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Abstract

Let G be a group and X be a G-space with the action G�X ! X, (g; x) 7! gx.

A subset F of X is called a kaleidoscopical con�guration if there exists a coloring

� : X ! C such that the restriction of � on each subset gF , g 2 G, is a bijec-

tion. We present a construction (called the splitting construction) of kaleidoscopi-

cal con�gurations in an arbitrary G-space, reduce the problem of characterization

of kaleidoscopical con�gurations in a �nite Abelian group G to a factorization of

G into two subsets, and describe all kaleidoscopical con�gurations in isometrically

homogeneous ultrametric spaces with �nite distance scale. Also we construct 2c

(unsplittable) kaleidoscopical con�gurations of cardinality c in the Euclidean space

R
n.
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Introduction

Let X be a set and F be a family of subsets of X (the pair (X;F) is called a hypergraph).
Following [4], we say that a coloring � : X ! � of X (i.e. a mapping of X onto a cardinal
�) is

� F-surjective if the restriction �jF is surjective for all F 2 F;

� F-injective if �jF is injective for all F 2 F;

� F-bijective or F-kaleidoscopical if �jF is bijective for all F 2 F.

A hypergraph (X;F) is called kaleidoscopical if there exists an F-kaleidoscopical color-
ing � : X ! �. The adjective \kaleidoscopical" appeared in de�nition [5] of an s-regular
graph �(V;E) (each vertex v 2 V has degree s) admitting a vertex (s+ 1)-colloring such
that each unit ball B(v; 1) = fu 2 V : d(u; v) = 1g has the vertices of all colors (d is a
path metric on V ). These graphs can be considered as a graph counterpart of Hamming
codes [6].

We shall consider hypergraphs related to a G-space. Let G be a group. A G-space is a
set X endowed with an action G�X ! X, (g; x) 7! gx. All G-spaces are suppose to be
transitive (for any x; y 2 X there exists g 2 G such that gx = y). For a subset A � X,
we put G[A] = fgA : g 2 Gg.

A subset A � X is called a kaleidoscopical con�guration if the hypergraph (X;G[A]) is
kaleidoscopical (in words, if there exists a coloring � : X ! jAj such that �jgA is bijective
for every g 2 G).

In Section 1 we show that kaleidoscopical con�gurations are tightly connected with
classical combinatorial theme Transversality and, in the case X = G and (left) regular
action of G on G, with factorization problem, well known in Factorization Theory of
Groups, see [12], [13].

In Section 2 we introduce and describe the kaleidoscopical con�gurations (called split-
table) which arise from the chains of G-invariant equivalences (imprimitivities) on X. If
a G-space X is primitive (the only G-invariant equivalences on X are X � X and �X)
then the splittable con�gurations in X are only X and the singletons.

In Section 3 we prove that every kaleidoscopical con�guration in an isometrically
homogeneous metric space with �nite distance scale is splittable. For n � 2, we construct
a plenty of kaleidoscopical con�gurations of cardinality c in Rn. These con�gurations are
non-splittable because Rn is isometrically primitive. We don't know whether there exists
a �nite non-singleton or countable kaleidoscopical con�gurations in Rn, n � 2.

In Section 4 we study the problem of splittability of kaleidoscopical con�gurations in
�nite Abelian groups and reformulate this problem in terms of the semi-Haj�os property,
which is a weak version of the Haj�os property well-known in the factorization theory of
groups [12], [13].

We note also that kaleidoscopical con�gurations in a sense are antipodal to mono-
chromatizable con�gurations de�ned and studied in [4, Chapter 8]: a subset A of a G-
space X is called monochromatizable if, for any �nite coloring of X, there exists g 2 G
such that gA is monochrome.
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1 Transversality and factorization

Let (X;F) be a hypergraph. A subset T � X is called an F-transversal if jF
T
T j = 1 for

each F 2 F.

Proposition 1.1. A hypergraph (X;F) is kaleidoscopical if and only if X can be parti-
tioned into F-transversals.

Proof. For a kaleidoscopic hypergraph (X;F), let � : X ! � be a kaleidoscopical coloring.
Then X =

F
�<� �

�1(�) is a partition of X into F-transversal.
On the other hand, if X =

F
�<� T� is a partition of X into F-transversal subsets, then

the coloring � : X ! � de�ned as �(x) = �, x 2 T� is kaleidoscopical.

Let X be a G-space, A be a kaleidoscopical con�guration in X. If T is G[A]-transversal
then A is G[T ]-transversal and gT is G[A] transversal for each g 2 G.

We say that a kaleidoscopical con�guration A in X is homogeneous if there exist a
G[A]-transversal T and a subset H � X such that X =

F
h2H hT .

A subset A of a group G is de�ned to be complemented in G if there exists a subset
B � G such that the multiplication mapping � : A � B ! G, (a; b) 7! ab, is bijective.
Following [13], we call the set B a complementer factor to A, and say that G = AB is a
factorization of G. In this case, we have the partitions

G =
G
a2A

aB =
G
b2B

Ab:

A subset A � G is called doubly complemented if there are factorization G = AB = BC
for some subsets B;C of G.

