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tBennett et al. [2℄ presented a re
ursive algorithm to 
reate a family of partitionsfrom one or several partitions. They were mainly interested in the 
ases when webegin with a single square partition or with several partitions with only one part.The 
ardinalities of those families of partitions are the Catalan and ballot numbers,respe
tively. In this paper we present a non-re
ursive des
ription for those familiesand prove that the generating fun
tion of the size of those partitions is a Kostkanumber. We also present bije
tions between those sets of partitions and sets of treesand forests enumerated by the Catalan an ballot numbers, respe
tively.Introdu
tionThe Catalan numbers appear in a wide variety of settings, in
luding representation theory.While studying the 
ategory of �nite dimensional representations of the aÆne Lie algebraasso
iated to sl2 and trying to develop a theory of highest weight 
ategories, Chari andGreenstein ([3, 4℄) found that that one of the results required would be to prove that a
ertain module M` for the ring of symmetri
 fun
tions of ` variables was free, with rankgiven by the `th Catalan number.The module M` is generated by a family of polynomials p� indexed by partitionswith exa
tly ` parts. An algorithm is presented in [2℄ whi
h at the `th stage generates aparti
ular subset (denoted P`) of the set of all partitions with ` parts. It is proved bypurely algebrai
 methods that this subset has 
ardinality equal to the `th Catalan numberand it is 
onje
tured that the set fp� : � 2 P`g is a basis for M`. Chari and Greensteinalso present a more general algorithm whi
h gives rise to subsets of partitions Pm̀ with
ardinality equal to the ballot numbers b`;m.Chari and Loktev [6℄ de�ne modules Mk;� for the ring of symmetri
 fun
tions in nvariables and generated by polynomials p(r); r 2 Z�2+ � � � � � Z�n+1+ . They use the theoryof global Weyl modules of the 
urrent algebra of sln+1 to prove that Mk;� is free andhas a graded basis where the number of elements of a given grade is the 
oeÆ
ient ofthe ele
troni
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the 
orresponding power of q of a 
ertain Kostka polynomial, and show that it 
an beidenti�ed with a multipli
ity spa
e in the ring of polynomials in k variables. For n = 1,� = (`+m�1; `); k = 2`+m�1 andMk;� is pre
iselyM`;m. All their results were provedusing algebrai
 rather than 
ombinatorial methods, and for n > 1 there is no 
onje
tureregarding a set of generators for Mk;�.In this paper we present a 
ombinatorial approa
h to the results of Chari-Greenstein.As a 
onsequen
e, we are able to re
over their results and also to improve them in twodire
tions. Thus we 
an give a non-re
ursive des
ription of elements of the set Pm̀ in termsinequalities. We 
an prove that the generating fun
tion of the size of the partitions in Pm̀is a 
ertain Kostka polynomial. We do this by exhibiting an expli
it bije
tion betweenthis subset and a set of standard tableaux with two 
olumns.To make the 
onne
tion with the moduleM`;m, we note that that it admits a gradingby the non-negative integers given by the total degree of the polynomials and in fa
t therank of p� is exa
tly the size of �. Thus our result together with the results of Chari andLoktev suggest that the polynomials p� form a free basis for M`;m.The paper is organized as follows. In Se
tion 1 we re
all the algorithm de�ned in [2℄and state our main results: Theorems 1.3, 1.5 and 2.2. Se
tions 2 and 3 are devoted toproving these results. In Se
tion 4, we present an expli
it bije
tion between P` and theset of rooted trees with ` verti
es and similar results for Pm̀. We 
on
lude the paper witha very brief des
ription of the representation theory of aÆne algebras whi
h motivatedthis paper. The interested reader is referred to [2℄ and [5℄ for a more detailed exposition.A
knowledgementsThe author is grateful to M. Bennett, V. Chari, R.J. Dolbin and N. Manning for posingthe questions and for useful dis
ussions and suggestions, and to the annomymus refereefor interesting remarks and referen
es.1 NotationIn this se
tion we will present the relevant notation, as well as some Theorems taken from[2℄. Let N be the set of non-negative integers. Let [n℄ = f1; : : : ; ng for any positive integern. By a partition � we mean a weakly de
reasing sequen
e� = (�1; �2; : : : ; �n; : : : ); �1 � �2 � � � � � �n � : : :of non-negative integers su
h that �nitely many of the �i (known as the parts of �) arestri
tly positive. The number of parts is the length of � denoted by l(�). If a partitionhas length n we 
an write it as the �nite sequen
e � = (�1; �2; : : : ; �n). We denote theset of all partitions by P.the ele
troni
 journal of 
ombinatori
s 19 (2012), #P11 2



