed o� modulo any other r0, provided that r and r0 do not dividejU j . We just use the term m-swit
hability when we refer to any of these equivalent 
ases,in
luding the 
ase r = 0 .We hope that the new 
onne
tion from anti-
odes to Berlekamp's Game will lead tonew insights about liner 
odes, and that the game 
an be
ome a useful tool in 
oding-theory. One 
ase of parti
ular interest was already investigated in our paper [S
h1℄. There,we examined the existen
e of full weight ve
tors in 
odes that arise from graph theory.Using the 
onne
tion to Berlekamp's Game, we saw that a graph G has a nowhere-zerok-
ow if and only if the Zk-bond spa
e of G 
annot be swit
hed o�. The graph G has avertex 
oloring with k 
olors if and only if a 
ertain 
orresponding 
ode over Zk 
annotbe swit
hed o�. Similar statements 
ould be proven for Tait 
olorings and for nowhere-zero points of matri
es. We also introdu
ed normal forms to equivalen
e 
lasses of lightpatterns, and obtained new equivalents for the existen
e of full weight ve
tors in U?. Thisthe ele
troni
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led to new equivalents, e.g., for the Four Color Problem, Tutte's Flow Conje
tures andJaeger's Conje
ture. Two of our equivalents for 
olorability and existen
e of nowhere zero
ows of graphs in
luded as spe
ial 
ases results by Matiyasevi
h, by Bal�azs Szegedy and byOnn. Alon and Tarsi's suÆ
ient 
ondition for vertex 
olorability also arose, remarkably,as a generalized full equivalent. In our present paper, we do not deal with su
h graph-theoreti
 problems, and there are also three main di�eren
es on the game-theoreti
 side:1. Here, we work over Fqn as board, whi
h requires q to be a prime-power. In [S
h1℄,we worked over the board Zkn , with no further restri
tion on k .2. In the present paper, we present simple 
ombinatorial proofs. In [S
h1℄, over therings Zkn, more 
ompli
ated algebrai
 proofs where required.3. In [S
h1℄, we restri
ted ourselves to the 
ase m = 1 . The treatment of the general
ase would have been possible, but would have made the algebrai
 proofs there evenmore 
ompli
ated.Based on our study of the ve
tor spa
e Fqn as board of the game, we may also wonderif the game 
an be transferred to �nite proje
tive spa
es, with one light bulb at anyproje
tive point. We are only interested in the swit
hability of subspa
es U of Fqn ,and they 
orrespond to subspa
es U1 of PGn�1(Fq ) := PG(Fqn). Therefore, one might U1PGn�1expe
t that it is straight forward to �nd an equivalent game in proje
tive spa
e. However,our moves in ABn�1;mr (Fq ) are usually not linear subspa
es, and in the 
onstru
tion ofPGn�1 out of Fqn one just dis
ards the zero 0 2 Fqn . Therefore, on one hand, thereare some diÆ
ulties in 
onstru
ting a proje
tive equivalent, but, on the other hand, ifthe game on PGn�1(Fq ) just would be a straight 
opy of the game on Fqn , it wouldnot be very interesting. We will work out a simple and ni
e de�nition of the allowedmoves in Proje
tive Berlekamp. Our proje
tive m-moves will be swit
hes of subspa
esof PGn�1(Fq ) that run through at least m of the n 
oordinate axes he1i , he2i , . . . ,heni , viewed as independent proje
tive points in PGn�1(Fq ) . Over �nite �elds Fq withmore then 2 elements, q > 2 , our new Proje
tive Berlekamp PBn�1;mr (Fq ) will turn out PBn�1;mrto be an equivalent to AÆne Berlekamp ABn�1;mr (Fq ) . Hen
e, U1 
an be swit
hed o� inPBn�1;mr (Fq ) if and only if U? has maximal weight at most n�m .With the des
ribed 
onne
tions to anti-
odes, our Berlekamp Games have the potentialto be
ome a helpful tool in 
oding theory and 
ombinatori
s. At least, we think that theyare simple enough to be attra
tive. One thing that has already proven to be useful,are normal forms to the equivalen
e 
lasses of swit
hable patterns. In [S
h1℄, we evenprovided some formulas to 
al
ulate them (for m = 1 ). In this paper, we do not lookat these formulas, but we present generalized normal forms for arbitrary m . Also ofinterest may be the 
onne
tion to the Combinatorial Nullstellensatz, whi
h 
an be provenusing a kind of Berlekamp Game, see [S
h2, Se
tion 7℄. The 
onne
tion to the polynomialmanipulation te
hniques in this paper was, in fa
t, the starting idea behind our �rst paperabout Berlekamp's Game [S
h1℄.We formally introdu
e AÆne Berlekamp in the next se
tion, Se
tion 2. In Se
tion 3,we work out the 
onne
tions to 
oding theory. This study of linear subspa
es (linearthe ele
troni
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odes), as light patterns, will lead the way to proje
tive spa
es and Proje
tive Berlekamp,whi
h we examine in Se