Proposition 1.2. For two subsets A;B of a group G the following conditions are equiv-
alent:

1. B is G[A]-transversal;

2. G = AB�1 is a factorization of G.

Proof. (1) ) (2) For each g 2 G, g�1A \ B 6= ;, so g 2 AB�1. If g = a1b
�1
1 = a2b

�1
2 for

some a1; a2 2 A, b1; b2 2 B, then g�1a1 = b1 and g�1a�1
2 = b2 and by (1), b1 = b2 and

a1 = a2, witnessing that G = AB�1 is a factorization of G.

(2)) (1) Fix any g 2 G. The inclusion g�1 2 AB�1 implies gA \ B 6= ;. If ga1 = b1
and ga2 = b2 for some a1; a2 2 A, b1; b2 2 B, then g�1 = a1b

�1
1 = a2b

�1
2 and by (2),

b1 = b2, witnessing that jgA \Bj = 1.

Corollary 1.3. Each kaleidoscopical con�guration in a group G is complemented.

Proof. Given a kaleidoscopical con�guration A � G, �x an A-kaleidoscopical coloring
� : G ! C. We choose a color c 2 C, consider the monochrome class B = ��1(b) � G
and observe that for every g 2 G jgA \ Bj = 1 by the de�nition of A-kaleidoscopical
coloring. By Proposition 1.2, G = AB�1 is a factorization, so A is complemented in
G.
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Proposition 1.4. A subset A of a group G is doubly complemented if and only if A is a
homogeneous kaleidoscopical con�guration.

Proof. Let G = AB = BC be factorizations of G. By Proposition 1.2, B�1 is a G[A]-
transversal. Since G =

F
c2C c

�1B�1, we conclude that A is a homogeneous kaleidoscopical
con�guration.

Let A be a homogeneous kaleidoscopical con�guration. We choose a G[A]-transversal
T and a subset H � G such that G =

F
h2H hT . By proposition 1.2, G = AT�1. Since

G =
F
h2H hT , G = T�1H�1 is a factorization. Hence, A is doubly complemented.

Corollary 1.5. For a subset A of an Abelian group G, the following statements are
equivalent:

1. A is complemented;

2. A is a kaleidoscopical con�guration;

3. A is a homogeneous kaleidoscopical con�guration.

Question 1.6. Is each complemented subset of a (�nite) group kaleidoscopical?

Proposition 1.7. Let X be a transitive G-space, x 2 X, Gx = fg 2 G : gx = xg,

x : G ! X, 
x(g) = gx, s : X ! G be a section of 
x. Let A be a subset of X, T be a
G[A]-transversal. Then

1. s(T ) is a G[
�1
x (A)]-transversal;

2. jGj = jGxjjAjjT j.

Proof. The statement (1) is evident. The statement (2) follows from (1) and Proposi-
tion 1.2.

Corollary 1.8. Let A be a kaleidoscopical con�guration in a �nite transitive G-space
X with a kaleidoscopical coloring � : G ! k. Then ��1(0) = � � � = ��1(k � 1) and
jXj = jAjj��1(0)j.

Proof. We may suppose that G is a subgroup of the group of all permutations of X so G
is �nite. Since jGj = jXjjGxj, we can apply Proposition 1.7(2).

Proposition 1.9. Let � be an in�nite cardinal, (X;F) be a hypergraph such that jFj = �
and jF j = � for each F 2 F. If jF \ F 0j < cf� for all distinct F; F 0 2 F then there is a
disjoint family T of F-transversals such that jTj = � and jT j = � for each T 2 T

Proof. We enumerate F = fF� : � < �g and choose inductively the subsets fV� � F� :
� < �g such that the family fF� nV� : � < �g is disjoint and jF� nV�j = � for each � < �.
Let F� n V� = ft�� : � < �g, T� = ft�� : � < �g. Then T = fT� : � < �g is the desired
family.
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For a hypergraph (X;F), x 2 X and A � X, we put

St(x;F) =
[
fF 2 F : x 2 Fg;

St(A;F) =
[
fSt(a; F ) : a 2 Ag:

Proposition 1.10. A hypergraph (X;F) is kaleidoscopical provided that, for some in�nite
cardinal �, the following two conditions are satis�ed:

1. jFj � � and jF j = � for each F 2 F;

2. for any subfamily A � F of cardinality jAj < � and any subset B � X n (
S
A) of

cardinality jBj < � the intersection St(B;F) \ (
S
A) has cardinality less than �.

Proof. Let � = jFj and F = fF� : � < �g be an injective enumeration of F. By induction
we shall construct a trans�nite sequence (�� : F� ! �)�<� of bijective colorings such that
for any ordinals � < � < �

(1��) the colorings �� and �� coincide on F� \ F�;

(2��) no distinct points a 2 F� and b 2 F� with ��(a) = ��(b) lie in some hyperedge
F 2 F.

Assume that for some ordinal 
 < � we have constructed a sequence of colorings
(��)�<
 satisfying the conditions (1��) and (2��) for all � < � < 
.