Given a partition � = (�1; �2; : : : ; �n) of length n and and positive integer �n+1 � �nset � [ (�n+1) = (�1; �2; : : : ; �n; �n+1):Given a set of partitions S of length n, let M(S) be the set of all partitions of lengthn+ 1 obtained by adding an extra part to a partition in S:M(S) = f� [ (j) : 0 < j � �n; � 2 Sg:For k; n 2 Z+, let Pn;k be the set of partitions of length n where no part is biggerthan k, i.e. Pn;k = f� 2 P : l(�) = n; �1 � kg:We 
an regard a partition � 2 Pn;k as a weakly de
reasing fun
tion � : [n℄! [k℄; i 7! �i,so we 
an write �(i) = �i:Let � : Pn;k ! Pn;k (or �k, if 
onfusion arises) be the 
omplement of � with respe
tto (nk+1), i.e., �(�1; � � � ; �n) = (k + 1� �n; � � � ; k + 1� �1):As a map [n℄! [k℄, �(�) is equal to the 
omposition 
k Æ � Æ 
n, where for every positiveinteger m, 
m : [m℄ ! [m℄ is an order-reversing bije
tion of order two de�ned by i 7!m+ 1� i.Fix m 2 Z+, and de�ne subsets Pm̀ � P`;`+m�1 byP1m = P1;m = ffjg : 1 � j � mg;Pm̀ =M(P`�1m ) [ �`+m�1(M(P`�1m )):Also set P` = P1̀.Example 1.1. P13 = f(1); (2); (3)g; M(P13 ) = f(12); (21); (22); (31); (32); (32)g andP23 = f(12); (21); (22); (31); (32); (32); (42); (43); (42)g.Example 1.2. P1 = f(1)g, P2 = f(12); (22)g, P3 = f(13); (221); (23); (322); (33)g, P4 =f(14); (2212); (231); (3221); (331); (24); (323); (423); (332); (4322); (34); (433); (4232); (44)gThe following theorem provides a non-re
ursive de�nition of the partitions in P`:Theorem 1.3. � 2 P` if and only if � : [`℄! [`℄ is de
reasing and satis�es the following
onditions for every i 2 [`℄:(i) If �(i) > i then �(�(i)) > i.(ii) If �(i) < i then �(�(i)) < i.In Theorem 2.2 we provide a similar 
hara
terization for the partitions in Pm̀:The ballot numbers are de�ned byb`;m = �2`+m` �� �2`+m`� 1 �:The following Theorem is proved in [2℄.the ele
troni
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Theorem 1.4 ([2℄, Se
tion 3.1). For `;m 2 Z+, we havejPm̀j = b`;m�1:In Se
tion 3 we prove a stronger result:Theorem 1.5. X�2Pm̀ qj�j = K(2`1m�1)(12`+m�1)(q)where the size of a partition � = (�1; �2; : : : ; �`), denoted by j�j is the sum of its parts�1 + �2 + � � �+ �` and the right-hand side is a Kostka polynomial.2 A non-re
ursive 
hara
terization using inequalitiesIn this se
tion we provide a non-re
ursive des
ription of the elements of Pm̀ using inequal-ities.As before, we regard elements of Pm̀ as weakly de
reasing fun
tions � : [`℄! [`+m�1℄.Here � = �m+`�1 so �(�) = 
m+`�1 Æ � Æ 
`.We de�net : [`℄� [`+m� 1℄! [`℄; t(r; s) = 8><>:s if s < r;r if r � s � m+ r � 1;s�m + 1 if s > m+ r � 1:t has the e�e
t of \
ompressing" a ` � (` + m � 1) re
tangle into an ` � ` square. Forexample, if ` = 5; m = 3, the values of t(r; s) are shown in Figure 1, where r and s aredisplayed verti
al and horizontally, respe
tively.
11111 222 33 4 555554444333221 1 12 2 23 3 34 4 45 5 5?r