tion 4.2 AÆne BerlekampWe start here with a more general situation than des
ribed in the introdu
tion. We takeany �nite set I (of light bulbs) as board, and any system M� ZIr of (light) patterns (i.e.maps U : I �! Zr ) as our 
olle
tion of elementary moves :De�nition 2.1 (General Berlekamp). A pair (I;M) of a �nite set I and a system (I;M)M� ZI of patterns is a (General) Berlekamp on the board I . The elements of M areits (elementary) moves. The elements of its Z-linear span hhMii � ZI are its swit
hable hhMii, Zrpatterns or 
omposed moves, they 
an be swit
hed o� by a sequen
e of moves. By repla
ingZ =: Z0 with Zr := Z=rZ , we obtain (I;M)r , (General) Berlekamp modulo r . (I;M)rIn what follows, we mostly work over Z0 = Z and may interpret the results modulor afterwards. We identify subsets U � I with their 
hara
teristi
 fun
tions I �! f0; 1gas 0-1 light patterns, i.e., U(v)U(v) := (1 if v 2 U ,0 if v =2 U . (1)This is used extensively. It simpli�es notation, but 
an lead to unusual expressions. Forexample, the one-point sets fvg ( v 2 I ) are also viewed as 0-1 patterns fvgfvg : I �! f0; 1g ; u 7�! fvg(u) : (2)These one-point sets form the standard basis of ZI .Based on General Berlekamp we 
an now introdu
e AÆne Berlekamp, and later Pro-je
tive Berlekamp. For AÆne Berlekamp on boards of the form I := I1 � I2 � � � � � Inor I := Zkn see [S
h1℄. Here we only study the n-dimensional q � q � � � � � q boardI := Fqn . This board 
arries the stru
ture of a ve
tor spa
e, an Fq -modulo. Sin
e theset of light patterns ZI is also a module, this time over Z as ring of s
alars, we haveto be 
areful with the notation. Subsets of I are usually viewed as 0-1 patterns inZI and added in (ZI;+), while elements of I = Fqn or a 
ombination of one elementand one subset of Fqn are always added in (Fqn ;+) , e.g. (0; 1) + (1; 0) = (1; 1) butf(0; 1)g+ f(1; 0)g = f(0; 1); (1; 0)g . Similar rules are used for the two s
alar multipli
a-tions. The two linear spans are denoted di�erently. We use hh : : : ii in the module ZI and hh : : : iih : : : i in the ve
tor spa
e Fqn . With this notational basis, we de�ne: h : : : iDe�nition 2.2 (AÆne Berlekamp). We write ABn;m = ABn;m0 (Fq ) for the Berlekamp ABn;m0 (Fq )(Fqn ;AMm) { 
alled AÆne Berlekamp with m-moves { where AMm is the set of allaÆne axis-parallel m-dimensional subspa
es v + hej1 ; ej2; : : : ; ejmi of Fqn . In the modulor 
ase, with Zr := Z=rZ in the pla
e of Z =: Z0 , we write ABn;mr with r as index. ABn;mrthe ele
troni
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We also provide a simpler notation for moves. If v 2 Fqn and J � f1; 2; : : : ; ng , weset eJv�J := v + heJi where eJ := fej � j 2 Jg : (3)For example, an elementary 3-move trough a point v = (v1; v2; : : : ; v6) in Fq6 parallel to3 axes heji , say j 2 J := f2; 4; 5g , may be written as v�J(v1; �; v3)v�J = (v1; �; v3; �; �; v6) := fv1g � Fq � fv3g � Fq � Fq � fv6g : (4)210 210Figure 1: AB2;1(F3 )
Two moves are highlighted:(�; 1) = (0; 1)�1 := (0; 1)�f1g = F3 � f1g as a 0-1 pattern,(2; �) = (2; 0)�2 = (2; 1)�2 = f2g � F3 as a 0-1 pattern.

v�j
x3 e30 x1x2Figure 2: The basis ve
tor B0;e3 :=e3� ker(e3) = (0; 0; 1)�f1; 2g over F33The patterns B0;vker(v)supp(v)B0;v := v� ker(v) with ker(v) := fj � vj = 0g =: f1; 2; : : : ; ng n supp(v) ; (5)where v = (v1; v2; : : : ; vn) runs through Fqn (see Figure 2), form a basis B0 of the module B0of all light patterns ZFqn. Indeed, the 
hange of bases matrix from B0 to the standardbasis ffvg � v 2 Fqng is triangular with ones on the diagonal. We just have to 
hoose asuitable linear ordering on the set Fqn of indi
es of the two bases, in order to turn theminto appropriately ordered bases. We do this by sele
ting the linear order < on Fqn su
hthat the weight fun
tion w : v 7�! w(v) = n�jker(v)j be
omes a monotonous de
reasingfun
tion, i.e. v < v0w(v) > w(v0) () jker(v)j < jker(v0)j =) v < v0 : (6)In this way, B0;v = v� ker(v) only 
ontains elements u that 
ome before v ( u � v ),ensuring zeros below/above the diagonal. We even see that, for any k � n ,hhB�k0 ii = 

 fvg � v 2 Fqn with jker(v)j � k �� ; (7)the ele
troni
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where B�k0B�k0 := fB0;v � v 2 Fqn with jker(v)j � k g : (8)This basis has the advantage that it 
ontains a basis of the submodule of allm-swit
hable light patterns, hhB�m0 ii = hhAMmii ; (9)where B�m0 is analogues to B�k0 above. This is easily veri�ed: To prove the in
lusionhhB�m0 ii � hhAMmii , let v�J 2 AMm . We may assume jJ j = m > 0 and n 2 Jas the 
ase m = 0 is trivial. Now let v0 := (v1; v2; : : : ; vn�1) , then v0�(J\n) is an(m�1)-dimensional move on the (n�1)-dimensional board. Using an indu