Let us de�ne a bijective coloring �
 : F
 ! �. First we show that the union

F 0


 =
[
�<


F
 \ F�

has cardinality jF 0


j < �. Observe that for each � < 
 we get F� 6� F
. Assuming
conversely that F� ( F
 and taking any point v 2 F
nF� we conclude that the intersection
F� \ St(v;F) � F� \ F
 = F� has cardinality � �, which contradicts the condition (2) of
the theorem.

Therefore, for each � < 
 we can choose a point v� 2 F� n F
. Then for the set
B = fv� : � < 
g the set F 0


 � F
 \ St(B;F) has cardinality jF
0


j � jF
 \ St(A;F)j < �
according to (2).

For every point x 2 F
 nF
0


 and every ordinal � < 
, we consider the sets St(x;F)\F�
and C�(x) = ��(St(x;F) \ F�) � �. The condition (2) implies that the set C(x) =S
�<
 C�(x) has cardinality jC(x)j < �.
Let � be any well-ordering on the set F
 such that F 0


 coincides the initial segment
fx 2 F
 : x < yg for some point y 2 F
. Consider the coloring �
 : F
 ! � de�ned by
�
(x) = ��(x) if x 2 F
 \ F� for some � < 
 and

�
(x) = minf� n (C(x) [ f�(y) : y � xg)g

if x 2 F
 n F
0


.
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Let us show that the coloring �
 : F
 ! � is bijective. The injectivity of �
 follows
from the de�nition of �
 and the conditions (2��), � < � < 
.

The surjectivity of �
 will follow as soon as we check that for each color c 2 �n�
(F
0


)
the set F
(c) = fx 2 F
 n F

0


 : c 2 C(x)g has cardinality < �. Observe that c 2 C(x) if
and only if there is � < 
 and a point a 2 F� n F
 such that ��(a) = c and x 2 St(a;F).
The set Ac =

S
�<
 �

�1
� (c) n F
 has size jAcj � 
 < �, and by the condition (2), the set

F
(c) � F
 \St(Ac;F) has cardinality < �. This completes the proof of the bijectivity of
the coloring �
.

The conditions (1�
) and (2�;
) for all � < 
 follow from the de�nition of the coloring
�
. This completes the inductive step of the construction of the sequence (��)�<�.

After completing the inductive construction, let � : V ! � be any coloring such that
�jF� = �� for all � < �. The conditions (1��) guarantee that the coloring � is well-
de�ned. The bijectivity of the colorings ��, � < �, ensures the kaleidoscopicity of the
coloring �.

We conclude this section with short discussion of possibilities of transfering above
notions and results to quasigroups.

We recall that a quasigroup is a set X endowed with a binary operation � : X�X ! X
such that, for every a; b 2 X, the system of equations a � x = b, y � a = b has a unique
solution x = anb, y = b=a in X.

In an obvious way the notion of a kaleidoscopical con�guration generalizes to quasi-
group.

A subset A of a quasigroup X is called

� kaleidoscopical if there is a coloring � : X ! C such that �jx�A : x � A ! C is
bijective for all x 2 X;

� complemented if there is a subset B � X such that the right division � : B�A! X,
�(b; a) = b=a is bijective;

� doubly complemented if there exists a complemented subset B � X such that the
multiplication � : A�B ! X, �(a; b) = a � b, is bijective;

� self-complemented if the maps � : A�A! X, �(x; y) = x � y, and � : A�A! X,
�(x; y) = x=y, are bijective.

It follows from the proof of Proposition 1.2 that each kaleidoscopical subset in a quasigroup
is complemented. In contrast, Proposition 1.4 does not generalize to quasigroup.

Example 1.11. There exists a quasigroup X of order jXj = 9 that contains a self-
complemented subset A � X, which is not kaleidoscopical.

Proof. It is well-known that �nite quasigroups can be identi�ed with Latin squares, i.e.,
n�nmatrices whose rows and columns are permutations of the set f1; : : : ; ng. For r; s � n
an (r � s)-matrix (xij) is called a partial Latin (r � s)-rectangle if xij 2 f1; 2; : : : ; ng and
xlj 6= xij 6= xik for any 1 � i 6= l � r and 1 � j 6= k � s. By the result of Ryser [7]
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(see also Lemma 1 in [1, p.214]) each partial latin (r� s)-rectangle can be completed to a
Latin (n�n)-square if and only if each number i 2 f1; : : : ; ng appears in the rectangle not
less than r+ s� n times. This extension result allows us to �nd a quasigroups operation
on X = f1; : : : ; 9g whose multiplication table has the following �rst three columns:

� 1 2 3
1 1 4 5
2 6 2 7
3 8 9 3
4 4 1 6
5 5 6 1
6 2 7 8
7 7 8 2
8 3 5 9
9 9 3 4

Looking at this table we can see that the set A = f1; 2; 3g is self-complemented as
A � A = X = A=A. Assuming that A is kaleidoscopical, �nd a coloring � : X ! A such
that �jx�A is bijective for each x 2 X. Since 1 � A = f1; 4; 5g and 4 � A = f4; 1; 6g, the
elements 5 and 6 have the same color, which is not possible as 5 �A = f5; 6; 1g and �j5�A
is bijective.