-s
Figure 1: t : [5℄� [7℄! [5℄Let ~�(i) = t(i; �(i)), i.e.,~�(i) = 8><>:�(i) if �(i) < i;i if i � �(i) � m + i� 1;�(i)�m + 1 if �(i) > m+ i� 1:the ele
troni
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In general, ~� : [`℄ ! [`℄ is not a partition sin
e it is not weakly de
reasing. Thefollowing properties are easy to proveLemma 2.1.(a) t(r; s) < r if and only if s < r, and t(r; s) > r if and only if s > r +m� 1.(b) t Æ (
` � 
`+m�1) = 
` Æ �:(
) Let �� = �(�). Then 
` Æ e�� = ~� Æ 
`.Proof. (a) is 
lear from the de�nition. For (b), noti
e thatt(
`(r); 
`+m�1(s))= 8><>:`+m� s if `+m� s < `+ 1� r`+ 1� r if `+ 1� r � `+m� s � m+ (`+ 1� r)� 1(`+m� s)�m+ 1 if `+m� s > m + (`+ 1� r)� 1= 8><>:
`(s�m+ 1) if r +m� 1 < s
`(r) if r � s � m+ r � 1 = 
`(�(r; s))
`(s) if s < rThe 
on
lusion follows.(
) follows from Lemma (b) and the de�nition of ��:
`� e��(i)� = 
`(t(i; ��(i))) = t(
`(i); 
`+m�1(��(i))) = t(
`(i); �(
`(i))) = ~�(
`(i))Now we provide a 
hara
terization for Pm̀:Theorem 2.2. Let � 2 P`;`+m�1: Then � 2 Pm̀ if and only if ~� satis�es the following
onditions for every i 2 [`℄:(i) If ~�(i) > i then ~�(~�(i)) > i.(ii) If ~�(i) < i then ~�(~�(i)) < i.First we prove the following:Claim 2.3. � 2 P`;m+`�1 satis�es (ii) if and only if �(�) satis�es (i).Proof. Assume that � satis�es (ii) and that e��(i) > i where �� = �(�). From Lemma 2.1(
) and the fa
t that 
` is order-reversing we see that 
`(i) > 
`� e��(i)� = ~�(
`(i)) and asa 
onsequen
e of (i), 
`(i) > ~�(~�(
`(i))). Applying 
` again we get i < 
`(~�(~�(
`(i)))),but 
`(~�(~�(
`(i)))) = e��(
`(~�(
`(i)))) = e��� e��(i)�: The 
on
lusion follows.the ele
troni
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Proof of Theorem 2.2. First we prove by indu
tion that every � 2 Pm̀ satis�es (i) and(ii). If ` = 1 then (i) and (ii) are void sin
e ~�(1) = 1:Be
ause of Claim 2.3 we just have to 
onsider � = �[(j); 1 � j � �(`�1) to 
ompletethe indu
tion step. Clearly ~�(i) = ~�(i) 2 [` � 1℄ for i 2 [` � 1℄, and the premise of (i) isimpossible if i = `, so we just have to prove that (ii) holds for i = `. But ~�(`) < ` implies~�(~�(`)) = ~�(~�(`)) � `� 1 < ` sin
e ~� : [`� 1℄! [`� 1℄:Now we prove that if � 2 P`;m+`�1 is so that ~� satis�es (i) and (ii), then � 2 Pm̀. For` = 1 there is nothing to prove sin
e P1m = P1;m. Assume ` > 1. It is not possible tohave ~�(1) = ` and ~�(`) = 1 sin
e this would 
ontradi
t (i) and (ii). If ~�(1) = ` then iffollows from Lemma 2.1 (
) and Claim 2.3 that we 
an repla
e � by �(�). Therefore we
an assume that ~�(1) < `. From the de�nition of t if follows that �(1) < ` +m � 1 andtherefore no part of � is bigger than `+m� 1. So � = � n�` 2 P`�1;m+`�2 and it satis�es(i) and (ii). By the indu
tion hypothesis � 2 P`�1m and therefore � = � [ (�j) 2 Pm̀.One important 
ase is P` = P1̀. Sin
e ~� = � for m = 1, Theorem 2.2 implies Theorem1.3. The following Lemma provides an alternative 
hara
terization of P`.Lemma 2.4. A partition � 2 P`;` belongs to P` if and only if the following 
onditionsare satis�ed.(i0) There exists a positive integer b 2 [`℄ so that �(b) = b,(ii0) If 1 � i < b then �(�(i)) > i,(iii0) If b < i � ` then �(�(i)) < i .Proof. \(i),(ii) )(i0),(ii0),(iii0)": � Æ � : [`℄ ! [`℄ is weakly in
reasing sin
e � is weaklyde
reasing. It has a �xed point b sin
e the sequen
e j1; j2 : : : de�ned by j1 = 1; jm+1 =�(�(jm)) is weakly in
reasing and must stabilize. (i) and (ii) imply that �(b) = b. Sin
e� is weakly in
reasing, i < b (resp. i > b) implies that �(i) � �(b) = b > i (resp.�(i) � �(b) = b < i). and therefore �(�(i)) > i (resp. �(�(i)) < i).\(i0),(ii0),(iii0) ) (i),(ii)": If i � b then �(i) � �(b) = b � i. Therefore �(i) < i impliesi > b whi