tion argument,we realize that this move is a linear 
ombination of 
ertain B0;(u1;:::;un�1) with at least m�1zero entrees uj . The 
orresponding linear 
ombination of the extended B0;(u1;:::;un�1;0) 2B�m0 is then equal to v�J , so that hhB�m0 ii � AMm . The opposite in
lusion 
an beproven similarly. A
tually, any axis-parallel aÆne subspa
es of dimension at least m ism-swit
hable, and this is just a spe
ial 
ase of our Lemma3.1 further below.The existen
e of a basis with the des
ribed properties has an important 
onsequen
e:Theorem 2.3. The Z-submodule of all swit
hable patterns in ABn;m(Fq ) is saturated,i.e., its elementary divisors are units. In parti
ular, if the multiple zU : v 7�! zU(v) zU( z 2 Z\0 ) of a pattern U 
an be swit
hed o�, then U 
an be swit
hed o�.Our two-tier basis B0 = B<m0 ℄ B�m0 also gives rise to a normal form Nm0 : U 7�! Nm0 (U)Nm0 (U) to the equivalen
e 
lasses of patterns U 2 ZFqn, where two patterns are equivalentif there is a sequen
e of m-moves that transforms one into the other:Theorem 2.4. The Z-submodule 

fvg � jker(v)j < m�� = hhB<m0 ii � ZFqn of all thosepatterns U : Fqn �! Z whi
h are zero on all (n�m)-dimensional 
oordinate subspa
eshej1; ej2; : : : ; ejn�mi � Fqn , is a 
omplement to the Z-submodule of all m-swit
hable patternshhAMmii = hhB�m0 ii , 

fvg � jker(v)j < m�� � hhAMmii = ZFqn :In parti
ular, 

fvg � jker(v)j < m�� is a set of representatives Nm0 (U) to the equivalen
e
lasses U+ hhAMmii 2 ZFqn=hhAMmii of patterns U 2 ZFqn with respe
t to m-swit
hes.If we want to transform a pattern U : x 7�! U(x) into its normal form Nm0 (U) , thereis an easy way to do so. Just sele
t a point x 2 supp(U) with maximal jker(x)j andthen swit
h (in
rease) B0;x exa
tly �U(x) many times, provided that jker(x)j � m sothat B0;x is m-swit
hable. (If �U(x) < 0 this means to de
rease B0;x exa
tly U(x)many times.) Afterwards, U(x) = 0 and, aside from this value, only values U(y) withjker(y)j < jker(x)j have 
hanged. We have eliminated x from supp(U) without addingpoints y that are \as bad as x ". Repeating this step as long as possible, we will �nallyrea
h a 
leared out U with jker(x)j < m for all x 2 supp(U) , i.e. the initial U wastransformed into its normal form in 

fvg � jker(v)j < m�� .the ele
troni
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If we look a bit 
loser to what happens in ea
h modi�
ation step of this pro
edure,we see that only values U(y) with yjsupp(x) = xjsupp(x) are modi�ed. So, if we start witha single point pattern U := fug , any subsequently swit
hed light y 
oin
ides with u onsupp(u) , yj = uj for all j with uj 6= 0 . From this we 
an dedu
e the following lemma,whi
h we will need in the se
tion about Proje
tive Berlekamp, Se
tion 4:Lemma 2.5. For any u 2 Fqn , we have supp(Nm0 (fug)) � u� ker(u) . In other words, ifuj 6= 0 for a j 2 f1; 2; : : : ; ng , then all x 2 supp(Nm0 (fug)) ful�ll xj = uj .3 Swit
hable CodesThis se
tion des
ribes the 
onne
tion between the maximal dual weight of a 
ode U � Fqn ,i.e. the maximal weight w(v) of elements v of U? := fv � (v � u) = 0 for all u 2 U g , U?and the m-swit
hability of U as 0-1 pattern in ABn;mr (Fq ) . We will need the simpleobservation that the m-swit
hable subspa
es of Fqn form a �lter in the subspa
e latti
eof Fqn :Lemma 3.1. If an subspa
e U � Fqn , as 0-1 pattern in ABn;mr (Fq ) , 
ontains anm-swit
hable subspa
e, then it is m-swit
hable itself. In parti
ular, this holds for the
oordinate subspa
es hej1 ; ej2; : : : ; ejmi , j1 < j2 < � � � < jm :ej1; ej2; : : : ; ejm 2 U =) U is m-swit
hable.Proof. Let W be the m-swit
hable subspa
e of U , then U 
an be de
omposed into aÆnesubspa
es of the form u+W. Sin
e these shifted 
opies of W are still m-swit
hable, U
an be swit
hed o� pie
emeal.We will also need the following well-known fa
t:Lemma 3.2. Let U < Fqn be a proper subspa
e of 
odimension s := n�dim(U) . Then Uis 
ontained in qs�1+qs�2+� � �+q0 many hyperplanes H � U , and ea
h point v 2 Fqn nUoutside of U is 
ontained in qs�2 + qs�3 + � � �+ q0 many of them. In parti
ular,qs�1U + (qs�2 + � � �+ q0)Fqn = XfH � U � H is hyperplane g :Based on these lemmas, we 
an now prove our 
ore theorem:Theorem 3.3. For subspa
es U � Fqn , m 2 f1; 2; : : : ; n�1g , and r 2 f2; 3; 4; : : :g notdividing jU j , the following are equivalent:(i) U? has maximal weight at most n�m .(ii) U 
an be swit
hed o� with m-moves.(iii) U 
an be swit
hed o� modulo r with m-moves.the ele
troni
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Proof. The impli
ation (ii) ) (iii) is trivial. In order to prove (iii) ) (i) , assumethat U? 