2 Splitting

In this section we present a simple construction of kaleidoscopical con�gurations in arbi-
trary G-space, called the splitting construction. Kaleidoscopic subsets constructed in this
way will be called splittable.

First we recall some de�nitions. A mapping ' : X ! Y between G-spaces is called
equivariant if '(gx) = g '(x) for all g 2 G and x 2 X. It is easy to see that each
equivariant mapping between transitive G-spaces is surjective and homogeneous.

A function ' : X ! Y is de�ned to be homogeneous if it is �-to-1 for some non-zero
cardinal �. The latter means that j'�1(y)j = � for all y 2 Y .

Proposition 2.1. Let � be a non-zero cardinal, � : X ! Y be an �-to-1 equivariant
mapping between two G-spaces and s : Y ! X be a section of '. Let K � Y be a
kaleidoscopic subset and � : Y ! C be an K-kaleidoscopical coloring. Then:

1. the preimage �K = ��1(K) is a kaleidoscopical con�guration in X with respect to
any coloring �� : X ! C � � such that for each y 2 Y the restriction ��j'�1(y) :
��1(y)! f�(y)g � � is bijective;

2. the image ~K = s(K) is a kaleidoscopical con�guration in X with respect to the
~K-kaleidoscopical coloring ~� = � � � : X ! C.
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Proof. 1. Given any element g 2 G, we need to check that the restriction ��jg �K : g �K !
C � � is bijective. To see that it is surjective, take any color (c; �) 2 C � � and using the
surjectivity of �jgK : gK ! C, �nd a point y 2 gK with �(y) = c. Since the restriction
��j��1(y) : �

�1(y)! fcg�� is bijective, there is a point x 2 ��1(y) � ��1(gK) = g �K with
��(x) = (c; �), so ��jg �K is surjective.

To see that it is injective, take any two distinct points x; x0 2 g �K. If �(x) = �(x0),
then for the point y = �(x) = �(x0) 2 g�(K) = �(gK) the injectivity of the restriction
��j��1(y) implies that ��(x) 6= ��(x0). If �(x) 6= �(x0), then the injectivity of �jgK guarantees
that �(�(x)) 6= �(�(x0)) and then ��(x) 6= ��(x0) as ��(x) 2 f�(�(x))g � � and ��(x) 2
f�(�(x0))g � �.

2. Given any element g 2 G, we need to check that the restriction ~�jg ~K : g �K ! C is
bijective. To see that ~�jg ~K is surjective, observe that

~�(g ~K) = � � �(g ~K) = �(g �( ~K)) = �(gK) = C

by the surjectivity of �jgK : gK ! C.
To see that ~�jg ~K is injective, take any two distinct points x; x0 2 ~K = s(K) and

observe �(x) 6= �(x0). Since � is equivariant, �(gx) = g�(x) 6= g�(x0) = �(gx0). Since
�(gx); �(gx0) 2 gK and �jgK is injective, ~�(x) = �(�(gx)) 6= �(�(gx0)) = ~�(�(gx0)) are
we are done.

Iterating the constructions from Proposition 2.1, we get the splitting construction of
kaleidoscopical con�gurations.

Proposition 2.2. Let X0 ! X1 ! � � � ! Xm be a sequence of G-spaces linked by
homogeneous G-equivariant mappings �i : Xi ! Xi+1, i < m. Let Ki � Xi, i � m, be
subsets such that for every i < m either the restriction �ijKi

: Ki ! Ki+1 is bijective or
else Ki = ��1

i (Ki+1). If the set Km is kaleidoscopic in the G-space Xm, then for every
i � m the set Ki is kaleidoscopic in the G-space Xi.

Proof. This proposition can be derived from Proposition 2.1 by the reverse induction on
i 2 fm;m� 1; : : : ; 0g.

Proposition 2.2 can be alternatively written in terms of invariant equivalence relations.
Given an equivalence relation E � X�X on a set X let X=E = f[x]E : x 2 Xg be the

quotient space consisting of the equivalence classes [x]E = fy 2 X : (x; y) 2 Eg, x 2 X.
Denote by qE : X ! X=E, qE : x 7! [x]E, the quotient mapping. For a subset K � X let
K=E = f[x]E : x 2 Kg � X=E and [K]E =

S
x2K

[x]E � X.

Let E be an equivalence relation on a set X. A subset K � X is de�ned to be

� E-parallel if K \ [x]E = [x]E for all x 2 K;

� E-orthogonal if K \ [x]E = fxg for all x 2 K.

Given two equivalence relations E � F on X we can generalize these two notions de�ning
K � X to be
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� F=E-parallel if [K]E \ [x]F = [x]F for all x 2 K;

� F=E-orthogonal if [K]E \ [x]F = [x]E for all x 2 K.

Observe that a set K � X is E-parallel (E-orthogonal) if and only if it is E=�X-parallel
(E=�X-orthogonal). Here �X = f(x; x) : x 2 Xg stands for the smallest equivalence
relation on X.