h in turn implies �(�(i)) < i and similarly �(i) > i implies �(�(i)) > i.Remark 2.5. Similarly, for � 2 Pm̀ we 
an 
onsider the �xed points of ~�: let L =fi j ~�(i) > ig; M = fi j ~�(i) = ig; H = fi j ~�(i) < ig. We 
laim that L; M and H are(possibly empty) intervals. Assume that i 2 H and j > i. From Lemma 2.1 (a) we havethat i > ~�(i) = t(i; �(i)) whi
h implies i > �(i) and therefore j > i > �(i) � �(j). As a
onsequen
e ~�(j) = �(j) and j 2 H. Similarly, i 2 L and j < i imply j 2 L: This provesthat L; M and H are 
onse
utive intervals in [`℄. It is easy to see that ~�jL and ~�jH areweakly de
reasing.
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3 Kostka polynomialsKostka polynomials appear frequently in 
ombinatori
s and representation theory. Theyarise as the 
onne
tion 
oeÆ
ients between the S
hur and Hall-Littlewood polynomials:s� =X� K��(q)P�(q):The de�nition that we use in terms of the 
harge of a tableaux is due to Las
oux andS
h�utzenberger ([10℄). Let Tab(�; �) be the set of semistandard tableaux with shape �and 
ontent �. For any two partitions �; � of the same size, the Kostka polynomial isde�ned by K��(q) = XT2Tab(�;�) q
h(T )where 
h(T ) is the 
harge of T as de�ned in [10, 11℄. We will re
all the de�nition of
h(T ) where T 2 Tab(�; (1n)); n = j�j, i.e., where T is a standard tableaux. Let � be apermutation in Sn, regarded as a standard word in the letters 1; 2; : : : ; n. For any i 2 [n℄the 
harge value 
h(i) is de�ned as follows:
h(i) = 8><>:0 if i = 1
h(i� 1) if i is to the right of i� 1 in �
h(i� 1) + 1 if i is to the left of i� 1 in � :The 
harge of �, denoted 
h(�), is Pni=1 
h(i): If T is a standard tableaux, by readingT from right to left in 
onse
utive rows, starting from the top, we obtain a permutation�(T ), and 
harge of T is de�ned to be 
h(�(T )).The main result of this se
tion is that the generating fun
tion of the size of thepartitions in Pm̀ is a Kostka polynomial as in Theorem 3. The idea of the proof is toestablish a bije
tion between both Pm̀ and Tab((2`1m�1)(12`+m�1)) and sets of sequen
es ofnon-negative integers satisfying some inequalities. Those integers add up to the size of thepartition and the 
harge of the tableaux, respe
tively. The following example illustratesthe main idea.Example 3.1. The tableaux in Tab(221; 15), with their respe
tive words and 
harges are:T : 1 1 1 1 123 45 23 54 32 45 32 54 42 53�(T ): 21435 21534 31425 31524 41523
h: 10212 10211 10101 10201 10100
h(T ): 6 5 3 4 2Therefore K(q)(221;15) = q6 + q5 + q4 + q3 + q2:To 
al
ulate the sizes of the partitions in P22 , we 
ount the number of boxes perdiagonal:the ele
troni
 journal of 
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� : (1,1) (2,1) (2,2) (3,2) (3,3)j�j : 2 3 4 5 6& & & & && & &11 0 0 & & &11 1 0 & & &12 1 0 & & &12 1 1 & & &12 2 1
Therefore P�2P22 qj�j = q6 + q5 + q4 + q3 + q2:It is easy to see that there is a bije
tion between the 
harge values (ex
ept 0 = 
h(1))of the words in Tab(221; 15) and the number of boxes in the diagonals in the partitions inP22 :Proof of Theorem 3. For any partition � with ` parts of size at most `+m� 1, we regardits Young diagram as 
ontained in an ` � (` + m � 1) box. Number the 2` + m � 2diagonals using numbers between �`+ 1 and `+m� 2, as indi
ated in Figure 3. De�nea : f� : l(�) = `; �1 � ` +m � 1g ! N2`+m�2 ; � 7! (a�`+1; a�`+2; : : : ; a`+m�2) where aithe number of boxes if the diagram of � in the ith diagonal.&&&&&&&&&&&&-4-3-2-1