ontains a ve
tor f with less than m zero entrees fj = 0 . Obviously, f?
ontains U and is disjoint to the hyperplane f0 + f? , where we are 
hoosing f0 =2 f?.In parti
ular, our initial light pattern U has jU j many burning lights in f?, and nonein f0 + f?. This makes a di�eren
e of jU j ,Xv2f? U(v) � Xv2f0+f?U(v) = jU j 6� 0 (mod r) : (10)If we now perform an elementary m-dimensional swit
h v�fj1; j2; : : : ; jmg , ea
h of thetwo sums in this di�eren
e 
hanges by �qm�1 , sin
e the hyperplane f? is not parallelto m many 
oordinate axes heji at a time, as(f � ej) = fj = 0 for less then m indi
es j . (11)Therefore, the di�eren
e will not 
hange, even if we perform a whole sequen
e of elemen-tary moves. It is invariant and will never be
ome zero. In parti
ular, it is not possible toswit
h o� all lights.It is left to prove (i) ) (ii) . The 
ase U = Fqn is trivial, Fqn is always swit
hable.If U? > f0g has maximal weight at most n � m , then every hyperplane H � Ualso has the property that its orthogonal spa
e H? � U? has maximal weight at mostn � m . Hen
e, if H? = h(f1; f2; : : : ; fn)i , then fj = 0 for (at least) m indi
es j ,say j1; j2; : : : ; jm , and this means that ej1; ej2 ; : : : ; ejm 2 H . Therefore, by Lemma3.1,H 
an be m-swit
hed, i.e., ea
h hyperplane H � U 
an be m-swit
hed. However, byLemma3.2, q
odim(U)�1U is basi
ally the sum of these hyperplanes; only the full spa
e Fqnhas to be subtra
ted several times. Therefore, q
odim(U)�1U is swit
hable, and this impliesthat U is swit
hable, as, by Theorem2.3, the Z-submodule of all swit
hable patterns issaturated.This theorem also follows from the following somehow interesting observation, forwhi
h we have 
urrently no further appli
ation:Theorem 3.4. For given 0 < m � n , set 
0 := 1 , 
1; 
2; : : : ; 
m�1 := 0 and re
ursivelyde�ne 
i := �Pi�1j=0 
j�ij� for i = m;m+ 1; : : : ; n . Hen
e, for m = 1 , (
i) = ((�1)i) .Let U � Fqn be a subspa
e with dual maximal weight at most n�m . Then q
odim(U)U
an be swit
hed o� by adding for ea
h subset E � fe1; e2; : : : ; eng with jEj � m them-swit
hable subspa
e hU [E i exa
tly 
jEj q
odimhU[E i many times, followed by swit
hingthe full board Fqn a multiple of q many times. More formally,XE�fe1;:::;eng
jEj q
odimhU[E i hU [ E i � ; (mod qFqn) ;where the summand with E = ; is the initial pattern U , those with 0 < jEj < m havevanishing 
oeÆ
ients, and those with jEj � m are trivially m-swit
hable.Proof. We may assume U < Fqn , as the 
ase m = n is trivial. Sin
e U has dual maximalweight at most n�m , every hyperplane H � U has dual maximal weight at most n�mthe ele
troni
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as well. Hen
e, if H = (f1; f2; : : : ; fn)?, then (f1; f2; : : : ; fn) has maximal weight at mostn�m , and fj = 0 for at least m many indi
es j 2 f1; 2; : : : ; ng . This means thati := jE \Hj � m ; where E := fe1; e2; : : : ; eng : (12)Hen
e, the re
ursive de�nition of 
i applies andXE�E\H
jEj = 
i + i�1Xj=0 
j�ij� = 0 for all H 2 HU := fH � U � H is hyperplaneg , (13)so that, by Lemma3.2,XE�E 
jEj q
odimhU[E ihU [E i (q Fqn )� XE�E 
jEjXH2HUH�E qH = XH2HU � XE�EE�H 
jEj �qH = ; : (14)
4 Proje
tive BerlekampWe want to introdu
e Proje
tive Berlekamp in a way that des
ribes the 
onne
tion toAÆne Berlekamp as dire
tly as possible, so that we 
an easily transfer results from onegame to the other. For this reason, we will have to study homotety-invariant patterns inAÆne Berlekamp, i.e. patterns U : Fqn �! Z with the property M�M�U = U for all � 2 Fq\0 , (15)where M�U (�v) := U(v) for all v 2 Fqn . (16)Su
h patterns U 
an easily be viewed as patterns U1 on the proje
tive board PGn�1(Fq ) . U1PGn�1Just assign to the proje
tive point hvi 6= f0g the value U1(hvi) := U(v) . However, whatshall happen with the value U(0) of 0 2 Fqn ? Well, for the time being, let us try to looseno information. Let us introdu
e in Proje
tive Berlekamp an additional light, the 
ounter,
orresponding to the 0 in Fqn . We represent this 
ounter by the subset f0g � Fqn , sothat we 
an de�ne an extended proje
tive board PGCn�1(Fq ) as the set PGCn�1PGCn�1(Fq ) := fhvi � v 2 Fqng ; (17)and de�ne the proje