An equivalence relation E on a G-space X is called G-invariant if for each (x; y) 2 E
and any g 2 G we get (gx; gy) 2 E. For a G-invariant equivalence relation E on X the
quotient space X=E is a G-space under the induced action

G�X=E ! X=E; (g; [x]E) 7! [gx]E

of the group G. In this case the quotient projection q : X ! X=E is equivariant. G-
Invariant equivalence relations on G-spaces are also called imprimitivities.

Proposition 2.3. Let �X = E0 � E1 � � � � � Em be a sequence of G-invariant equiva-
lence relations on a transitive G-space X. A subset K � X is kaleidoscopic provided

1. the projection K=Em is kaleidoscopic in the G-space X=Em;

2. for every i < m the set K is Ei+1=Ei-parallel or Ei+1=Ei-orthogonal.

Proof. For every i � m consider the G-space Xi = X=Ei and the subset Ki = K=Ei in
Xi. Since E0 = �X , the space X0 coincides with X. Next, for every i < m, consider the
equivariant mapping �i : Xi ! Xi+1, �i : [x]Ei 7! [x]Ei+1 . This mapping is homogeneous
because of the transitivity of the G-space Xi.

We claim that the mappings �i satisfy the requirements of Proposition 2.2. Indeed,
if K is Ei+1=Ei-parallel, then Ki = ��1

i (Ki+1). If K is Ei+1=Ei-orthogonal, then the
restriction �ijKi

: Ki ! Ki+1 is bijective.
Now Proposition 2.2 implies that the set K = K0 is kaleidoscopic in X = X0.

Proposition 2.3 suggests the following notion that will be cenral in our subsequent
discussion.

De�nition 2.4. A (kaleidoscopic) subset K in a G-space X is called splittable if there is
an increasing sequence of G-invariant equivalence relations

�X = E0 � E1 � � � � � Em = X �X

such that for every i < m the set K is either Ei+1=Ei-parallel or Ei+1=Ei-orthogonal.

Proposition 2.3 implies that each splittable subset in a transitive G-space is kaleido-
scopic. What about the inverse implication?

Problem 2.5. For which G-spaces X, every kaleidoscopical con�guration K � X is
splittable?
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3 Kaleidoscopical con�gurations in metric spaces

Here we consider each metric space (X; d) as a G-space endowed with the natural action
of its isometry group G = Iso(X). If this action is transitive, then the metric space X is
called isometrically homogeneous.

Let us recall that a metric space (X; d) is ultrametric if the metric d satis�es the strong
triangle inequality

d(x; z) � maxfd(x; y); d(y; z)g

for all x; y; z 2 X. It follows that for every " � 0 the relation

E" = f(x; y) 2 X2 : d(x; y) � "g � X �X

is an invariant equivalence relation on X.

Theorem 3.1. Let (X; d) be an isometrically homogeneous ultrametric space with the
�nite distance scale d(X � X) = f"0; "1; : : : ; "ng where 0 = "0 < "1 < : : : < "n. Then
every kaleidoscopical con�guration K in X is (E"0 ; E"1 ; : : : ; E"n)-splittable.

Proof. Assume conversely that K is not (E"0 ; E"1 ; : : : ; E"n)-splittable. Then for some
k < n the set K is neither E"k+1=E"k-parallel nor E"k+1=E"k-orthogonal. We can assume
that k is the smallest number with that property. By [x]"i we shall denote the closed
"i-ball [x]E"i centered at a point x 2 X.

Since K is not E"k+1=E"k-orthogonal, there are two points u; v 2 K such that "k <
d(u; v) = "k+1. Since K is not E"k+1=E"k-parallel, there are points w 2 K and z 2 X such
that "k < infx2K d(z; x) = d(z; w) = "k+1.

Since X is isometrically homogeneous, we can �nd an isometry ' : X ! X such that
'(w) = z. Then '([w]"k) = [z]"k and we can de�ne an isometry � : X ! X letting

�(x) =

8><
>:

'(x) if x 2 [w]"k ;

'�1(x) if x 2 [z]"k ;

x otherwise:

The isometry � swaps the balls [w]"k and [z]"k but does not move points outside the union
[w]"k [ [z]"k . Since K is �-kaleidoscopic, the restrictions �j�(K) and �jK are bijections
onto C. Consequently, �(w) = �(z0) for some point z0 2 [z]"k . Taking into account that
d(w; z0) = d(w; z) = "k+1 = d(u; v) and X is an isometrically homogeneous ultrametric
space, we can construct an isometry  : X ! X such that  (u) = w and  (v) = z0. For
this isometry, w; z0 2  (K) and hence �j (K) is not injective, contradicting the choice of
the coloring �.

Problem 3.2. Let f0; 1g! be the Cantor space endowed with the standard ultrametric
generating the product topology. Describe all kaleidoscopical con�gurations in f0; 1g!.

Remark 3.3. All closed kaleidoscopical con�gurations in f0; 1g! can be characterized
with usage of Theorem 3.1. Among them there are plenty of non-splittable con�gurations.

the electronic journal of combinatorics 19 (2012), #P12 10



A G-space X is called primitive if each G-invariant equivalence relation on X is either
�X or X �X. Thus, each splittable con�guration K in a primitive G-space X is trivial,
i.e. either K = X or K is singleton. It is natural to ask whether every kaleidoscopical
con�guration in a primitive G-space is trivial?

