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Abstract

We exhibit a canonical connection between maximal (0, 1)-fillings of a moon
polyomino avoiding north-east chains of a given length and reduced pipe dreams of
a certain permutation. Following this approach we show that the simplicial complex
of such maximal fillings is a vertex-decomposable, and thus shellable, sphere. In
particular, this implies a positivity result for Schubert polynomials. Moreover, for
Ferrers shapes we construct a bijection to maximal fillings avoiding south-east chains
of the same length which specializes to a bijection between k-triangulations of the
n-gon and k-fans of Dyck paths of length 2(n − 2k). Using this, we translate a
conjectured cyclic sieving phenomenon for k-triangulations with rotation to the
language of k-flagged tableaux with promotion.

1 Introduction

Fix positive integers n and k such that 2k < n. A k-triangulation of a convex n-gon is a
maximal collection of diagonals in the n-gon such that no k+ 1 diagonals mutually cross.
A k-fan of Dyck paths of length 2` is a collection of k Dyck paths from (0, 0) to (`, `) which
do not cross (although they may share edges).

The following theorem is the first main result in this article. It answers a question in
R. Stanley’s Catalan Addendum [Sta11], and extends results by S. Elizalde [Eli07] and
C. Nicolás [Nic09].

Theorem 1.1. There is an explicit bijection between k-triangulations of a convex n-gon
and k-fans of Dyck paths of length 2(n− 2k).
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A north-east chain of length ` in a Ferrers shape λ is a sequence of ` boxes in λ such
that every box in the sequence is strictly north and strictly east of the preceding one, and
for which the smallest rectangle containing all boxes in the sequence is also contained in
λ. A k-north-east filling of λ is a (0, 1)-filling which does not contain any north-east chain
of 1’s of length k+ 1, and in which the number of 1’s is maximal. As usual, we identify a
(0, 1)-filling with its set of boxes filled with 1’s and draw them by marking its set of boxes
by +’s. See Figure 1(a) for an example. The set of all k-north-east fillings of λ is denoted
by FNE(λ, k). South-east chains, k-south-east fillings and FSE(λ, k) are defined similarly.

It is well–known that k-triangulations of the n-gon can be seen as k-north-east fillings
of the staircase shape (n − 1, . . . , 2, 1), and furthermore, k-fans of Dyck paths of length
2(n − 2k) can be seen as k-south-east fillings of the same staircase (see e.g. [Kra06a,
Rub06]). Thus, the second main theorem is a clear extension of the first. It answers a
questions raised by C. Krattenthaler in [Kra06a].

Theorem 1.2. Let λ be a Ferrers shape and let k be a positive integer. There is an
explicit bijection between k-north-east and k-south-east fillings of λ.

The constructed bijection goes through two intermediate objects, namely through pipe
dreams and flagged tableaux, both arising in the theory of Schubert polynomials. The
third main theorem is a central step in the proof of Theorem 1.2 and it concerns the
connection between north-east chains and reduced pipe dreams.

Theorem 1.3. Let λ be a Ferrers shape and let k be a positive integer. There exists a
canonical bijection between k-north-east fillings of λ and reduced pipe dreams of a permu-
tation depending on λ and k.

This bijection will be described in Section 2. A variation of the argument gives the
following generalization to moon polyominoes as defined in Section 2.2.

Theorem 1.4. Let M be a moon polyomino and let k be a positive integer. Then there
exists a canonical bijection between k-north-east fillings of M and reduced pipe dreams (of
a given permutation) living inside M .

We will use the construction to obtain new properties and simple proofs for known
properties of k-north-east fillings and of k-triangulations. In particular, we obtain the
following corollaries.

Corollary 1.5. The simplicial complex with facets being k-north-east fillings of a moon
polyomino M is the join of a vertex-decomposable, triangulated sphere with a full simplex.
In particular, it is shellable and Cohen-Macaulay.

Corollary 1.6. Let S be a stack polyomino and λ the Ferrers shape obtained from S be
properly rearranging its columns. Let σ and τ be the associated permutations, depending
on the shape of S, and λ (see Section 2.2). Then the difference

Sσ(x1, x2, . . .)−Sτ (x1, x2, . . .)

of Schubert polynomials is monomial positive.
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The bijection for k-triangulations has the additional property that the cyclic action
given by rotation of the n-gon corresponds to a promotion-like operation on flagged
tableaux and thus transforms a conjectured cyclic sieving phenomenon (CSP) into the
context of k-flagged tableaux.

Conjecture 1.7. Let FT (λ, k) be the set of k-flagged tableaux and let ρ be the promotion-
like cyclic action on FT (λ, k). The triple(

FT (λ, k), 〈ρ〉, F (q)
)
,

exhibits the CSP, where

F (q) :=
∏

1≤i≤j<n−2k

[i+ j + 2k]q
[i+ j]q

is a natural q-analogue of the cardinality of FNE(λ, k).