tive 
opy U1 : PGCn�1(Fq ) �! Z of a homotety-invariant patternU : Fqn �! Z via U1U1(hvi) := U(v) for all v 2 Fqn , in
luding v = 0 . (18)If the homotety-invariant pattern U is given as a subset, respe
tively a subspa
e, of Fqn ,then we also 
all U1 a subset, respe
tively a subspa
e, of PGCn�1(Fq ) . Our de�nitiondes
ribes a bije
tion between homotety-invariant patterns in AÆne Berlekamp ABn;mr andthe ele
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patterns in Proje
tive Berlekamp with 
ounter, PBCn�1;mr , as we will write. However, the PBCn�1;mrmoves also should go well together. The moves in AÆne Berlekamp do not run throughthe point of origin 0 in general, but we will show that we 
an restri
t ourselves to movesthat are ve
tor subspa
es of Fqn . With this insight, it will be straight forward to de�nethe moves in PBCn�1;mr and its version PBn�1;mr without 
ounter. Several examinationsare required to rea
h this point. We start with the following simple lemma:Lemma 4.1. For (
v) 2 ZFqn and � 2 Fq\0 holds:U = Xv2Fqn 
vB0;v =) M�U = Xv2Fqn 
��1vB0;v :Proof. We prove this pointwise:M�U(�u) def= U(u) = Xv2Fqn 
vB0;v(u) = Xv2Fqn 
vB0;�v(�u) = hXw2Fqn 
��1wB0;wi(�u) : (19)With this we 
an prove the following version of our Theorems 2.3 and 2.4 for homotety-invariant patterns:Theorem 4.2. The pattern �Bh0i := B0;0 = Fqn together with the qn�1q�1 many patterns �Bhvi�Bhvi := X�2Fq \0B0;�v = 
fvg [ eker(v)�� 
eker(v)� with hvi 2 PGn�1(Fq )form a basis �B of the module ZFqn of all homotety-invariant patterns over Fqn .The Z-submodule of m-swit
hable homotety-invariant patterns on Fqn is spanned by�B�m := f �Bhvi � v 2 Fqn with jker(v)j � m g . A 
omplement, inside the Z-module of �B�mhomotety-invariant patterns, is given by 

hvi\0 � jker(v)j < m�� , whi
h is also spannedby �B<m := �B n �B�m.Proof. The linear independen
e of �B follows from the fa
t that the di�erent �Bhvi bundletogether disjoint sets of base ve
tors B0;�v , as hvi\0 \hwi\0 = ; if hvi 6= hwi . To verifythe generating property, let U =Pv 
vB0;v be homotety-invariant, then 
�v = 
v for allv 2 Fq and � 2 Fq\0 , by Lemma4.1, so that we may de�ne �
hvi := 
v for all v 2 Fqn .With this de�nition,U = 
0B0;0 + Xhvi2PGn�1 Xw2hvi\0 
wB0;w = �
0 �Bh0i + Xhvi2PGn�1�
hvi �Bhvi ; (20)whi
h shows that our basis generates all homotety-invariant patterns. Moreover, if U ism-swit
hable, i.e., if all 
oeÆ
ients 
w with jker(w)j < m are zero, then all �
hvi withjker(v)j < m are zero as well, and U 2 hh �B�mii . Hen
e, �B�m spans the whole submoduleof m-swit
hable homotety-invariant patterns, but also not more. It obviously has hh �B<miias 
omplement, whi
h is equal to 

hvi\0 � jker(v)j < m�� , in analogy to Equation (7).the ele
troni
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From this follows the following 
orollary, whi
h gives us a �rst idea about how tode�ne the moves in Proje
tive Berlekamp:Corollary 4.3. Ea
h of the following sets of m-swit
hable subspa
es generates the 
om-plete set of all m-swit
hable homotety-invariant patterns:(i) The Bhvi := 
fvg [ eker(v)� and 
eker(v)� with v 2 Fqn and jker(v)j � m . Bhvi(ii) The U � Fqn of dimension m or m+1 that 
ontain at least m 
oordinate axes.(iii) The U � Fqn of dimension n�1 or n that 
ontain at least m 
oordinate axes,provided r is non-zero and 
oprime to q .Proof. We work here only with subspa
es that 
ontain at least m 
oordinate axes and arem-swit
hable. Therefore, we only have to see that all m-swit
hable patterns are a
tuallygenerated by these systems of m-swit
hable patterns.In the 
ase of the �rst system of patterns this is obvious. We know that the patterns�Bhvi with jker(v)j � m form a generating system, and ea
h �Bhvi (ex
ept Bh0i ) is thedi�eren
e of two elements, Bhvi and 
eker(v)� , in our �rst system ( �Bh0i = Bh0i ).To prove that the se
ond system is generating, it is enough to show that it generatesall subspa
es whi
h 
ontain m 
oordinate axes, and, in parti
ular, those in our �rstgenerating system. We show this by indu
tion. Assume that we have already proven thatsubspa
es of dimension s and s + 1 whi
h 
ontain m 
oordinate axes are generated,and let V be a subspa