0 1 2 3 4 5 6 ` = 5; m = 3� = (5432)a(�) = (1; 2; 2; 3; 4; 3; 2; 1; 1; 0; 0)
Figure 2: An example of a : f� : l(�) = `; �1 � `+m� 1g ! N2`+m�2Lemma 3.2.(a) A sequen
e (a�`+1; a�`+2; : : : ; a`+m�2) 2 N2`+m�2 is in a(f� : l(�) = `; �1 � `+m�1g) if and only if a�l+1 = 1; a`+m�2 2 f0; 1g; aj+1�aj 2 f0; 1g if j = 0; : : : ; m+`�3,and aj+1 � aj 2 f0;�1g if j = �` + 1; : : : ;�1.(b) A sequen
e (a�`+1; a�`+2; : : : ; a`+m�2) satisfying the 
onditions in part (a) is ina(Pm̀) if and only if a�j > am+j for j = 0; : : : ; `� 2:Proof. To prove the \only if" part, re
all the de�nition of the Frobenius symbol of apartition � (see [1℄): if its Young diagram has h squares in the diagonal, its Frobeniussymbol is de�ned as �d1; : : : ; dhe1; : : : ; eh�where di and ei are the number of squares to the right of and below, respe
tively, the ithdiagonal square. The number of squares in the diagonal of � is a0. Sin
e the entries inea
h of the rows of the Frobenius symbol are weakly de
reasing they 
an be regarded aspartitions, and it is easy to see that (a�1; : : : ; a�`) and (a1; : : : ; a`+m�2) are 
onjugate tothe ele
troni
 journal of 
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(e1; : : : ; eh) and (d1; : : : ; dh), respe
tively. The entries in ea
h of the rows of the Frobeniussymbol are distin
t and therefore their 
onjugates satisfy that 
onse
utive parts di�er byat most 1 and 
learly a�`+1 = 0. The 
onverse is similar. This proves (a).For (b), let ~� as in se
tion 2.2. Consider a(~�) = (~a�`+1; : : : ; ~a`�1). Clearly ~a�j = a�jand ~aj = am+j�1 for j = 0; : : : ; `� 1: So we have to prove that ~� satis�es the 
onditionsin Theorem 2.2 if and only if ~a�j > ~aj+1 for j = 0; : : : ; ` � 2: It is not hard to see that~aj = maxfr j ~�(r) � j + rg and ~a�j = maxfr j ~�(j + r) � rg.Assume that ~� satis�es the 
onditions in Theorem 2.2. We are to prove that fr j ~�(r) �j +1+ rg ( fr j ~�(j + r) � rg. To prove the in
lusion, assume on the 
ontrary that thereis in an r so that ~�(r) � j + 1 + r > r and ~�(j + r) < r � r + j, so using the notation inRemark 2.5, r 2 L and r + j 2 H. Sin
e L and H are intervals 
ontaining the lower andhigher numbers in [n℄ and ~� is weakly de
reasing when restri
ted to those intervals, then~�(j + r) < r implies that ~�(~�(j + r)) � ~�(r) > j + r, 
ontradi
ting ~�(~�(j + r)) < r + j.This proves that ~a�j � ~aj+1. If the equality holds, 
onsider s = ~a�j = ~aj+1, i.e.,~�(j + s) � s; ~�(s) � j + s+1 but ~�(j + s+1) < s+1; ~�(s+1) < j + s+2. This impliesthat ~�(s) > s and ~�(j+s+1) < j+s+1 so s 2 L and j+s+1 2 H: Sin
e ~�(j+s+1) � sthen ~�(~�(j + s+ 1)) � ~�(s) � j + s+ 1, 
ontradi
ting that ~�(~�(j + s+ 1)) < j + s+ 1.To prove the 
onverse, assume that ~aj+1 < ~a�j, i.e., maxfr j ~�(r) � j + 1 + rg �maxfr j ~�(j + r) � rg for j = 0; : : : ; ` � 2; and we want to prove that the 
onditions inTheorem 2.2 hold. If ~�(i) > i, let j = ~�(i)� i� 1 � 0. Then i 2 fr j ~�(r) � j + 1+ rg soi � ~aj+1 < ~a�j. This implies that i + 1 2 fr j ~�(j + r) � rg so ~�(~�(i)) = ~�(j + i + 1) �i+ 1 > i: That if ~�(i) < i then ~�(~�(i)) < i is proved analogously.Now we establish a bije
tion between Tab(2`1m�1)(12`+m�1)) and a sequen
e of non-negative integers.Lemma 3.3. For T 2 Tab(2`1m�1)(12`+m�1)), let x1; : : : ; x`+m�1 and y1; : : : ; y` be theentries in the �rst and se
ond 
olumns of of T , respe
tively, and let b1; : : : ; b`+m�1 and
1; : : : ; 
` and be their their 
harge values. Then the following are true:1. b1 = 0; bi+1 � bi 2 f0; 1g; i = 1; : : : ; `+m� 2,2. 
1 = 1; 
i+1 � 
i 2 f0; 1g; i = 1; : : : ; `� 1; bi < 
i; i = 1; : : : ; `� 13. b`+m�1 � 
` 2 f0; 1g.Conversely, two sequen
es satisfying these 
onditions form the list 
harge values of atableau in Tab(2`1m�1)(12`+m�1)).Proof. The word of T is y1; x1; y2; x2; : : : ; y`; x`; x`+1; : : : ; x`+m�1 and that T is standardmeans that x1 < x2 < � � � < x`+m�1; y1 < y2 < � � � < y` and x1 < y1; : : : ; x` < y`. Clearlyb1 = 
h(1) = 0 and 
1 = 
h(y1) = 1: bi+1 � bi sin
e xi+1 is larger and to the right ofxi. If xi+1 = xi + 1 then bi+1 = bi. If xi+1 > xi + 1 then xi + 1 = yj for some j � iand furthermore yj; : : : ; yi are pre
isely the 
onse
utive numbers between xi and xi+1.Therefore 
h(xi)+1 = 
h(yj) = � � � = 
h(yi) = 
h(xi+1). This proves that bi+1�bi 2 f0; 1g.Similar 
onsiderations prove 
i+1 � 
i 2 f0; 1g. That bi > 
i follows from the fa
t thatthe ele
troni
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yi is greater and to the left of xi. Sin
e the y` > x1; : : : ; x`+m�1; y1; : : : ; y`+m�1 thenb`+m�1 � 
` 2 f0; 1g.For the 
onverse, note that it is possible to re
onstru
t the word whose 
harge valuesare 
1; b1; 
2; b2; : : : ; 
`; b`; b`+1; : : : ; b`+m�1as follows: �nd all the zeroes, from left to right they 
orrespond to the �rst numbers1; 2; 3; : : : . Then �nd the ones and 
ontinue on with the next numbers that have notbeen used and so forth. It is 
lear that the inequalities for b1; : : : ; b`+m�1 and 
1; : : : ; 
`imply those for x1; : : : ; x`+m�1 and y1; : : : ; y` so that we get the word of a standardtableaux.To 
omplete the proof of Theorem 1.5, noti
e that there is a bije
tion between thesequen
es des
ribed in Lemmas 3.3 and 3.2 (b): the sequen
e (b1; : : : ; b`+m�1; 
1; : : : ; 
`)
orresponds to the sequen
e (
1; 
2; : : : ; 
`; b`+m�1; b`+m�2; : : : ; b2) 2 a(Pm̀). Under thisbije
tion, a partition � 2 Pm̀ 
orresponds to a tableaux of 
harge j�j sin
e j�j is equal tothe sum of the elements of a(�) whi
h in turn is equal to the sum of the 
harge values ofthe asso
iated tableaux.Example 3.4. Let � be the partition in Figure 3, so a(�) = (1; 2; 2; 3; 4; 3; 2; 1; 1; 0; 0).We 
an re
over the standard word with 
harge values equal to 0; 1; 0; 2; 0; 2; 1; 3; 1; 4; 2; 3:i 1 4 2 7 3 8 5 10 6 12 9 11
h(i) 0 1 0 2 0 2 1 3 1 4 2 3This word 
orresponds to the following standard tableaux:
119653
21 1210874

