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Abstract

In this paper, we propose a new network reliability measure for some particular kind
of service networks, which we refer to as domination reliability. We relate this new
reliability measure to the domination polynomial of a graph and the coverage prob-
ability of a hypergraph. We derive explicit and recursive formulæ for domination
reliability and its associated domination reliability polynomial, deduce an analogue
of Whitney’s broken circuit theorem, and prove that computing domination relia-
bility is NP-hard.

Keywords: reliability, domination, decomposition, inclusion-exclusion, broken cir-
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1 Introduction
All graphs considered in this paper are finite, undirected, and simple. We writeG = (V,E)
to denote that G is a graph having vertex set V and edge set E. We also use V (G) and
E(G) to denote the vertex set and edge set of G, respectively. Throughout, we assume
that the vertices of G are subject to random and independent failure according to some
given probability distribution, whereas the edges are perfectly reliable. One can think
of each vertex as a service provider offering some kind of service to that vertex and its
neighbours. Failure of a vertex does not mean that the vertex is not alive; it just means
that the service provider on that vertex is not available. If that happens, the service
provider of a neighbouring vertex will do the job provided, of course, it is available. The
probability that each vertex is served by an available service provider thus corresponds to
the probability that the operating vertices of the graph constitute a dominating set of the
graph, that is, a subset X of V where each vertex v ∈ V \X is adjacent to some vertex
in X, in which case we say that v is dominated by X. We refer to this probability as
the domination reliability of G. Note that this quantity depends on G and the individual
vertex operation probabilities pv = 1− qv, v ∈ V . We use DRel(G,p) where p = (pv)v∈V
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to denote the domination reliability of G. If all vertex operation probabilities are equal
to p, we write DRel(G, p) rather than DRel(G,p). Throughout this paper, q = 1− p for
any p ∈ [0, 1]V , and q = 1− p for any p ∈ [0, 1].

The concept of domination reliability is closely related to that of the domination
polynomial introduced by Arocha and Llano [5]; see also [1–4] for some recent results.

This paper is organized as follows. In Sections 2 and 3, we consider the general case
where vertex operation probabilities need not be equal. In Section 2, we derive splitting
formulæ for sums and joins of vertex-disjoint graphs and a vertex decomposition formula.
The latter forms the basis of a recursive algorithm for computing a modified domination
reliability measure for bipartite graphs, which in turn can be used to compute the domi-
nation reliability of any graph by constructing its neighbourhood graph. In Section 3, we
derive an inclusion-exclusion expansion for the general case, and an analogue of Whitney’s
broken circuit theorem, which is well-known in chromatic graph theory. In Section 4, we
consider the particular case where all vertex operation probabilities are equal to p, where
p is some formal constant. It turns out that, in this case, the domination reliability of any
graph is a polynomial in p, which we refer to as the domination reliability polynomial. We
give explicit and recursive formulæ for the domination reliability polynomial for particu-
lar classes of graphs, and show that some non-isomorphic graphs cannot be distinguished
by their domination reliability polynomial. In Section 5, we establish a close relationship
with the aforementioned domination polynomial due to Arocha and Llano [5] and draw
some conclusions from our results on domination reliability to the domination polynomial.
In Section 6, we prove that computing the domination reliability polynomial, and hence
domination reliability in general, is NP-hard. Section 7 is devoted to the hypergraph
reliability covering problem introduced by Ball, Provan, and Shier [6] (see also [14]),
which is shown to be equivalent to computing domination reliability of graphs. The final
section contains some concluding remarks.

2 Decomposition techniques
We start our investigation of domination reliability with the general case where the vertex
operation probabilities need not be equal. Recall from the above that we assume that the
associated events are mutually independent.

Subsequently, we derive decomposition formulæ for sums and joins of vertex-disjoint
graphs. Recall that the sum of any two vertex-disjoint graphs G = (V,E) and H = (W,F )
is defined by G+H := (V ∪W,E ∪F ). The join G ∗H of any two vertex-disjoint graphs
G and H is obtained from their sum by adding an edge between any vertex of G and
any vertex of H. In the particular case, where G and H are edgeless graphs on s and t
vertices, respectively, G ∗H is isomorphic to the complete bipartite graph Ks,t.