e of dimension s + 2 � m + 2 , 
ontaining m 
oordinate axes.Sele
t any subspa
e V 0 � V of dimension s , 
ontaining m 
oordinate axes. Then V 0and all spa
es H between V 0 and V , V 0 < H < V , have dimension s or s + 1 andare generated by our system. It follows that V is generated, be
ause V is a linear
ombination of these spa
es, asqV 0 + V = XfH � V 0 < H < V g ; (21)by Lemma3.2, assuming that, w.l.o.g., s+ 2 = n , V = Fqn .The last generating property over ABn;mr follows with exa
tly the same indu
tive ar-gument, just top down. If V 0 is a given s-dimensional subspa
e 
ontaining m 
oordinateaxes, then qV 0 is a linear 
ombination of a �xed V > V 0 of dimension s+ 2 and all Hbetween V 0 and V , as above. To show that V 0, and not just qV 0, is generated, we need1 to be a multiple of q , i.e., we need to play modulo r (
oprime to q ).With this, we are prepared to de�ne Proje
tive Berlekamp with Counter on the board PGCn�1PGCn�1(Fq ) := fhvi � v 2 Fqng = PGn�1(Fq ) ℄ fh0ig (22)and Proje
tive Berlekamp on the proje
tive spa
e PGn�1(Fq ) : PGn�1
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De�nition 4.4 (Proje
tive Berlekamp). We write PBCn�1;m = PBCn�1;m0 (Fq ) for PBCn�1;m0the Berlekamp (PGCn�1(Fq );PMm) { 
alled Proje
tive Berlekamp with Counter and PMmm-moves { where PMm is the set of all subspa
es U1 � PBCn�1(Fq ) , i.e. U � Fqn ,whi
h 
ontain at least m of the proje
tive points he1i; he2i; : : : ; heni { 
alled axes.We write PBn�1;m = PBn�1;m0 (Fq ) for the Berlekamp (PGn�1(Fq );PMm) { 
alled PBn�1;m0Proje
tive Berlekamp with m-moves { where PMm is de�ned as before, but we ignorethe 
ounter f0g and view the moves U1 as subsets of PGn�1(Fq ) , and as 0-1 patternsU1 : PGn�1(Fq ) �! Z .In the modulo r 
ase, with Zr := Z=rZ in the pla
e of Z =: Z0 , we write PBCn�1;mr , PBCn�1;mrrespe
tively PBn�1;mr , with r as index. PBn�1;mrSin
e we derived our de�nition from Corollary 4.3, we see that PBCn�1;m(Fq ) is basi-
ally the same as ABn�1;m(Fq ) restri
ted to homotety-invariant patterns. We have:Proposition 4.5. Let r 2 f0; 2; 3; 4; : : :g . A homotety invariant pattern U 
an beswit
hed o� in ABn;mr if and only if U1 
an be swit
hed o� in PBCn�1;mr .We also remark, that in the de�nition of PBCn�1;m0 (Fq ) all m-moves U1 
ontain the
ounter h0i . If we make an in
reasing move, we also in
rease the 
ounter, if we make ade
reasing move, we de
rease the 
ounter. This is why the 
ounter is 
alled 
ounter.Due to Corollary 4.3, it is further possible to restri
t the set of moves PMm to smallergenerating sets. Consider the moves of proje
tive dimension m�1 and m in PBCn�1;m.In this 
ase, we may even 
al
ulate how many moves of ea
h dimension we need to swit
ho� a swit
hable subspa
e U1 � PGn�1 of proje
tive dimension d :Let t1 , respe
tively t2 , be the number of moves of proje
tive dimension m�1 , re-spe
tively m , where de
reasing moves are 
ounted negative. Then obviouslyt1 + t2 = �U(0) = �1 and t1pm + t2pm+1 = �jU j = �pd+1 : (23)The solution to this system of linear equations ist1 = pd�m + pd�m�1 + � � �+ p and � t2 = pd�m + pd�m�1 + � � �+ 1 : (24)One even 
an show that exa
tly m of the t2 \many" moves of proje
tive dimension mare 
oordinate subspa
es heJi ( jJ j = m + 1 ), provided that U1 does not 
ontain anyaxis heji .In the important 
ase m = 1 (see [S
h1℄), one 
an further ignore the (m�1)-dimensional, i.e. 0-dimensional, moves heji , and just uns
rew the n light bulbshe1i; he2i; : : : ; heni ; they would be swit
hable individually, anyway. Therefore, inPBn�1;1r (Fq ) we obtain parti
ularly ni
e swit
hing rules: The lines that run troughat least one axis heji are the swit
hes (see Figure 3 at the end of the paper).If, as usual, we interpret any pattern U : Fq �! Z as pattern Fq\0 �! Z on thesmaller board Fqn\0 , our basis �B from above must 
ontain a basis of the module of allpatterns on this smaller board. We 
an prove the following analog to the both theorems2.4 and 4.2:the ele
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Theorem 4.6. Let f 2 Fqn , e.g. f = 0 . Then �B\ �Bhfi is a basis of the module of all ho-motety-invariant patterns over Fqn\0. The Z-submodule of m-swit