4 Trees, forests and Catalan numbersIn this se
tion we will de�ne a bije
tion between P` (resp. Pm̀) and a family enumeratedby the Catalan (resp. ballot) numbers. The Catalan numbers appear in various 
ount-ing problems, see [15℄ for a 66 interpretations of the Catalan numbers. Some of thesegeneralize to the ballot numbers.Consider the set T` of pairs (T�; T+) of rooted trees with a total of `� 1 edges. Thesepairs are in bije
tion with trees with ` edges: 
utting the rightmost bran
h from the root
reates su
h a pair, and vi
eversa, we 
an atta
h a tree as the rightmost subtree of thethe ele
troni
 journal of 
ombinatori
s 19 (2012), #P11 10



7! 0BBBBBB� ; 1CCCCCCA 2 T`
Figure 3: Cutting a tree in two.root (See Figure 3 for an example). Therefore there are 
` pairs of rooted trees with atotal of `� 1 edges. We will establish a bije
tion between T` and P`.The generalized Catalan numbers are de�ned by the formula Ck;
(n) = 
nk+
�kn+
n �(see [8, 7, 15℄). Ck;
(n) is the number of ordered forests with 
 k-ary trees and with totalnumber of n internal verti
es. The ballot numbers are a spe
ial 
ase of the generalizedCatalan numbers sin
e b`;m�1 = C2;m(`). Therefore b`;m�1 is the number of ordered forestswith m binary trees and with total number of ` internal verti
es, or equivalently, thenumber of ordered forests with m trees and with total number of ` edges, sin
e there is abije
tion between binary trees with n verti
es and rooted trees with n edges. As before,we 
an 
ut non-empty trees to obtain pairs of trees. We will use this to establish Theorem1.4.4.1 P` and TreesNow we des
ribe how to 
reate an element of P` from a pair of rooted trees (T�; T+).Number the levels of both trees so that the roots are lo
ated in level 1. Starting from thedeepest level and moving up and from left to right, label the verti
es of the odd levelsof T� and the even levels of T+ 
onse
utively with the numbers 1; 2; 3 : : : , and label theverti
es of the even levels of T� and the odd levels of T+ 
onse
utively with the numbers`; ` � 1; l � 2 : : : : Then label the roots of T� with b�, where b 2 [`℄ is the only numberthat has not been used so far. To de�ne � : [`℄ ! [`℄ let �(i) be the parent of i (if theparent of i is b�, de�ne �(i) = b), and �(b) = b.Example 4.1. Consider the pair of trees in Figure 3. After numbering the nodes, we getthe pair of trees in Figure 4.The 
orresponding partition isthe ele
troni
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ombinatori
s 19 (2012), #P11 11