Theorem 2.1. For any vertex-disjoint graphs G and H and any p ∈ [0, 1]V (G+H),

DRel(G+H,p) = DRel(G,p) DRel(H,p) , (1)
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and

DRel(G ∗H,p) =
1−

∏
v∈V (G)

qv

 1−
∏

w∈V (H)
qw


+
 ∏
w∈V (H)

qw

DRel(G,p) +
 ∏
v∈V (G)

qv

DRel(H,p) (2)

where qv = 1− pv for any v ∈ V (G ∗H).

Proof. The first statement follows immediately from the definition of domination reliabil-
ity and the + operation. For the second statement, we observe that all vertices of G ∗H
are dominated if and only if one of the events A, B or C occurs:

(A) Neither all vertices of G fail, nor all vertices of H fail.

(B) All vertices of H fail, while all vertices of G are operating or dominated.

(C) All vertices of G fail, while all vertices of H are operating or dominated.

Note that these three events are pairwise disjoint and that their respective probabilities
are given (in the same order) by the right-hand side of (2).

Theorem 2.1 is most significant for cographs. Cographs are a comprehensive class of
graphs including all complete graphs, complete bipartite graphs, threshold graphs, and
Turán graphs. Among the many characterizations of cographs (see e.g., [7]) the following
best serves our purpose: A graph is a cograph if and only if it can be obtained from
isolated vertices by a finite sequence of sum and join operations of vertex-disjoint graphs.
With this characterization, the next corollary easily follows.

Corollary 2.2. The domination reliability of cographs can be computed in polynomial
time.

Remark 2.3. An alternative characterization of cographs is that they are graphs of clique-
width 2. In view of this and the general results on clique and tree decompositions in [8],
the statement of Corollary 2.2 can be generalized to graphs of bounded clique width or
bounded treewidth if a clique or tree decomposition of minimal width is part of the input.

We proceed by establishing an applicable recursive method for computing DRel(G,p)
in general. In order to formulate the method, we use NG[J ] to denote the closed neigh-
bourhood of J in G, that is, the set of all vertices of G which are in J or adjacent to some
vertex in J , and write NG[v] instead of NG[{v}] for any single vertex v.

Our method requires a generalization of our notion of domination reliability. For any
graph G = (V,E), X, Y ⊆ V , and p ∈ [0, 1]V we use DRel(G,X, Y,p) to denote the prob-
ability that under the assumption that the vertices of Y fail randomly and independently
with probability py, y ∈ Y , each vertex x ∈ X is adjacent to some operating vertex y ∈ Y .
According to this definition, DRel(G,p) = DRel(G, V, V,p).
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Theorem 2.4. For any graph G = (V,E), X, Y ⊆ V , y ∈ Y , and p ∈ [0, 1]V ,

DRel(G,X, Y,p) = py DRel(G,X \NG[y], Y \ {y},p)
+ (1− py) DRel(G,X, Y \ {y},p) ,

provided that X ⊆ NG[Y ] and X 6= ∅. Otherwise, DRel(G,X, Y,p) equals 0 and 1,
respectively.
Proof. The main case follows from the law of total probability: If y is operating, which
happens with probability py, then it dominates all vertices in NG[y], so the vertices in
X \NG[y] need to be dominated by Y \{y}, which happens with probability DRel(G,X \
NG[y], Y \ {y},p). If y is not operating, which happens with probability 1 − py, then
the vertices in X need to be dominated by Y \ {y}, which happens with probability
DRel(G,X, Y \ {y},p). The particular cases X 6⊆ NG[Y ] and X = ∅ are obvious.

Remark 2.5. Theorem 2.4 gives rise to a recursive algorithm for computing DRel. For
efficiency, it is recommended to choose y ∈ Y of maximum degree in each recursive call
and to encode the parameters X and Y as bit vectors of length |V |.