2 From north-east fillings to pipe dreams

In this section we exhibit a connection between k-north-east fillings of Ferrers shapes as
well as of stack and moon polyominoes on the one hand and reduced pipe dreams on the
other. This generalizes a construction by the second author for k-triangulations [Stu10],
and by V. Pilaud and M. Pocchiola [Pil10, PP10], where they refer to pipe dreams as
pseudoline arrangements.

Reduced pipe dreams (or rc-graphs) were introduced by S. Fomin and A. Kirillov in
[FK96] (see also work of N. Bergeron and S. Billey [BB93]). They play a central role in
the combinatorics of Schubert polynomials of A. Lascoux and M.-P. Schützenberger. A
pipe dream of size n is a filling of the staircase shape (n − 1, . . . , 2, 1) where each box
contains two crossing pipes or two turning pipes . See Figure 1(b) for an example.
A pipe dream is identified with its set of boxes containing two crossing pipes . The
permutation π(D) of a pipe dream D is obtained by following the pipes starting from
the top and going all the way to the left, labelling the numbers on the left column with
respect to the opposite end of the corresponding pipe, and then reading π(D) on the left
from top to bottom in one line notation. For example, the permutation of the pipe dream
in Figure 1(b) is [1, 2, 7, 6, 5, 8, 3, 4, 9, 10]. A pipe dream is reduced if two pipes cross at
most once. We say that a pipe dream lives inside a set M of boxes in the staircase shape
if all its crossings are contained in M . For a given permutation π and a set M of boxes,
denote the set of reduced pipe dreams for π by RP(π) and the set of reduced pipe dreams
for π which live inside M by RP(π,M).

2.1 A bijection between north-east fillings and reduced pipe
dreams

Starting with a k-north-east filling of λ, one obtains a pipe dream by replacing every 1 by
two turning pipes and every 0 by two crossing pipes. Afterwards, λ is embedded into the
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Figure 1: A 2-north-east filling of λ = (8, 6, 6, 5, 4, 4, 1) and its associated reduced pipe
dream.

smallest staircase containing it, and all boxes in the staircase outside of λ are replaced by
turning pipes. In other words, a k-north-east filling of λ and its associated pipe dream
are complementary (0, 1)-fillings of λ when both are identified with their sets of boxes.
For example, the ’s in the pipe dream in Figure 1(b) and the marked boxes in (a)
are complementary (0, 1)-fillings of λ. The pieces in boxes outside of λ are drawn in the
pipe dream in red whereas pieces within λ are drawn in green. We call this identification
between k-north-east fillings of λ and reduced pipe dreams complementary map.

For a permutation σ ∈ Sn, define its (Rothe) diagram (see [Man01, Section 2.1]) to be
the set of boxes in the staircase shape given by

D(σ) :=
{

(i, σj) : i < j, σi > σj
}
.

For example, the diagram of [1, 2, 7, 6, 5, 8, 3, 4, 9, 10] in Figure 2 is given by the shaded
area. Clearly, the number of boxes in D(σ) equals the length of σ, i.e., the minimal number
of simple transpositions needed to write σ. A permutation is called dominant if its diagram
is a Ferrers shape containing the box (1, 1). By construction, different permutations in
Sn have different shapes and one can obtain every Ferrers shape in this way for some
n. Thus, starting with a Ferrers shape λ, let σ(λ) be the unique dominant permutation
σ ∈ Sn for which D(σ) = λ, where n is given by the size of the smallest staircase shape
containing λ. Moreover, define σk(λ) to be

1k×τ := [1, 2, . . . , k, τ1 + k, . . . , τn + k] ∈ Sn+k

where τ = σ(µ) and µ is obtained from λ by removing its first k rows and columns.
Graphically, this means that the Ferrers shape corresponding to σk(λ) is obtained by
removing the first k columns and rows from the Ferrers shape corresponding to σ(λ).
Note that the north-west corner of σk(λ) remains in box (k + 1, k + 1). See Figure 2 for
σ2(λ) with λ as in Figure 1. The following theorem is a more precise reformulation of
Theorem 1.3.
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Figure 2: σ2(λ) = [1, 2, 7, 6, 5, 8, 3, 4, 9, 10] for λ = (8, 6, 6, 5, 4, 4, 1).

Theorem 2.1. Let λ be a Ferrers shape and let σ = σk(λ). The complementary map
from k-north-east fillings to pipe dreams is a bijection between FNE(λ, k) and RP(σ).

For the proof of this theorem we use an alternative description of pipe dreams as given
by A. Knutson and E. Miller in [KM05, Theorem B], or, in a more combinatorial language,
by N. Jia and E. Miller in [JM08, Theorem 3]. First, we observe that the definition of
antidiagonals in [JM08, Definition 2] is equivalent to the definition of a north-east chain
inside [n]×[n]. Following the notion in the latter, define Aσ for σ ∈ Sn to be the collection
over all 1 ≤ p, q ≤ n of all minimal north-east chains of length rσ(p, q) + 1 lying inside
the rectangle [p]× [q] where

rσ(p, q) := #
{

(i, j) : i ≤ p, j ≤ q, σ(i) = j
}
.