9�111 2 314 4 105
9+6 713 12 8

Figure 4: A pair of labeled treesi 1 2 3 4 5 6 7 8 9 10 11 12 13 14�(i) 11 11 11 11 10 9 9 9 9 9 9 7 7 3Lemma 4.2. The map � : [`℄! [`℄ obtained by this pro
ess is a partition in P`.Proof. To simplify the notation, let L = [b� 1℄; H = [`℄ n [b℄: We have to prove that � isweakly de
reasing and satis�es the 
onditions in Lemma 2.4.It is 
lear form the 
onstru
tion that �(b) = b, i 2 L implies �(i) =2 L, and i 2 Himplies �(i) =2 H. Let 1 � i � j < `. If i 2 L and j 2 H then �(i) 2 fbg [ H and�(j) 2 fbg [ L. Therefore �(i) � �(j): Similar 
onsiderations hold if one among i; j isequal to b. Assume that i; j 2 L. Then either i is lo
ated at a level deeper than j, or theyare in the same level but i is to the left of j, and the same is true about their parents.But their parents �(i); �(j) 2 fbg [ H, and therefore �(i) � �(j). A similar argumentworks if we assume i; j 2 H.The 
onditions in Lemma 2.4 say(i) �(b) = b:(ii) i 2 L) �(�(i)) > i:(iii) i 2 H ) �(�(i)) < i:(i) follows from the 
onstru
tion of �. If i 2 L then either �(�(i)) is two levels abovei and therefore �(�(i)) > i, or �(i) = b, so �(�(i)) = b > i. Similar 
onsiderations workif i 2 H:The pro
ess 
an be reversed: for � 2 P` let b be its �xed point, and L; H as before.We de�ne a pair of trees (T�; T+) with i 2 ([l℄ n fbg) [ fb�; b+g as vertex set. The rootof T� is b�, and the edges are drawn a

ording to the following rules:1. If i 2 [l℄ n fbg and �(i) 6= b, we draw an edge i! �(i).2. If i 2 L and �(i) = b, we draw an edge i! b+.3. If i 2 H and �(i) = b, we draw an edge i! b�.the ele
troni
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The verti
es in L (resp. H) are organized in
reasingly (resp. de
reasingly) from left toright. This pro
edure 
reates a bije
tion between T` and P`Example 4.3. The following are the 14 = C4 pairs of rooted trees with 3 edges.

The following are the labeling of the nodes following the algorithm des
ribed before,and the 
orresponding partitions. These are in fa
t the 14 partitions in P41 :2� 2+14 3
� = (2; 2; 1; 1) 3� 3+14 2 � = (3; 3; 3; 1)

3� 3+1 24
� = (3; 3; 3; 2) 3� 3+241

� = (4; 3; 3; 2)
4� 4+1 2 3 � = (4; 4; 4; 4) 2�314

2+ � = (3; 2; 2; 1)
3�41 2 3+ � = (4; 4; 3; 3) 3�41 3+2 � = (4; 3; 3; 3)

the ele
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2�3 2+14
� = (2; 2; 2; 1) 3�4 3+1 2 � = (3; 3; 3; 3)

2�41 3 2+ � = (4; 2; 2; 2) 2�4 31 2+ � = (3; 2; 2; 2)
2�4 3 2+1 � = (2; 2; 2; 2) 1�4 3 2 1+ � = (1; 1; 1; 1)
Now we want to des
ribe the a
tion of � : P` ! P`. � repla
es the label i by `+1� i,ex
ept b� and b+ whi
h are repla
ed by (`+1�b)+ and (`+1�b)�, respe
tively. The twotrees ex
hange positions and the levels that 
ontained the in
reasing sequen
e 1; 2; 3; : : :now 
ontain the de
reasing sequen
e `; `� 1; `� 2; : : : and vi
eversa.Example 4.4. Consider the partition in Example 4.1:� = (11; 11; 11; 11; 10; 9; 9; 9; 9; 9; 9; 7; 7; 3)�(�) = (12; 8; 8; 6; 6; 6; 6; 6; 6; 5; 4; 4; 4; 4)Their 
orresponding pairs of trees are shown in Figure 5.4.2 Pm̀ and forestsNow we des
ribe how to asso
iate to � 2 Pm̀ am-tuple of (possibly empty) pairs of rootedtrees.The roots of the pairs of trees are going to be fb� j b 2Mg[fb+ j b 2Mg. The verti
esthat are not roots are going to be L[H: The edges are drawn a

ording to the followingrules:1. If i 2 L [H and �(i) =2M , we draw an edge i! ~�(i).2. If i 2 L and ~�(i) = b 2M , we draw an edge i! b+.3. If i 2 H and ~�(i) = b 2M , we draw an edge i! b�.Now we pair the trees with roots b�; b+ (b 2 M), and we say that this pair is the (m ��(b) + b)-th one. Clearly b 2 M implies m � �(b) + b 2 [m℄ by the de�nition of t, andif b < b0 then m � �(b) + b < m � �(b0) + b0, so di�erent pairs have di�erent positionsbetween 1 and m.the ele
troni
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9�111 2 314 4 105
9+6 713 12 8

6+9 82 3 7 6�414 13 121 11 510Figure 5: The a
tion of �Example 4.5. Consider the following partition � 2 P244 :i 1 2 3 4 5 6 7 8 9 10 11 12�(i) 22 22 22 21 21 21 21 20 17 17 17 16i 13 14 15 16 17 18 19 20 21 22 23 24�(i) 16 15 15 15 14 14 13 12 6 3 3 3Here, L = f1; : : : ; 12g; M = f13; 14; 15g; H = f16; : : : ; 24g and ~� : [24℄! [24℄ isi 1 2 3 4 5 6 7 8 9 10 11 12~�(i) 19 19 19 18 18 18 18 17 14 14 14 13i 13 14 15 16 17 18 19 20 21 22 23 24~�(i) 13 14 15 15 14 14 13 12 6 3 3 3This map determines 6 trees:13�191 2 324 23 22
13+12 14�184 5 621 7 178