We close this section discussing a related reliability measure for bipartite graphs.
Let G = (V,W,E) be a bipartite graph with vertex set V ∪ W and edge set E ⊆

{{v, w} | v ∈ V, w ∈ W}. The vertices in W are assumed to operate randomly and
independently with known probabilities pw, w ∈ W . For p = (pw)w∈W ∈ [0, 1]W we denote
by DRel←(G,p) the probability that each vertex in V is adjacent to some operating vertex
in W . Accordingly, DRel→(G,p) can be defined by exchanging the roles of V and W . As
before, we write qv = 1 − pv for any v ∈ V (resp. v ∈ W ), and q = 1 − p. In order to
keep the notation simple, we allow p to contain redundant information.

The following theorem provides an analogue of Theorem 2.4 for DRel←(G,p). Note
that by exchanging the roles of V and W , an analogue for DRel→(G,p) is obtained.
Theorem 2.6. For any bipartite graph G = (V,W,E), any w ∈ W , and any p ∈ [0, 1]W ,

DRel←(G,p) = pw DRel←(G− w −NG[w],p) + (1− pw) DRel←(G− w,p) ,
provided that V ⊆ NG[W ] and V 6= ∅. Otherwise, DRel←(G,p) equals 0 and 1, respec-
tively.
Proof. Analogous to the proof of Theorem 2.4 with w instead of y, and V and W in place
of X and Y , respectively.

Remark 2.7. Theorem 2.6 gives rise to a recursive algorithm for computing DRel←(G,p),
see Algorithm 1 on the following page. This algorithm can be used to compute DRel(G,p)
for an arbitrary graph G = (V,E) and p = (pv)v∈V ∈ [0, 1]V by applying it to the
neighbourhood graph of G. By definition, this is the bipartite graph N(G) = (V ′,W ′, E ′)
where V ′ = {(v, 0) | v ∈ V }, W ′ = {(v, 1) | v ∈ V }, and E ′ = {{(v, 0), (w, 1)} |
v = w or {v, w} ∈ E}. If we put p(v,1) := pv for any v ∈ V , and p′ = (pw)w∈W ′ , then the
output DRel←(N(G),p′) produced by Algorithm 1 coincides with DRel(G,p).
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Algorithm 1 Right to left domination reliability of a bipartite graph
1: function DRel←(G,p) . G = (V,W,E) a bipartite graph
2: begin . p = (pw)w∈W vertex reliabilities
3: if V = ∅ then
4: return 1
5: end if
6: if min{deg(v) | v ∈ V } = 0 then
7: return 0
8: end if
9: Choose an arbitrary vertex w ∈ W of maximum degree
10: return pw DRel←(G− w −NG[w],p) + (1− pw) DRel←(G− w,p)
11: end function

The time complexity of this method is, unfortunately, exponential in the size of the
graph. The results in Section 6 show that under reasonable assumptions, it is rather
improbable that a polynomial time algorithm would exist for computing domination re-
liability. Nevertheless, the method is applicable for graphs of moderate size, and easy to
implement.

3 Applying the inclusion-exclusion principle
The first part of the following theorem is a straightforward application of the inclusion-
exclusion principle. The second part may be regarded as an analogue of Whitney’s broken
circuit theorem on the chromatic polynomial of a graph [15].

Let G = (V,E) be a graph whose vertex set is endowed with a linear ordering relation,
and let v ∈ V . Motivated by the notion of a broken circuit in [15], we refer to NG[v] \ {v}
as a broken neighbourhood of G if v = maxNG[v].