As it can be seen in Figure 2, rσ(p, q) equals the number of stars in the matrix presentation
of σ lying inside the rectangle [p]× [q].

The setRP(σ) of reduced pipe dreams for σ can be described in terms of Aσ as follows.
A subset of the staircase (n − 1, . . . , 2, 1) is a reduced pipe dream for σ if and only if it
intersects every north-east chain in Aσ, and it is minimal in this sense. Looking at this
observation in a slightly different way, we obtain the following proposition describing pipe
dreams in terms of maximal fillings of the staircase shape.

Proposition 2.2. Let σ ∈ Sn. A subset of the staircase (n − 1, . . . , 2, 1) is a reduced
pipe dream for σ if and only if its complement is a maximal filling not containing any
north-east chain in Aσ.

Proof. From the description of reduced pipe dreams above, it follows that a subset R of
the staircase shape is a reduced pipe dream for σk(λ) if and only if it intersects every
north-east chain in Aσ, and it is minimal with respect to this property. Thus, R is a
reduced pipe dream if and only if its complement Rc in the staircase shape does not
contain any north-east chain in Aσ, and Rc is maximal with respect to this property. The
latter is precisely a maximal filling of the staircase shape not containing any north-east
chain in Aσ.
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However, we do not need to consider all rectangles [p]× [q] to define Aσ. It is enough
to consider the collection of all south-east corner boxes (p, q) of D(σ), each labelled by
rσ(p, q). This labelled collection is called the essential set of σ in [Man01, Section 2.2].
See Figure 4 for an example.

Proposition 2.3. Aσ is given by the collection of north-east chains of length rσ(p, q) + 1
lying inside rectangles [p]× [q] for boxes (p, q) in the essential set of σ.

Proof. Every [i] × [i] rectangle for i ≤ k, where k is the smallest label of an element in
the essential set of σ, contains i stars. Therefore, Aσ does not contain any north-east
chains of length smaller or equal to k. Moreover, observe that rσ(p, q) is constant inside
a component of D(σ) and thus, among those it is enough to consider boxes (p, q) in the
essential set. As rσ(p + a, q + b) = rσ(p, q) + a + b for such a box (p, q), the proposition
follows from the minimality condition in the definition of Aσ.

Using this proposition, we also obtain the following description of Aσ coming from
Ferrers shapes.

Proposition 2.4. Let λ be a Ferrers shape and let σ := σk(λ). Aσ is given by the
collection of all north-east chains of length k + 1 in λ.

Proof. We have already seen that the essential set of σ is given by the south-east corner
boxes of maximal rectangles in λ (with respect to containment) of width and height strictly
larger than k. As all those maximal rectangles are of the form [p]× [q], the result follows
with the observation that rσ(q, p) = k for such (p, q).

This proposition implies the following well–known corollary.

Corollary 2.5. Every reduced pipe dream for σ = σk(λ) lives inside λ, namely

RP(σ) = RP(σ, λ).

Putting the arguments together, we can now prove Theorem 2.1.

Proof of Theorem 2.1. The result follows from Propositions 2.2 and 2.4.

2.2 Generalizations to moon polyominoes

The results in the previous section can be partially generalized to moon polyominoes
which were studied by J. Jonsson in [Jon05]. A polyomino M (i.e., a set of boxes in the
positive integer quadrant) is called convex if for any two boxes in M lying in the same
row or column, all boxes in between are also contained in M . Moreover, M is called
intersection-free if for any two columns (or equivalently, rows) of M , one is contained in
the other. A polyomino is called a moon polyomino if it is convex and intersection-free.

Without loss of generality we consider always moon polyominoes which are north-
west justified, namely, they contain boxes both in the first row and in the first column.
Observe that Ferrers shapes are special types of moon polyominoes. A k-filling of a moon
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Figure 3: A 1-north-east filling of a moon polyomino and its associated pipe dream.

polyomino is defined exactly in the same way as for a Ferrers shape. See Figure 3 for an
example.