hable homotety-invari-ant patterns over Fqn\0 is saturated and has �B�m := f �Bhvi � v 2 Fqn with jker(v)j � m g �B�mas a basis.Proof. The rank of the free Z-module of homotety-invariant patterns over Fqn\0 is obvi-ously one smaller than the rank of the homotety-invariant patterns over Fqn . Therefore,it suÆ
es to prove that �B\ �Bhfi is a generating set. However, for ve
tors u 6= 0Xhvi2PGCn�1(Fq )(�1)jsupp(v)j �Bhvi(u) = Xv2Fqn(�1)jsupp(v)jB0;v(u)= Xv : vj2f0;ujg(�1)jsupp(v)j = XU�supp(u)(�1)jU j = 0 ; (25)so that Xhvi2PGCn�1(Fq )(�1)jsupp(v)j �Bhvi � 0 on Fqn\0 . (26)Hen
e, �B\ �Bhfi generates �Bhfi and �B and all the homotety-invariant patterns on Fqn\0 .To prove the se
ond statement, we observe that �B�m is a subset of the basis �B\Bhfiif f has full weight ( ker(f) = ; ). Hen
e, �B�m is linearly independent, and obviouslygenerates a submodule of m-swit
hable patterns. It even generates all m-swit
hable pat-terns. That is be
ause, any m-swit
hable (homotety-invariant) pattern U over Fnq \0
an be written as linear 
ombination of m-moves. This linear 
ombination 
an be viewedas m-swit
hable extension Û : Fnq �! Z of U : Fnq \0 �! Z to the full board Fqn . ByTheorem4.2, the homotety-invariant extension Û is generated by �B�m, so that U itselfis generated by �B�m , viewed as system of patterns on Fqn\0 .It would be desirable to �nd a \ni
e" 
omplement to the submodule of m-swit
hablepatterns, inside the Z-module of homotety-invariant patterns on Fqn\0 . One 
an showthat, if f is a �xed full weight ve
tor, a 
omplement is spanned by the linearly indepen-dent patterns hvi\0 with jker(v)j < m and hvi * hfi . Unfortunately, this 
omplementdepends on the 
hoi
e of f , it is somehow asymmetri
. A normal form based on thedes
ribed 
ompliment also would be asymmetri
. In PBCn�1;m the situation is di�erent,here we 
an de�ne a symmetri
 normal form Nm, based on the normal form Nm0 ofABn;m, via Nm(U1) := Nm0 (U)1 : (27)We would like to use this de�nition also in PBn�1;m, but the expression Nm0 (U) is notwell de�ned over Fqn\0 . If we just ignore the value U(0) of 0 , then we treat the patternsU and U + 
f0g as equal; U + 
f0g = U over Fqn\0 . In this sense, Nm0 (U + 
f0g)and Nm0 (U) would be two normal forms to the same pattern. The normal form Nm0 (U)for homotety-invariant patterns U on Fqn\0 would be unique only up to a multiple ofNm0 (f0g) = f0g|{z}� 0 onFqn\0 � Xv : jker(v)j�m(�1)jsupp(v)jB0;v = Xhvi2PGCn�1(Fq)ker(v)�m(�1)jsupp(v)j �Bhvi ; (28)the ele
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whi
h, in the spe
ial 
ase m = 1 , equals �(Fq\0)n. Transferred to PBn�1;m, this meansthat we obtain a normal form Nm(U1) of a pattern U1 : PGn�1(Fq ) �! Z via De�ni-tion (27), but it is only unique up to multiples of Nm0 (f0g)1 . Pra
ti
ally, we 
an transforma given pattern U1 : PGn�1(Fq ) 7�! Z into this normal form Nm(U1) in a similar man-ner as we des
ribed it for ABn;m after Theorem2.4. At �rst, we have to swit
h o� allproje
tive points hvi with jker(v)j � m . This 
an be done step by step. In ea
h step,we look for a \un�nished" point hvi with maximal jker(v)j , and use the 
omposed move�Bhvi = 
fvg[eker(v)��
eker(v)� to swit
h it o�. At the end, no proje
tive point hvi withjker(v)j � m is left, jker(v)j � m =) U1(hvi) = 0 ; (29)and the resulting normal form will be uniquely determined up to multiples of Nm0 (f0g)1 .An example is dis
ussed at the end of this se
tion, and illustrated in Figure 3.If q = 2 then every pattern is homotety-invariant and there is basi
ally no di�eren
ebetween the proje
tive and aÆne version of the game. The proje
tive game PBn�1;1(F2)without 
ounter is quite uninteresting. Any pattern U1 in PBn�1;1(F2) 
an be swit
hedo�, sin
e any pattern U in ABn;1(F2) 
an be swit
hed into a singleton 
f0g , whi
h isdis
arded in the proje
tive game.We want to study PBn�1;m(Fq ) with q 6= 2 . Sin
e we removed the arti�
ial 
ounter,we will need additional assumptions to prove a statement similar to Proposition 4.5. Wewill see that, if q 6= 2 , the property of being a linear subspa
es U � Fqn is strong enough.The main theorem about the maximal weight of the dual 