Theorem 3.1. For any graph G = (V,E) whose vertices fail randomly and independently
with probability qv = 1− pv for any v ∈ V ,

DRel(G,p) =
∑
J⊆V

(−1)|J |
∏

v∈NG[J ]
qv , (3)

where p = (pv)v∈V ∈ [0, 1]V . Moreover, if G does not contain isolated vertices, then for
any linear ordering relation on V and any set X of broken neighbourhoods of G,

DRel(G,p) =
∑
J⊆V

∀X∈X :X 6⊆J

(−1)|J |
∏

v∈NG[J ]
qv . (4)

Proof. For any vertex v ∈ V let Av be the event that neither v nor any of its neighbouring
vertices is operating; formally,

Av := {I ⊆ V | v /∈ N [I]}.
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Then, ⋂v∈V Av occurs if and only if the operating vertices constitute a dominating set of
G, whereas ⋂j∈J Aj occurs if and only if all vertices in NG[J ] fail. By the independence
assumption, this happens with probability ∏v∈NG[J ] qv. The first part of the theorem now
follows by applying the inclusion-exclusion principle to the events Av, v ∈ V .

For the proof of the second part of Theorem 3.1 the following lemma is needed. For a
different application of this lemma in the context of network reliability, see [9, 10].

Lemma 3.2 ([9]). Let {Av}v∈V be a finite family of events in some probability space
(Ω,A ,Pr). Furthermore, let V be endowed with a linear ordering relation, and let X be
a set of nonempty subsets of V such that for any X ∈X ,⋂

x∈X
Ax ⊆

⋃
v>maxX

Av . (5)

Then,

Pr
( ⋂
v∈V

Av

)
=

∑
J⊆V

∀X∈X :X 6⊆J

(−1)|J | Pr
 ⋂
j∈J

Aj

 . (6)

Proof of Theorem 3.1 (Cont’d). Since G does not contain isolated vertices, the broken
neighbourhoods of G are nonempty, and NG[v] ⊆ NG[NG[v] \ {v}] for any v ∈ V . Let
I ∈ ⋂x∈X Ax for some X ∈X . Then, NG[X] ⊆ V \I, and since X ∈X , X = NG[v]\{v}
for some v ∈ V satisfying v = maxNG[v] > maxX. Therefore, NG[v] ⊆ NG[NG[v]\{v}] =
NG[X] ⊆ V \ I and hence, I ∈ Av where v > maxX. Thus, (5) is shown, and hence by
Lemma 3.2, the second part of Theorem 3.1 follows.

Remark 3.3. The second part of Theorem 3.1 coincides with the first part if X is empty.
We further remark that by applying Lemma 3.2, the second part of Theorem 3.1 can
be generalized to any system X of nonempty subsets of V = V (G) satisfying maxX <
max c(X) for any X ∈ X where c(Y ) := {v ∈ V | NG[v] ⊆ NG[Y ]} for any Y ⊆ V . This
latter condition holds for any broken neighbourhood X of G, as well as any subset X of
V satisfying NG[X] = V and max V /∈ X. According to Pfaltz and Jamison [13], c is
a closure operator on V , which is related to digital image processing.

In the following, we use δ(G) to denote the minimum degree of G.

Corollary 3.4. Under the requirements of Theorem 3.1, if |V | ≥ 1 and δ(G) ≥ 1, then

DRel(G,p) =
∑
J⊆V

|J|≤|V |−δ(G)

(−1)|J |
∏

v∈NG[J ]
qv + (−1)|V |−δ(G)+1

(
|V | − 1
δ(G)− 1

) ∏
v∈V

qv .

Proof. Evidently, NG[J ] = V for any J ⊆ V , |J | > |V | − δ(G). Therefore,

DRel(G,p) =
∑
J⊆V

|J|≤|V |−δ(G)

(−1)|J |
∏

v∈NG[J ]
qv +

∑
J⊆V

|J|>|V |−δ(G)

(−1)|J |
∏
v∈V

qv .
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The result now follows by applying the well-known combinatorial identity
n∑

k=m
(−1)k

(
n

k

)
= (−1)m

(
n− 1
n−m

)
(1 ≤ m ≤ n).

The following corollary is particularly useful if G is a tree.