To connect k-north-east fillings of a moon polyomino M and pipe dreams of a certain
permutation σ = σk(M), we must relate maximal fillings of M which do not contain
a (k + 1)-north-east chain in one of its maximal rectangles and maximal fillings of the
staircase (n − 1, . . . , 2, 1) which do not contain a north-east chain of length rσ(p, q) + 1
in any rectangle [p] × [q]. Define σk(M) as follows: for a maximal rectangle R in M of
width and height both strictly larger than k, let (a+ 1, b+ 1) and (i, j) be its north-west
and south-east corner boxes. Label the box (i + b, j + a) with a + b + k. σk(M) is the
permutation with this collection as its essential set. This means that the diagram D(σ)
of σ has (i+ b, j + a) as a south-east corner with labels rσ(i+ b, j + a) = a+ b+ k. Using
[Man01, 2.2.8], it is easy to see that this construction is well defined. Note that maximal
rectangles of width or height less than or equal to k cannot contain any north-east chain
of length larger than k and thus do not contribute to the essential set of the corresponding
permutation. For example, the moon polyomino M in Figure 3(a) has maximal rectangles
(a+ 1, b+ 1)− (i, j) given by

(1, 3)− (5, 5), (1, 3)− (6, 4),

(3, 1)− (4, 7), (2, 2)− (5, 5),

(2, 1)− (4, 6),

where the first maximal rectangle is highlighted. Thus, for k = 1, the resulting essential
set and the associated diagram can be seen in Figure 4, and the associated permutation
is σ1(M) = [1, 2, 8, 10, 3, 7, 6, 5, 4, 9]. As all maximal rectangles in a Ferrers shape are
of the form [p] × [q], the definition of σk(λ) reduces in this case to the definition given
in the previous section. Moreover, observe that in the more general context of moon
polyominoes which are not Ferrers shapes, Corollary 2.5 does not hold.

The following theorem is a more precise reformulation of Theorem 1.4.
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Figure 4: The essential set and the diagram D(σ) for σ = [1, 2, 8, 10, 3, 7, 6, 5, 4, 9].

Theorem 2.6. The complementary map from k-north-east fillings of a moon polyomino
M to pipe dreams of σ = σk(M) is a bijection between FNE(M,k) and RP(σ,M).

Proof. Recall that the set Aσ is the collection over all (p, q) in the essential set of σ of all
minimal north-east chains in [p] × [q] of length rσ(p, q) + 1. By construction, every such
(p, q) comes from a maximal rectangle R in M with north-west corner (a + 1, b + 1) and
south-east corner (i, j). Thus, (p, q) = (i+ b, j + a) and rσ(p, q) = a+ b+ k.

As M is intersection-free by definition, no box strictly south-west or strictly north-east
of R is contained in M . Therefore, any (k+ 1)-north-east chain inside R can be extended
to a (a+ b+ k+ 1)-north-east chain inside [p]× [q]. This implies that a (k+ 1)-north-east
chain inside R cannot be contained in the complement of a pipe dream for σ living inside
M . In total, we obtain that the set of complements of pipe dreams for σ living inside M
are exactly maximal fillings of M not containing a north-east chain of length k + 1. This
completes the proof.

We now use this theorem together with the main theorem in [Jon05] to get new insights
on pipe dreams. A stack polyomino is a moon polyomino where every column starts in
the first row. Let S be a stack polyomino and let λ be the Ferrers shape obtained from S
by properly rearranging the columns. J. Jonsson proved in [Jon05, Theorem 14] that the
number of k-north-east fillings of S with a given number of +’s in every row equals the
number of k-north-east fillings in λ with the same number of +’s in every row. Moreover,
he conjectured that this property still holds if the stack polyomino S is replaced by a
moon polyomino. Therefore, we obtain the following corollary and the conjecture for the
analogous statement for moon polyominoes.

Corollary 2.7. Let S be a stack polyomino and let λ be the associated Ferrers shape. The
number of pipe dreams in RP(σk(S), S) with a given number of crossings in every row is
equal to the number of pipe dreams in RP(σk(λ)) with the same number of crossings in
every row.
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2.3 The simplicial complex of north-east-fillings

We are now in position to prove Corollary 1.5. The canonical connection between k-north-
east fillings and reduced pipe dreams can be used in the same way as described in the
proof of [Stu10, Corollary 1.3] for k-triangulations in this more general setting. For the
necessary background on simplicial complexes and in particular on subword complexes,
we refer to [KM04]. A box in a moon polyomino M is called passive if it is not contained
in any north-east chain in M of length k+ 1. Let ∆(M,k) be the simplicial complex with
vertices being the collection of boxes in M , and with facets being k-north-east fillings of
M .

Corollary 2.8. ∆(M,k) is the join of a vertex-decomposable, triangulated sphere and a
full simplex of dimension i − 1, where i equals the number of passive boxes in M . In
particular, it is shellable and Cohen-Macauley.

Proof. Label the box (i, j) by i+ j − 1. The simplicial complex ∆(M,k) is precisely the
subword complex for the permutation σk(M) and the word given by the labels of all boxes
in M (where i and the simple transposition si are identified) read row by row from east
to west and from north to south. Observe that the passive boxes are exactly those boxes
which are contained in all facets of ∆(M,k). Thus, the corollary follows from Theorem 2.1
together with Theorems 2.5 and 3.7 in [KM04].