The answer to this question is a�rmative if X is 2-transitive in the sense that for any
pairs (x; y); (x0; y0) 2 X2 n�X there is g 2 X such that (x0; y0) = (gx; gy).

An example of a primitive G-space, which is not 2-transitive is the Euclidean space
Rn of dimension n � 2 endowed with the action of its isometry group Iso(Rn). We show
that Rn contain 2c unsplittable kaleidoscopical con�gurations of cardinality c.

To construct a kaleidoscopic subset in Rn, use Proposition 1.10 and the following
auxiliary de�nition.

Let (X; d) be a metric space. By S(x; r) = fy 2 X : d(x; y) = rg we denote the sphere
of radius r centered at a point x 2 X.

De�nition 3.4. A subset K of a metric space (X; d) is called rigid if for any distinct
points x; y; z 2 K and numbers rx; ry; rz 2 d(K�K) the spheres S(x; rx), S(y; ry), S(z; rz)
have no common point in X nK.

Theorem 3.5. Let X be a metric space and G � Iso(X) be a group of isometries of X.
Each in�nite rigit subset K � X of cardinality jKj � jGj is kaleidoscopical.

Proof. The kaleidoscopicity of the set K will follow from Proposition 1.10 as soon as we
check that the hypergraph (V;F) = (X; fgK : g 2 Gg) satis�es the conditions (1){(2) for
the cardinal � = jKj. Since jGj � � = jKj = jgKj for all g 2 G, the condition (1) is
satis�ed.

To show that (2) holds, take any subset A � G of cardinality jAj < � and any subset
B 2 X n AK of cardinality jBj < �. We need to show that jSt(B;F) \ AKj < �.
This will follow from maxfjAj; jBjg < � as soon as we check that jSt(b;F) \ aKj � 2
for every b 2 B and a 2 A. Assuming conversely that St(b;F) \ aK contains three
pairwise distinct points x; y; z we shall obtain a contradiction with rigidity of K because
d(b; x); d(b; y); d(b; z) 2 d(K �K) and b is the common point of the spheres S(x; d(b; x)),
S(y; d(b; y)), S(z; d(b; z)).

To apply Theorem 3.5, we need an e�ective construction of rigid subsets in metric
spaces.

Lemma 3.6. Any algebraically independent over Q subset A of an a�ne line (identi�ed
with R) in the Euclidean space Rn is rigid.

Proof. Let a; b; c be pairwise distinct points of A, b 2 [a; c], x 2 Rn n A and d(x; a) = ra,
d(x; b) = rb, d(x; c) = rc. Since cos(\abx) = � cos(\cbx), by the cosines theorem, we get

(�) (c� b)(b� a)2 + (c� b)r2b � (c� b)r2a + (b� a)(c� b)2 + (b� a)r2b � (b� a)r2c = 0.

Assuming ra; rb; rc 2 d(A;A) and taking into account that at most two of the three
numbers ra; rb; rc can be equal, after corresponding substitutions and opening all brackets
in (�), we get a contradiction with algebraic independence of A.
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Now we are able to prove the promised:

Theorem 3.7. For n > 1 the Euclidean space Rn contains 2c many kaleidoscopic subsets.

Proof. Apply Theorem 3.5 and Lemma 3.6.

Problem 3.8. Does the Euclidean space Rn of dimension n � 2 contain a non-trivial
�nite or countable kaleidoscopical subset?

If such a set K exists, then its cardinality jKj is not less that the chromatic number
of Rn.

We recall that the chromatic number �(X) of a metric space X is equal to the smallest
number � of colors for which there is a coloring of X without monochrome points at the
distance 1. It is known that 4 � �(R2) � 7 but the exact value of �(R2) is not known.
There is a conjecture that �(Rn) = 2n+1 � 1, see [10, x47].

Problem 3.9. Is every �nite kaleidoscopical con�guration in a (�nite) primitive G-space
trivial?

Some examples of in�nite G-spaces with only trivial �nite kaleidoscopical con�gura-
tions can be found in [4, Chapter 8]

A space Rn can also be considered as a G-space with respect to the group G =
A�(Rn) = f�x+a : � 2 Rnf0g; a 2 Rng of all a�ne transformations. The kaleidoscopical
con�gurations K of cardinality jKj < c in this space are singletons because any line that
contains more then one point of a kaleidoscopical con�guration has no distinct points
of the same color. On the other hand, every a�ne subspace of Rn is kaleidoscopical.
Moreover, using Proposition 1.10, we can construct 2c non-splittable a�ne kaleidoscopical
con�guration of size c in Rn for n > 1.

Restricting ourself with only translations of Rn, we get a kaleidoscopical con�guration
of any size �, 1 � � � c. It follows from well-known decomposition of Rn in the direct
sum of rationals and the observation that Z has a kaleidoscopical con�guration of any
�nite size.