ode will hold in this 
ase aswell. To prove this, we will need the following lemma about AÆne Berlekamp; in whi
h,for any pattern U : Fqn �! Z and any ve
tor v 2 Fqn , the shifted pattern Mv(U) is Mv(U)de�ned pointwise via MvU(x + v) := U(x) for all v 2 Fqn . (30)Sin
e usually n 6= 1 , this de�nition of Mv will not 
ollide with our earlier de�nition ofM� , with � 2 Fq\0 . We provide:Lemma 4.7. Let q 6= 2 , r 2 f0; 2; 3; 4; : : :g and 
 2 Zr\0 . For homotety-invariantpatterns U : Fqn �! Zr the following swit
hability statements in ABn;mr hold:(i) U + 
fvg 
annot be swit
hed o�, for any 
hoi
e of v 2 Fqn ex
ept possibly v = 0 .(ii) U + 
f0g 
annot be swit
hed o�, if Mv(U) = U for one ve
tor v 2 Fqn\0 .Proof. The �rst part follows mainly from Lemma2.5. If ker(v) = ; , thenNm0 (
fvg) = 
fvg 6= 0 (31)and 
fvg 
annot be swit
hed o�. Hen
e, any single-light pattern 
fvg 
annot beswit
hed o�, even if ker(v) 6= ; , be
ause swit
hability obviously does not depend onthe relative position of a pattern on the board. Therefore,supp(Nm0 (
fvg) 6= ; (32)the ele
troni
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for any 
hoi
e of v 2 Fqn . Now, if j 2 supp(v) 6= ; then, for any � 2 Fq n f0; 1g ,x 2 supp(Nm0 (
fvg)) 2:5=) xj = vj =) �xj 6= vj 2:5=) �x =2 supp(Nm0 (
fvg)) :(33)Thus, Nm0 (
fvg) is not homotety-invariant, if q 6= 2 ; but Nm0 (U) is homotety-invariant,sin
e U is. Hen
e, Nm0 (U + 
fvg) = Nm0 (U) +Nm0 (
fvg) is not homotety-invariant and,in parti
ular, not zero, i.e., U + 
fvg 
annot be swit
hed o�.In order to prove the se
ond part, assume U = Mv U , then U + 
f0g is swit
hable ifand only if Mv(U + 
f0g) = U + 
fvg is swit
hable, but we already have seen that thisis not the 
ase.We also remark that any m-swit
hable patterns U : Fqn �! Z obviously ful�llsXv2Fqn U(v) � 0 (mod qm) ; (34)as any elementary m-move 
hanges this sum by �qm. (See [S
h1℄ for further invariants.)This would also lead to a simpler proof of some spe
ial 
ases of Lemma4.7. However, weneed the full generality of this lemma in order to show that PBn�1;m(Fq ) behaves similarto ABn�1;m(Fq ) (always provided that we study only linear subspa
es f0g 6= U � Fqn ,and q 6= 2 ). We 
an prove:Theorem 4.8. Let q 6= 2 and r 2 f0; 2; 3; 4; : : :g . Let U : Fqn �! Zr be a homotety-invariant pattern with Mv(U) = U for one ve
tor v 2 Fqn\0 . Then U 
an be swit
hedo� in ABn;mr if and only if its proje
tive 
opy U1 
an be swit
hed o� in PBn�1;mr .Proof. If U is swit
hable in ABn;mr then U1 is swit
hable in PBn�1;mr , sin
e it is swit
h-able even in PBCn�1;m, as we have seen in Proposition 4.5. Now assume that U1 
anbe swit
hed in PBn�1;mr , then U 
an be swit
hed into a pattern 
f0g in ABn;mr . Thus,U�
f0g 
an be swit
hed o�. However, by Lemma4.7, this is only possible for 
 = 0 2 Zr ,so that the swit
hability of U in ABn;mr follows.Using this 
onne
tion to AÆne Berlekamp, we 
an translate Theorem3.3 into theproje
tive language. We obtain:Theorem 4.9. Let q 6= 2 . For subspa
es U � Fqn , m 2 f1; 2; : : : ; n�1g , and r 2f2; 3; 4; : : :g not dividing jU j , the following are equivalent:(i) U? has maximal weight at most n�m .(ii) U1 
an be swit
hed o� in PBn�1;m.(iii) U1 
an be swit
hed o� modulo r , in PBn�1;mr .Proof. This follows from Theorem3.3 and Theorem4.8.the ele
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In both, Theorem4.9 and Theorem3.3, we assumed that r does not divide jU j . Itmight look more natural to assume r to be 
oprime to q , but our 
ondition is moregeneral. In general, one 
annot drop a 
ondition like this 
ompletely, as the followingexample in PB2;13 (F3) ( n = 3 , m = 1 , q = 3 , r = 3 ) shall demonstrate. We examinethe subspa
e U := h(1; 1; 1)i? � F33 . On one side, it has dual maximal weight 3 � n�m ,but, on the other side U1 is still m-swit
hable modulo 3 , as the reader may 
he
k in thefollowing pi
ture:

Figure 3: U1 := �h(1; 1; 1)i?�1 � PG2(F3 ) and its (up to multiples of Nm0 (f0g)1 unique) normal formN10 (U)1 , whi
h is modulo 3 equal to �(Fq\0)3�1 = �N10 (f0g)1 and equivalent to the zero pattern ;A
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