2.4 A mutation-like operation on pipe dreams

Generalizing the notion in the previous section, one can define a pure simplicial complex
∆(σ) for any σ ∈ Sn by defining the facets as the complements in the staircase of reduced
pipe dreams in RP(σ) (see [KM04]). Using the property that two pipes in a reduced pipe
dream D cross at most once, one can define a mutation-like operation on facets of ∆(σ)
as follows. One can mutate the facet F (D) of ∆(σ) associated to D at a vertex b if the
two pipes in D which touch in b cross somewhere else. In other words, one can mutate
F (D) at a vertex b if the starting points i < j of the two pipes in D which touch in b
form an inversion of σ. The mutation of F (D) at such a vertex b is then defined to be
the facet F (D′) for the reduced pipe dream D′ such that

(i) the two turning pipes in b are replaced in D′ by two crossing pipes,

(ii) the unique crossing b′ of those two pipes is replaced in D′ by two turning pipes.

By construction, the pipe dream D′ = (D∪ b) \ b′ is again in RP(σ) and thus its comple-
ment F (D′) = (F (D) \ b) ∪ b′ forms another facet of ∆(σ).

3 From pipe dreams to south-east fillings

In this section we describe a bijection between pipe dreams for σk(λ) and k-south-east
fillings of λ, for a Ferrers shape λ. For the sake of readability, we do this construction in
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Figure 5: Labelling of the crossing boxes in the pipe dream in Figure 1(b), the corre-
sponding compatible sequence, and its insertion and recording tableau.

several steps. A similar approach was described by S. Fomin and A. Kirillov [FK97], and
in the particular case of the permutation [1, n, n− 1, . . . , 3, 2] by A. Woo [Woo04].

3.1 From pipe dreams to flagged tableaux

Define a k-flagged tableau as a semistandard tableau in which the entries in the i-th row
are smaller than or equal to i + k, and denote the set of k-flagged tableaux of shape λ
by FT (λ, k). These were introduced by M. Wachs [Wac85], where she proves that the
Schubert polynomial of a vexilliary permutation is equal to a flagged Schur function (see also
work of V. Reiner and M. Shimozono [RS95, Theorem 24]). We now present a bijection
between the set RP(σ) of reduced pipe dreams of σ = σk(λ) and the set FT (µ, k) of
k-flagged tableaux of shape µ = D(σ). Note that the permutations that can be obtained
as σk(λ) for some Ferrers shape λ are precisely those that fix the first k integers, and apply
a dominant permutation on the rest. These belong to a bigger family of permutations
called vexilliary permutations. The bijection we present in this section can be found in
more generality in the work of C. Lenart [Len04, Section 4] for vexilliary permutations,
but we include the full description in this particular case for the sake of completeness.
For more on flagged tableaux and their connections to geometry, see, e.g., [KMY09].

For a reduced pipe dream D ∈ RP(σ) with σ being of length `, define the reading
biword to be the 2 × ` array by reading

(
i

i+j−1

)
for every crossing box (i, j) in D row by

row from east to west and from north to south. See Figure 5 for an example. It is known
(and easy to check) that this gives a bijection between RP(σ) and the set of compatible
sequences CS(σ), defined by S. Billey, W. Jockush and R. Stanley in [BJS93] as the set of
all 2× ` arrays of the form

(
a1,...,a`
b1,...,b`

)
satisfying the following properties:

1. a1 ≤ a2 ≤ · · · ≤ a`,

2. if ai = ai+1, then bi > bi+1,

3. b1b2 · · · b` is a reduced word for σ, where i denotes the simple transposition si =
(i, i+ 1), and

4. ai ≤ bi.
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One can see from the definition that a compatible sequence t for σ can be written as the

concatenation t = t1 · · · tm, where ti =
(
i|wi|

wi

)
, and wi is decreasing. Observe that σ fixes

all j ≤ k and thus, every letter in wi is larger than or equal to max(i, k).
Define a map CS(σ)→ FT (µ, k) as follows. Let t ∈ CS(σ) be a compatible sequence

for σ. Insert the letters of the word formed by the bottom row of t using column Edelman–
Greene insertion [EG87] into a tableau, while recording the corresponding letters from
the first row. This produces an insertion tableau P (t) and a recording tableau Q(t). The
image in FT (µ, k) is now defined to be Q(t). To prove that this is a well defined bijection,
we need two preliminary lemmas (see [Len04, Section 4]).

Lemma 3.1. For a ferrers shape λ, all insertion tableaux P (w) for reduced words w of
σ = σk(λ) are equal. The shapes of P (t) and Q(t) are given by µ = D(σ).

Proof. Since µ is a Ferrers shape where the north-west corner is located in box (k +
1, k+ 1), P (t) only depends on σ and not on the actual compatible sequence (see [Man01,
Section 2.8.3]). Moreover, the labelling i+j−k−1 for (i, j) ∈ µ gives a reduced expression
for σ which column inserts into itself (see [Man01, Remark 2.1.9]). Therefore, the shapes
of P (t) and Q(t) are both given by µ.