Corollary 3.5. Under the requirements of Theorem 3.1, if G neither contains isolated
vertices nor isolated edges, then

DRel(G,p) =
∑

J⊆V \A
(−1)|J |

∏
v∈NG[J ]

qv (7)

where A is any set of vertices of G which are adjacent to a vertex of degree 1.

The proof of Corollary 3.5 involves the notion of an upset: Let (X,≤) be a poset. A
subset A ⊆ X is an upset if a ∈ A and a ≤ b imply b ∈ A.

Proof. Let V be linearly ordered such that the vertices of degree 1 form an upset. Then,
any edge {v, a} where v is of degree 1 and a ∈ A gives rise to a broken neighbourhood
{a}. Therefore, the corollary follows from Theorem 3.1 with X := {{a} | a ∈ A}.

Remark 3.6. By the traditional Bonferroni inequalities, truncating the sum in (3) to
|J | ≤ r for some non-negative integer r gives upper resp. lower bounds to DRel(G,p),
depending on whether r is even or odd. In view of the improved Bonferroni inequalities
in [9], the same applies—in a more general fashion—to (6), and thus to (4) and (7).

4 Domination reliability polynomial
In the following, we consider DRel(G, p) for a graph G and a common vertex opera-
tion probability p. It follows from Theorem 3.1 (or Theorem 2.4) that DRel(G, p) is a
polynomial in p, which we refer to as the domination reliability polynomial of G.

In general, the domination reliability polynomial of any graph can be computed using
the techniques in Sections 2 and 3. For example, the authors applied the method described
in Remark 2.7 to the 5× 5 grid graph depicted in Figure 1(a). The result

22p7 + 1149p8 − 305p9 − 29032p10 + 115946p11 − 201109p12 + 132628p13

+ 136084p14 − 414834p15 + 475677p16 − 316811p17 + 117544p18 − 8108p19

− 15506p20 + 8517p21 − 2066p22 + 196p23 + 12p24 − 3p25.

is a polynomial function in p, which is shown in Figure 1(b).
We proceed our investigation of the domination reliability polynomial by considering

some particular classes of graphs, for which explicit or recursive formulæ can be given.
Starting with the edgeless graph Ln on n vertices and the complete graph Kn on n

vertices, we have that

DRel(Ln, p) = pn, DRel (Kn, p) = 1− qn.
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(a) A 5× 5 grid graph.
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(b) Domination reliability.

Figure 1: A 5× 5 grid graph and its domination reliability.

For the complete bipartite graph Ks,t the second part of Theorem 2.1 gives

DRel (Ks,t, p) = (1− qs)(1− qt) + qspt + qtps.

For the path Pn on n vertices, the law of total probability yields the recurrence

DRel(Pn, p) = pn−2 + pqDRel(Pn−2) + q
n−1∑
k=3

pk−2 DRel(Pn−k, p) (n ≥ 3)

with initial values DRel(P1, p) = p and DRel(P2, p) = 2p− p2.
For a cycle Cn on n vertices, the situation is a little bit more complicated. For n = 3

and n = 4 it is easy to see that

DRel(C3, p) = 3p− 3p2 + p3, DRel(C4, p) = 6p2 − 8p3 + 3p4 .

For n ≥ 5, the law of total probability gives

DRel(Cn, p) = pDRel∗(Pn−1, p) + p2qDRel∗(Pn−3, p) + 2p2q2 DRel∗(Pn−4, p)

where DRel∗(Pn, p) denotes the conditional probability that the vertices of Pn are domi-
nated given that its end vertices are dominated. Again, by the law of total probability,

DRel∗(Pn, p) = pDRel∗(Pn−1, p) + pqDRel∗(Pn−2, p) + pq2 DRel∗(Pn−3, p) (n ≥ 4)

with initial conditions DRel∗(P1, p) = DRel∗(P2, p) = 1, DRel∗(P3, p) = 3p− 3p2 + p3.
Remark 4.1. An alternative way to compute the domination reliability of a path on n
vertices, which are labelled 1 through n, is to apply Shier’s recursive algorithm [14, pp. 75–
80] (reformulated in [10, Corollary 2.4]) to the linearly ordered mincuts