4 Haj�os properties in groups and G-spaces

In this section we reveal the relation of splittability of kaleidoscopical con�gurations in
�nite Abelian groups to the Haj�os property introduced in [2] and studied in [8], [12], [13].

We recall that an Abelian group G has the Haj�os property if for each factorization
G = AB either A or B is periodic. A subset A of a group G is called periodic if A = gA
for some non-identity element g 2 G. Finite Abelian groups with Haj�os property were
classi�ed in [8]:

Theorem 4.1 (Haj�os-Sands). A �nite Abelian group G has the Haj�os property if and
only if G is isomorphic to a subgroup of a group that has one of the following types:

(pn; q), (p2; q2), (p2; q; r), (p; q; r; s), (p; p), (p; 3; 3), (32; 3),
(p3; 2; 2), (p2; 2; 2; 2), (p; 22; 2), (p; 2; 2; 2; 2), (p; q; 2; 2), (2n; 2), (22; 22),

where p < q < r < s are distinct primes and n 2 N.
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A group G is of type (n1; : : : ; nk) if G is isomorphic to the direct sum of cyclic groups
Cn1� � � �� Cnk .

Now let us de�ne two weakenings of the Haj�os property.

De�nition 4.2. An Abelian group G is de�ned to have

� the semi-Haj�os property if each complemented subset A ( G either is periodic or
has a periodic complementer factor in G;

� the demi-Haj�os property if for each factorization G = AB one of the factors A;B
either is periodic or has a periodic complementer factor.

It is clear that for each Abelian group G

Haj�os ) semi-Haj�os ) demi-Haj�os:

Problem 4.3. Is the semi-Haj�os property of �nite Abelian groups equivalent to the demi-
Haj�os property?

The demi-Haj�os property was (implicitly) de�ned in [9] and follows from the quasi-
periodicity of any factorization of the group. In contrast to the Haj�os property, at the
moment we have no classi�cation of �nite Abelian groups possessing the demi-Haj�os
property. It is even not known if each �nite cyclic group has the demi-Haj�os property,
see Problem 5.4 in [13]. The best known positive result on the semi-Haj�os property is the
following version of Theorem 5.13 [13]:

Theorem 4.4 (Szab�o, [11]). Each �nite Abelian group G of square-free order jGj has the
semi-Haj�os property.

We say that a number n is square-free if n is not divisible by the square p2 of any
prime number p.

Surprisingly, the following problem of Fuchs and Sands [3, p.364], [9], [13, p.120] posed
in 60-ies still is open:

Problem 4.5. Has each �nite Abelian group the demi-Haj�os property?

The \semi" version of this problem also is open:

Problem 4.6. Has each �nite Abelian group the semi-Haj�os property?

The semi-Haj�os property is tightly connected with the splittability of kaleidoscopical
con�gurations. In order to state the precise result, let us generalize the de�nition of the
semi-Haj�os property to G-spaces.

De�nition 4.7. A G-space X has the semi-Haj�os property if for each kaleidoscopical
subset K ( X there is a G-invariant equivalence relation E 6= �X on X such that K is
E-parallel or E-orthogonal and the set K=E is kaleidoscopical in the G-space X=E.
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For �nite Abelian groups this de�nition of the semi-Haj�os property agrees with that
given in De�nition 4.2.

Proposition 4.8. A �nite Abelian group G has the semi-Haj�os property if and only if it
has that property as a G-space.

Proof. Assume that the group G has the semi-Haj�os property. To show that the G-space
G has the semi-Haj�os property, take any kaleidoscopical subset A � G. By Corollary 1.5,
A is complementable and hence has a complementer factor B. Since G has the semi-Haj�os
property, either A is periodic or else A has a periodic complementer factor. In the latter
case we can assume that the complementer factor B is periodic. Consequently there is a
non-trivial cyclic subgroup H � G such that either A+H = A or B +H = B. Consider
the quotient group G=H and the quotient homomorphism q : G! G=H. By Lemma 2.6
of [13], the images A=H = q(A) and B=H = q(B) form a factorization G=H = A=H �B=H
of the quotient group G=H. Consequently, the set A=H is complemented in G=H and by
Corollary 1.5, it is kaleidoscopical in G=H.

The subgroup H induces a G-invariant equivalence relation E = f(x; y) 2 G : x� y 2
Hg whose quotient space G=E coincides with the quotient group G=H. We claim that
the set A is either E-parallel or E-orthogonal. By the choice of the group H, we get
A = A+H or B = B +H. In the �rst case the set A is E-parallel. In the second case A
is E-orthogonal as (A� A) \H � (A� A) \ (B �B) = f0g.