Lemma 3.2. Let σ = σk(λ) for a Ferrers shape λ and let t = t1t2 · · · tm be a compatible
sequence for σ. Every letter in wi · · ·wm is strictly larger than j if and only if every letter
in the first j − k rows of Q(t) is strictly less than i.

Proof. Every letter in wi · · ·wm is strictly larger than j if and only if all of the occurrences
of 1, 2, . . . , j in w = w1 · · ·wm appear in w1 · · ·wi−1. Since w is a reduced word for σ, this
is equivalent to saying that the first j letters of the permutation given by w1 · · ·wi−1 are
the same as those in σ, when written in one line notation. Since µ = D(σ) is a Ferrers
shape where the north-west corner is located at the box (k + 1, k + 1), this is equivalent
to saying that every entry on the first j− k rows of Q(t) and of Q(t1 · · · ti−1) coincide. As
Q(t1 · · · ti−1) contains only letters strictly smaller than i, the result follows.

Putting the connections between reduced pipe dreams, compatible sequences and
flagged tableaux together, we obtain the following theorem.

Theorem 3.3. Let σ = σk(λ) for a Ferrers shape λ, and let µ = D(σ). The map sending
D in RP(σ) to the recording tableau of the reading biword of D is a bijection between
RP(σ) and FT (µ, k).

Proof. It is left to show that the map sending a compatible sequence t to Q(t) is a well
defined bijection between CS(σ) and FT (µ, k). Let t ∈ CS(σ). By Lemma 3.1, Q(t) has
shape µ, and by Lemma 3.2 with i = `+ k+ 1 and j = `+ k, every letter in row ` in Q(t)
is less than or equal to `+ k. Thus, Q(t) is indeed a k-flagged tableau. Furthermore, the
construction is bijective, since Edelman–Greene insertion can be inverted to obtain t.

An example of the bijection can be seen in Figure 5.
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Figure 6: Reverse plane partition corresponding to Figure 5 and its corresponding 2-fan
of paths.

3.2 A cyclic action on flagged tableaux

In this subsection we define a cyclic action on k-flagged tableaux. The flagged promotion
ρ(Q) of a k-flagged tableau Q is defined as follows.

(i) Delete all the instances of the letter 1,

(ii) apply jeu de taquin to the remaining entries,

(iii) subtract 1 from all the entries,

(iv) label each empty box on row i with i+ k.

One can easily see that ρ(Q) is indeed a k-flagged tableau, since the empty boxes after
step (iii) must form a horizontal strip, which means there is at most one empty box per
column. Furthermore, as every box gets moved at most up by one row, and at the end
one subtracts 1 from all the entries, the tableau obtained after step (iii) is k-flagged as
well. The argument is finalized with the observation that if one adds a horizontal strip
in which every box gets added its maximum possible value, the tableau is still k-flagged,
since the row-weakness is assured by the maximality of the value of the entries on each
row, and the column-strictness is assured by the fact that the entries in row i− 1 are all
strictly less than the maximal value on row i.

3.3 From flagged tableaux to fans of paths and south-east fillings

We proceed as in [FK97] to obtain a reverse plane partition of height k from a k-flagged
tableau. Let λ be a Ferrers shape and let µ = D(σk(λ)). Since every entry in row i of a
k-flagged tableau of shape µ is less than or equal to i + k and greater than or equal to
i (as the tableau is semistandard), one can subtract i from all the entries in row i, for
all rows, and obtain a reverse plane partition of shape µ and height k (i.e., where the
only possible entries are 0, 1, · · · , k. From this plane partition, one can obtain a k-fan of
noncrossing north-east paths inside µ, simply by letting the i-th path be the boundary
between the entries labelled i and i+ 1. To obtain a bijection between k-flagged tableaux
of shape µ and the set FSE(λ, k) of k-south-east fillings of the shape λ, one lifts the i-th
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path from the bottom by i − 1 and turns it into a path of +’s inside λ. This is done by
top left justifying the k-th path inside λ, placing the beginning of the k − 1-th path one
box below and to the right than the beginning of the k-th path, and continuing in this
fashion. As a final step, one adds a + in all the boxes which are in the same column and
below the beginning of each path, and in those in the same row and to the right of the
end of each path. See Figure 6 for an example; the red marks come from the red path,
the blue from the blue path, and the additional black marks are the extra marks we have
added, which are contained in any 2-south-east filling.

Putting the described bijections together, we obtain Theorem 1.2.

Theorem 3.4. Let λ be a Ferrers shape. The composition of the described maps is a
bijection between FNE(λ) and FSE(λ).