14+11 10 920
15�16 15+
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The pairs with 13�; 14� and 15� as roots are the �rst, third and fourth, respe
tively,while the se
ond pair is empty. These 4 pairs of trees 
orrespond to a forest with 4 treesand total number of 24 edges:T1 = T2 = T3 = T4 =
Clearly the pro
ess 
an be reversed, and to every forest with m trees and with totalnumber of ` edges we 
an asso
iate an element of Pm̀.5 Representations of sln+1 and global Weyl modulesLet `; m be non-negative integers and set k = 2`+m� 1. Let�k = Z[x1; : : : ; xk℄Skbe the ring of symmetri
 fun
tions. Let 
omp(�) � Z+̀ be the set of 
ompositions in theS` orbit of the partition � of length `. Following [2℄, de�ne polynomialsp�(x1; : : : ; x2`) = X��2
omp(�)(x��11 � x��12 ) : : : (x��̀2`�1 � x��̀2` )LetM`;m be the �k-submodule of C [x1 ; : : : ; xk℄ spanned by the polynomials fp(�) j� 2Z+̀g. This module was studied in [2, 3, 4, 5, 6℄ in 
onne
tion with the 
ategory of �nite-dimensional representations of the 
urrent algebra of sl2.The following 
onje
ture was posed by Bennet et al.Conje
ture 5.1 ([2℄). M`;m is a free �k-module with basis fp� j� 2 Pm̀g.In [[2℄℄ the 
onje
ture was veri�ed for all m if ` = 1; 2 and for ` = 3; 4 for m = 1; 2.For example, when m = 1; ` = 2 then P21 = f(1; 1); (2; 2)g, p(1;1)(x1; x2; x3; x4) =(x1�x2)(x3�x4) and p(2;2)(x1; x2; x3; x4) = (x21�x22)(x23�x24). For � 2 Z2+ we have that,up to a fa
tor of 2 if �1 = �2;p�(x1; x2; x3; x4) = (x�11 � x�12 )(x�23 � x�24 ) + (x�21 � x�22 )(x�13 � x�14 )That p� is generated by p(1;1) and p(2;2) 
an be proved using that p(1;1) is a fa
tor of p�,p(2;2) = (x1 + x2)(x3 + x4)p(1;1) and Pi<j xixj � (x1 + x2)(x3 + x4) = x1x2 + x3x4:The following theorem was re
ently proved by Chari and Loktev.Theorem 5.2 ([6℄). M`;m is a free �k-module graded module and the generating fun
tionof the degree of the generators is the Kostka polynomial K(2`1m�1)(12`+m�1).the ele
troni
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Thus our results prove that the polynomials fp(�) j� 2 Pm̀g have the right degree. Itremains to prove that they are indeed a free basis. Chari and Loktev's 
onventions areslightly di�erent from ours sin
e we work with the transpose partitions.S
hur's duality establishes a 
orresponden
e between irredu
ible representations of glnand Young diagrams with at most n rows. Kostka polynomials appear in [5℄ in 
onne
tionto the graded 
hara
ter 
hq of modules over the loop algebra sl2[q℄: Let V (r) be theirredu
ible sl2-module with highest weight r. Then
hq �V (1)
k� = X`;m�02`+m�1=kK(2`1m�1)(12`+m�1)(q)
h(V (m)):(On
e again, our 
onventions are di�erent than the ones in their paper). This formulahas a generalization to sln+1. It would be interesting to �nd a free basis for Mk;� when� has parts longer than 2. The results of Chari and Loktev in [6℄ indi
ate the number ofgenerators and their degree in terms of Kostka polynomials, but there is no 
onje
tureregarding a free basis.The right-hand side of Theorem 1.5 
an be rewritten using q-binomial 
oeÆ
ients as�2`+m` �q � �2l +m`� 1 �qThis is the sl2 
ase of a formula expressing the Kostka polynomial as a sum over generalizedq-binomial 
oeÆ
ients. In the language of [13℄ or of [16℄, these generalized q-binomialsare 
alled antisymmetri
 supernomials.This poses some questions:In the sl2 
ase one would expe
t to �nd set Rm̀ in su
h a way that Rm̀ �R`�1m+2 = Pm̀:More importantly, in the sl2 
ase, there should also be a bije
tion between the partitionsin Pm̀ and the path des
ription of the sl2 
ase of the Kostka polynomial given by [12℄,possibly in a way similar to the bije
tion in Se
ion 3. The generating fun
tion of Kostkain terms of su
h paths is pre
isely what gives rise the the above-mentioned formula forthe Kostka polynomials.A bije
tion in the sl2 
ase 
ould provide with an important 
lue as to how to generalizethe set Pm̀ to sln. This 
ould ultimately lead to a new 
ombinatorial des
ription of thegeneral Kostka polynomial, and may also shed light on the problem of 
onstru
ting a freebasis of Mk;� for � having parts ex
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