{1, 2} ≤ {2, 3, 4} ≤ {3, 4, 5} ≤ · · · ≤ {n− 3, n− 2, n− 1} ≤ {n− 1, n}.
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Remark 4.2. A consecutive linear (resp. circular) k-out-of-n failure system consists of n
linearly (resp. circularly) arranged independently functioning components which fails if
and only if at least k of these fail in succession. The domination reliability of a path on
n vertices is bounded above by the reliability of a linear consecutive 3-out-of-n failure
system. For a cycle on n vertices, it is equal to the reliability of a circular consecutive
3-out-of-n failure system. Efficient algorithms for computing these classical reliability
measures can be found in [12,16].
Remark 4.3. For trees, a similar recurrence as for paths depending on the number of
vertices cannot exist. This is because non-isomorphic trees with equally many vertices
may have different domination reliability polynomials. By exhaustive search, the authors
found that this is the case for any pair of non-isomorphic trees with up to six vertices. This
raises the question whether non-isomorphic trees can be distinguished by their domination
reliability polynomials. This is not the case: The trees in Figure 2 are non-isomorphic,
but have the same domination reliability polynomial 4p3 − 7p5 + 5p6 − p7.

Figures

p

DRel

0.5 1.0

0.5

1.0

1

Figure 2: Non-isomorphic trees with the same domination reliability polynomial.

5 Domination polynomial
In this section, we draw some conclusions from our results on domination reliability to the
domination polynomial of a graph. This latter polynomial was introduced by Arocha
and Llano [5] for any graph G = (V,E) as the generating function

DG(x) :=
|V |∑
k=0

dk(G)xk

where dk(G) counts the dominating sets of cardinality k in G (k = 0, 1, 2, . . . ).
Our first theorem links the domination reliability polynomial of a graph to its domi-

nation polynomial. Thus, we provide a combinatorial interpretation of the latter.

Theorem 5.1. Let G = (V,E) be a graph whose vertices fail randomly and independently
with equal probability q = 1− p. Then,

DRel(G, p) = qnDG(p/q) ,

where n denotes the number of vertices in G.
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Proof. By a complete state enumeration,

DRel(G, p) =
∑
J⊆V

NG[J ]=V

p|J |qn−|J | = qn
n∑
k=0

∑
J⊆V

NG[J ]=V
|J |=k

(
p

q

)k
= qn

n∑
k=0

dk(G)
(
p

q

)k
,

which proves the result.

Corollary 5.2. For any graph G on n vertices, and any p, q ∈ [0, 1],

DRel(G, p) =
n∑
k=0

(−1)k
(

k∑
l=0

(−1)ldl(G)
(
n− l
n− k

))
pk ,

DRel(G, 1− q) =
n∑
k=0

(−1)k
(

k∑
l=0

(−1)ldn−l(G)
(
n− l
n− k

))
qk .

In particular, DRel(G, p) is a polynomial in p.

Proof. Both identities follow from Theorem 5.1 by putting q = 1−p, respectively p = 1−q,
and applying the binomial theorem.

As a consequence of Theorem 5.1 in combination with Theorem 3.1 we obtain a new
inclusion-exclusion expansion and an analogue of Whitney’s broken circuit theorem [15]:

Theorem 5.3. For any nonempty graph G = (V,E), the domination polynomial satisfies
that

DG(x) =
∑
J⊆V

(−1)|J |(x+ 1)|V |−|NG[J ]| =
∑
J⊆V

|J|≤|V |−δ(G)

(−1)|J |
[
(x+ 1)|V |−|NG[J ]| − 1

]
. (8)

Moreover, if G does not contain isolated vertices, then for any linear ordering relation on
V and any system X of broken neighbourhoods of G, both sums in (8) can be restricted
to those subsets J of the vertex set which do not include any X ∈X as a subset.