As mentioned in the introduction, k-triangulations of the n-gon can be seen as k-north-
east fillings of the staircase shape (n−1, . . . , 2, 1), and k-fans of Dyck paths of length 2(n−
2k) can be seen as k-south-east fillings of the same staircase (see e.g. [Kra06a, Rub06]).
Thus, we obtain Theorem 1.1. See Figure 7 for an example.

Corollary 3.5. In the case where λ is the staircase shape (n− 1, . . . , 2, 1), the described
map is a bijection between k-triangulations of the n-gon and k-fans of noncrossing Dyck
paths of length 2(n− 2k).

4 Properties of fillings and k-triangulations

Using Theorem 2.6, we obtain several properties of k-north-east fillings of moon polyomi-
noes and of Ferrers shapes and k-triangulations in particular. Some of them were already
known while others where only conjectured.

The first property was proved in the case of stack polyominoes by J. Jonsson in [Jon05,
Theorem 10]. It follows immediately from Theorem 2.1.

Corollary 4.1. Every k-north-east filling of a moon polyomino M contains i boxes, where
i equals the total number of boxes in M minus the length of σk(M). In particular, i equals
the number of boxes in the first k rows and columns in the case of Ferrers shapes.

The second property is part of the main theorem in [PS09, Theorem 1.4(i)] and con-
cerns the star property as described as well in [Stu10]; for the notion used here, we refer
as well to the latter.

Corollary 4.2. Every k-triangulation of the n-gon consists of exactly n− 2k k-stars.

Proof. This follows from the description of k-triangulations in terms of k-north-east fillings
of the staircase shape. As in this case σ is given by 1k×[n − 2k, . . . , 1], we obtain 2k
outer pipes, as well as n − 2k inner pipes connecting i with i for k < i ≤ n − k, and
which contains exactly 2k+ 1 turns. See Figure 7 for an example. This is exactly the star
property in [Stu10] and thus completes the proof.
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Figure 7: An example of all the steps in the bijection for the case of the staircase λ =
(7, . . . , 1) and k = 2: a 2-triangulation of the 8-gon, the 2-north-east filling of λ, the
pipe dream for [1, 2, 6, 5, 4, 3, 7, 8], the compatible sequence, the insertion and recording
(2-flagged) tableau of shape (3, 2, 1), the reverse plane partition of shape (3, 2, 1), the
2-fan of Dyck paths of length 8, and finally the 2-south-east filling of the λ.

Using the description of mutations for k-triangulations in Section 2.4, one can also
describe the mutation of a facet in the simplicial complex

∆n,k := ∆(1k×[n− 2k, . . . , 1]).

This mutation corresponds to removing a diagonal in a k-triangulation and replacing it
by the unique other diagonal which gives a k-triangulation. This operation is called flip
in [PS09, Theorem 1.4(iii)].

Corollary 4.3. A facet F in the simplicial complex ∆n,k can be mutated at any vertex
d = (i, j) ∈ F for which k < |i− j| < n− k.

Proof. The inversions of σ = 1k×[n− 2k, . . . , 1] are given by all (i, j) for which k < i <
j ≤ n − k. Thus, all n − 2k inner pipes in D ∈ RP(σ) mutually cross. It follows from
Section 2.4 that the facet corresponding to D can be mutated at any vertex (i, j) for
which k < |i− j| < n− k.

The next property of the constructed bijection will allow us to obtain a refined counting
of k-triangulations, as conjectured by C. Nicolas [Nic09]. Note that a diagonal (i, j) for
which |i − j| ≤ k or |i − j| ≥ n − k is contained in every k-triangulation of the n-gon.
Thus, we define the degree of a vertex i as the number of vertices j adjacent to i for which
k < |i− j| < n− k.
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Theorem 4.4. The degree of vertex 1 in a k-triangulation is equal to the number of
touching points of the lowermost Dyck path of its corresponding k-fan of Dyck paths with
the main diagonal (excluding the beginning and ending points of the path). Furthermore,
each edge (1, j) corresponds to the touching point with coordinates (j − k − 1, j − k − 1).

Proof. Let t be the compatible sequence corresponding to a k-triangulation T , decomposed

into t1 · · · tm, where ti =
(
i|wi|

wi

)
as in the definition. By construction, there is a diagonal

(1, j) if and only if the column
(
n+1−j
n+1−j

)
does not appear in t. By virtue of this, and the fact

that each letter in wi is larger than or equal to i, we have that every letter in wn+1−j · · ·wm
is strictly larger than n+ 1− j. By Lemma 3.2 with i = n− j+ 1, every letter in the first
n+ 1− j− k rows of Q(T ) is smaller than or equal to n− j. In particular, every letter in
row n + 1− j − k of the corresponding reverse plane partition is strictly smaller than k.
By construction, this implies that the lowermost path touches the diagonal at the point
(j − k − 1, j − k − 1). The converse follows clearly from the argument.