Now assuming that the G-space G has the semi-Haj�os property, we shall prove that
the group G has the semi-Haj�os property. Given any complemented subset A � G we
need to show that either A is periodic or else A has a periodic complementer factor. By
Corollary 1.5, the set A is kaleidoscopical in the G-space G. The semi-Haj�os property
of the G-space G guarantees the existence of a G-invariant equivalence relation E 6= �G

on G such that A is E-parallel or E-orthogonal and A=E is kaleidoscopical in G=E.
It follows that the equivalence class H = [0]E of zero is a subgroup of the group G.
Taking into account that E is G-invariant, we conclude that (x; y) 2 E i� x � y 2 [0]E.
So, G=E coincides with the quotient group G=H. The set A=H, being kaleidoscopical,
is complemented in G=H according to Corollary 1.5. Consequently, there is a subset
BH � G=H such that G=H = A=H �BH . Let q : G! G=H be the quotient mapping and
s : G=H ! G be any section of q.

Now consider two cases. If A is E-parallel, then A = A +H is periodic and comple-
mented as B = s(BH) is a complementer factor to A in G. If A is E-orthogonal, then the
complete preimage B = q�1(BH) is a periodic complementer factor to A in G.

Now we reveal the relation between the semi-Haj�os property and the splittability of
kaleidoscopical sets.

Proposition 4.9. If each kaleidoscopical subset of a transitive G-space X is splittable,
then X has the semi-Haj�os property.

Proof. To show thatX has the semi-Haj�os property, �x any kaleidoscopical subsetK � X.
By our assumption, K is (E0; : : : ; Em)-splittable by some increasing chain of invariant
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equivalence relations �X = E0 � � � � � Em = X � X. For every i � m consider the
quotient G-space Xi = X=Ei and let qi : X ! Xi be the quotient projection. Also
let Ki = qi(K) � Xi. By Proposition 2.2, Ki is kaleidoscopical in the G-space Xi. In
particular, K1 is kaleidoscopical in X1 = X=E1. By De�nition 2.4, K = K0 is either
E1-parallel or E1-orthogonal. This means that X has the semi-Haj�os property.

Theorems 3.1 and Proposition 4.9 imply

Corollary 4.10. Each isometrically homogeneous ultrametric space with �nite distance
scale has the semi-Haj�os property.

A G-space Y is de�ned to be a quotient of a G-space X if Y is the image of X under
a G-equivariant mapping f : X ! Y .

Proposition 4.11. Each kaleidoscopical subset of a G-space X is splittable provided that:

1. each quotient G-space of X has the semi-Haj�os property and

2. X admits no strictly increasing in�nite sequence (En)n2! of G-invariant equivalence
relations.

Proof. Assume that some kaleidoscopical subset K � X is not splittable. Let K0 = K,
E0 = �X , and X0 = X=E0 = X. Since X has the semi-Haj�os property, there is a
G-invariant equivalence relation E1 6= �X on X0 such that the set K1 = K0=E0 is
kaleidoscopical in the G-space X1 = X0=E1 and K0 is either E1-parallel or E1-orthogonal.

By our assumption, K is not splittable, so X1 is not a singleton. The G-space
X1 = X=E1, being a quotient of X, has the semi-Haj�os property. Consequently, for
the kaleidoscopical set K1 � X1 there is a G-invariant equivalence relation ~E2 6= �X1

on
X1 such that the set K1 is ~E2-parallel or ~E2-orthogonal and the quotient set K2 = K1= ~E1

is kaleidoscopical in the G-space X2 = X1= ~E1. Let q
1
2 : X1 ! X2 be the quotient projec-

tion. The composition q12 � q1 : X ! X2 determines the G-invariant equivalence relation
E2 = f(x; x0) 2 X2 : q12 � q1(x) = q12 � q1(x

0)g on X such that X=E2 = X2 and K2 = K=E2

and K1 is either E2=E1-parallel or E2=E1-orthogonal.
Continuing by induction, we shall produce an in�nite increasing sequence (En)n2! of

G-invariant equivalence relations on X such that for every n 2 N the set Kn = K=En
is kaleidoscopical in the G-space X=En and K is either En=En�1-parallel or En=En�1-
orthogonal. But the existence of an in�nite strictly increasing sequence of G-invariant
equivalence relations on X contradicts our assumption.

Since each quotient group of a �nite Abelian group G is isomorphic to a subgroup of
G, Proposition 4.11 implies:

Corollary 4.12. If each subgroup of a �nite Abelian group G has the semi-Haj�os property,
then each kaleidoscopical subset K � G is splittable.

Question 4.13. Assume that a �nite Abelian group G has the semi-Haj�os property. Has
each subgroup of G that property?
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The classi�cation of �nite Abelian groups with Haj�os property given in Theorem 4.1
implies that this property is inherited by subgroups. Because of that, Corollary 4.12
implies:

Corollary 4.14. For a �nite Abelian group G with the Haj�os property, each kaleidoscop-
ical subset K � G is splittable.

Also Proposition 4.11 and Theorem 4.4 imply:

Corollary 4.15. For a �nite Abelian group G of square-free order jGj each kaleidoscopical
subset K � G is splittable.

Remark 4.16. It follows from Proposition 4.9 and Corollary 4.12 that Question 4.13 and
Problem 4.6 are equivalent (and both are open and apparently di�cult).

According to an old result of Haj�os [2], if in a factorization Z = A+B of the in�nite
cyclic group Z the factor A is �nite, then the factor B is periodic. We do not know if the
same is true for the groups Zn with n � 2.
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