Proof. For the first part of the theorem, we may assume without loss of generality that
x > 0. Put p = x

x+1 and q = 1
x+1 . By Theorem 5.1 and the first part of Theorem 3.1,

DG(x) = (x+ 1)|V |DRel
(
G; x

x+ 1

)
= (x+ 1)|V |

∑
J⊆V

(−1)|J |(x+ 1)−|NG[J ]|,

which proves the first identity. The second identity follows from the first one since, as in
the proof of Corollary 3.4, NG[J ] = V for any J ⊆ V , |J | > |V | − δ(G). Hence,∑

J⊆V
(−1)|J |(x+ 1)|V |−|NG[J ]| =

∑
J⊆V

|J|≤|V |−δ(G)

(−1)|J |(x+ 1)|V |−|NG[J ]| +
∑
J⊆V

|J|>|V |−δ(G)

(−1)|J | .
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Since ∑
J⊆V

|J|>|V |−δ(G)

(−1)|J | = −
∑
J⊆V

|J|≤|V |−δ(G)

(−1)|J | , (9)

the second identity is proved. The second part of the theorem follows from the second
part of Theorem 3.1 and the following lemma, which implies that the sums in (9) can be
restricted to the same J ⊆ V which does not include any X ∈X as a subset.

The following lemma completes the proof of Theorem 5.3.

Lemma 5.4. Let V be a nonempty linearly ordered set and X a system of nonempty
subsets of V such that maxX < max V for every X ∈ X . Then there exist as many
subsets of even and odd cardinality of V which contain no X ∈X as a subset.

Proof. We use A4B to denote the symmetric difference of sets A und B. It is straight-
forward to check that S 7→ S 4 {max V } defines a one-to-one correspondence between
the even and the odd subsets of V not including any X ∈X as a subset.

Remark 5.5. For V = {1, . . . , n}, Theorem 5.3 can equivalently be stated as

DG(x) =
∑
I⊆V

(−1)|V |−|I|fG(1I(1), . . . , 1I(n);x)

=
∑
I⊆V
|I|≥δ(G)

(−1)|V |−|I| [fG(1I(1), . . . , 1I(n);x)− 1] , (10)

where 1I denotes the indicator function of I, and fG the generating function

fG(i1, . . . , in;x) :=
∏
v∈V

1 + x
∏

w∈NG[v]
iw

 .
Note that I is a substitute for V \ J in Theorem 5.3. Therefore, if G does not contain
isolated vertices, then for any system X of broken neighbourhoods of G, both sums in
(10) can be restricted to those subsets I of {1, . . . , n} that intersect any X ∈X .
Remark 5.6. The contents of Remark 3.3 analogously apply to Theorem 5.3 and its pre-
ceding reformulation.

Corollary 5.7. Under the requirements of Theorem 5.3, if G neither contains isolated
vertices nor isolated edges, then

DG(x) =
∑

J⊆V \A
(−1)|J |(x+ 1)|V |−|NG[J ]| =

∑
J⊆V \A

|J|≤|V |−δ(G)

(−1)|J |
[
(x+ 1)|V |−|NG[J ]| − 1

]
,

where A is any set of vertices of G which are adjacent to a vertex of degree 1.

Proof. Corollary 5.7 follows from Theorem 5.3 in the same way as Corollary 3.5 follows
from Theorem 3.1.
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6 Computational complexity
Apart from particular classes of graphs, the methods developed in the previous sections
exhibit an exponential time behaviour. There is not much hope to do better.

Theorem 6.1. Computing the domination reliability polynomial of a graph is NP-hard.

Proof. We first note that computing the domination polynomial of a graph G is NP-
hard. This follows immediately from a result of Flum and Grohe [11], who proved that
computing dk(G) is #W [2]-complete in the sense of parametrized complexity. Therefore,
it remains to show that computing the domination polynomial of a graph is polynomially
reducible to computing its domination reliability polynomial.