Figure 7 shows an example for k = 2, where vertex 1 is connected to vertices 4 and 6,
and the (red) lowermost Dyck path touches the diagonal at positions

(1, 1) = (4− 2− 1, 4− 2− 1) and

(3, 3) = (6− 2− 1, 6− 2− 1).

As described in [Nic09], we use this theorem to prove Conjecture 2 therein. For an explicit
expression for the determinant, we refer to [Kra06b, Theorem 4].

Corollary 4.5. The number of k-triangulations of a convex n-gon having degree d in a
given vertex is given by the determinantal expression

det

 Catn−2k · · · Catn−k−2 Bk
n−k−1(d)

...
. . .

...
...

Catn−k−1 · · · Catn−3 Bk
n−2(d)

 ,

where Cat` is the usual Catalan number, and where Bk
` (d) = 2k+d−3

`

(
2`−2k−d+2

`−1

)
.

4.1 Rotation of the n-gon and a CSP for flagged tableaux

There is a natural cyclic action ρ on k-triangulations given by rotating the vertex labels
in the n-gon counterclockwise. The following conjecture is due to V. Reiner [Rei09].

Conjecture 4.6 (V. Reiner). Let λ be the staircase shape (n− 1, . . . , 2, 1) and let k be a
positive integer. The triple (

FNE(λ, k), 〈ρ〉, F (q)
)

exhibits the cyclic sieving phenomenon (CSP) as described in [RSW04], where

F (q) :=
∏

1≤i≤j<n−2k

[i+ j + 2k]q
[i+ j]q

is a natural q-analogue of the cardinality of FNE(λ, k). .
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We can describe the cyclic action on k-triangulations induced by rotation in terms of
flagged promotion, as defined in Section 3.2.

Theorem 4.7. The constructed bijection maps the cyclic action on k-triangulations to
the cyclic action given by flagged promotion on flagged tableaux.

Proof. Let T be a triangulation with compatible sequence t, and recording tableau Q =
Q(t). First, we describe the compatible sequence ρ(t) of ρ(T ), then we describe the
compatible sequence for the flagged promotion ρ(Q), and finally we show that they are
the same.

Note that any non-edge (i, j) in T , with i < j, gets encoded in the compatible sequence
as a column

(
n+1−j
n+i−j

)
. In particular, the non-edges (i, n) get encoded as

(
1
i

)
. For j < n,

the switch from the non-edge (i, j) in T to (i + 1, j + 1) in ρ(T ) corresponds to turning
the column

(
n+1−j
n+i−j

)
in t into the column

(
n−j
n+i−j

)
in ρ(t). Likewise, the switch from the

non-edge (i, n) in T to (1, i + 1) in ρ(T ) corresponds to turning the column
(
1
i

)
into the

column
(
n−i
n−i

)
, and placing it in the right place to make sure ρ(t) is a compatible sequence.

Let Q̃ be the ordinary promotion of Q. It is well–known by the relationship between
promotion and Edelman–Greene insertion that Q̃ is the recording tableau of the biword
obtained by turning each column of the form

(
i
j

)
into the column

(
i−1
j

)
, for 2 ≤ i ≤ n,

and turning each column of the form
(
1
j

)
into one of the form

(
n
n−j

)
, and placing them

at the end of the compatible sequence in reverse order. This is the same transformation
as described in the above paragraph, except for columns

(
1
j

)
which got mapped into

columns
(
n−j
n−j

)
instead. We now proceed to slide these columns of the form

(
n
n−j

)
towards

the position of the column
(
n−j
n−j

)
one by one, starting from the left while adjusting the

element in the top row accordingly, and show that this transforms Q̃ into ρ(Q). Notice
that every letter in the bottom row between these two columns is greater than or equal
to n− j + 2, which means they all commute with n− j. Thus, the bottom row is still a
reduced word for σ. Lemma 3.1 implies that that all reduced expressions for σ have the
same insertion tableau. Since we now record n − j instead of n for those columns, this
procedure transforms Q̃ into ρ(Q).

Using this connection, we obtain the following corollary.

Corollary 4.8. Conjecture 1.7 is equivalent to Conjecture 4.6.

5 A positivity result for Schubert polynomials

In this section we use the results about moon polyominoes in Section 2.2 to obtain a
property of Schubert polynomials. It was shown in [FK96] that Schubert polynomials are
a generating series for pipe dreams, more precisely, for a permutation σ,

Sσ(x1, . . . , xn) =
∑

D∈RP(σ)

∏
(i,j)∈D

xi.

We obtain the following theorem and thus Corollary 1.6.
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Theorem 5.1. Let S be a stack polyomino, let λ be the associated Ferrers shape and let
k be a positive integer. Then

Sσk(S)(x1, x2, . . .)−Sσk(λ)(x1, x2, . . .)

is monomial positive. In particular, Sσk(S)(1, 1, . . .) is greater than or equal to the number
of k-flagged tableaux of shape λ.

Proof. This follows from Corollary 2.7.
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