To this end, consider a graph G having n vertices, all operating randomly and inde-
pendently with equal probability. Choose n + 1 different values p0, . . . , pn ∈ [0, 1], and
put qi = 1− pi for i = 0, . . . , n. By Theorem 5.1,

q−ni DRel(G, pi) =
n∑
k=0

dk(G)
(
pi
qi

)k
(i = 0, . . . , n).

This is a system of n+ 1 linear equations in the n+ 1 unknowns d0(G), . . . , dn(G), which
is uniquely solvable since its coefficient matrix is a Vandermonde matrix with non-zero
determinant. The solution can be found in polynomial time by Gaussian elimination.

Corollary 6.2. Computing the domination reliability of a graph G is NP-hard.

Corollary 6.3. Computing the left to right (resp. right to left) domination reliability of
a bipartite graph is NP-hard.

7 Reliability of hypergraphs
In this section, we show that the domination reliability of a graph can be expressed in
terms of the coverage probability of an associated hypergraph, and vice versa.

Recall that a hypergraph is a couple H = (V,E ), where V is a finite set and E is a set
of nonempty subsets of V . The sets V and E are the set of vertices and (hyper)edges of
H, respectively. A covering of V is a subset X of E such that ⋃X = V . In contrast to
our discussion on graphs and their domination reliability, the vertices of the hypergraph
are assumed to be perfectly reliable, whereas the edges fail randomly and independently
with known probabilities, given by a vector q = 1− p ∈ [0, 1]E . The coverage probability
of H, which is abbreviated to Cov(H,p), is the probability that the operating edges of H
constitute a covering of the vertex set of H.

Given a hypergraph H = (V,E ) and a probability vector p = (pI)I∈E ∈ [0, 1]E ,
construct a graph G on V ∪ E with edge set

{{v, E} | v ∈ V, E ∈ E , v ∈ E} ∪ {{E,F} | E,F ∈ E , E 6= F}.
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By defining pv = 0 for any v ∈ V (in addition to the given probabilities pI where I ∈ E ), a
probability of operation is associated with any vertex ofG. Evidently, by this construction,
the coverage probability of H equals the domination reliability of G.

On the other hand, the domination reliability of any graph can be expressed in terms
of the coverage probability of an associated hypergraph: Given a graph G = (V,E) and
p = (pv)v∈V ∈ [0, 1]V , construct H = (V,E ) where E = {NG[v] | v ∈ V } and where for
any E ∈ E , pE is the probability that some vertex in {v ∈ V | NG[v] = E} is operating
in G. By the principle of inclusion-exclusion this probability can be computed as

pE =
∑

I⊆V, I 6=∅
∀i∈I:NG[i]=E

(−1)|I|−1 ∏
i∈I
pi (E ∈ E ).

By this construction, the domination reliability of G equals the coverage probability of H.
Thus, the equivalence of the two concepts is shown.

The concept of coverage probability of hypergraphs goes back to Ball, Provan,
and Shier [6]. The significance of this concept is due to the fact that the reliability of
any coherent binary system can be expressed in terms of the coverage probability of an
associated hypergraph, and vice versa (see [6, 14] for definition and details).

8 Conclusion
In this paper, we introduced a new network reliability measure called domination relia-
bility and proved that its computation is NP-hard. Efficient solutions are only known for
cographs. For complete graphs, complete bipartite graphs, paths, and cycles, explicit and
recursive formulæ can be given in the case where all vertex reliabilities are equal. This case
is of particular interest as it leads to a new graph polynomial, which is called domination
reliability polynomial, and which is closely related to the domination polynomial—a graph
polynomial which recently received considerable attention. The authors propose to inves-
tigate the domination reliability polynomial in context with the domination polynomial,
and to work out relationships with other graph polynomials.

From a practical point of view, the connection with the coverage probability of a
hypergraph is significant: Any coherent binary system can be transformed into a graph
whose domination reliability equals the reliability of that system, and vice versa. Thus,
the study of domination reliability may reveal some new insights into system reliability.
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