Pandiagonal Sudokus

Walter Klotz

Institut für Mathematik Technische Universität Clausthal, Germany

klotz@math.tu-clausthal.de

Torsten Sander

Fakultät für Informatik Ostfalia Hochschule für angewandte Wissenschaften, Germany t.sander@ostfalia.de

Submitted: Aug 1, 2011; Accepted: Jan 8, 2012; Published: Jan 16, 2012 Mathematics Subject Classification 05B15, key words: Latin square, Sudoku

Abstract

It is shown that a pandiagonal $n^2 \times n^2$ -Sudoku exists if and only if $n \equiv \pm 1 \pmod{6}$. Also for these *n* the existence of row-cyclic, pandiagonal $n^2 \times n^2$ -Sudokus is conjectured and confirmed for n = 5 and n = 7.

1 Introduction

An $m \times m$ -matrix $A = (a_{i,j})$ with entries from $Z_m = \{0, 1, \ldots, m-1\}$ represents a *Latin* $m \times m$ -square, if every row and every column of A contains every element of Z_m exactly once (see e.g. [9]). The set of cells of A is

$$C(A) = Z_m \times Z_m = \{(i, j) : i \in Z_m, j \in Z_m\}.$$

The parallels of A to the left diagonal and to the right diagonal with parameter $h \in Z_m$ are

$$LD_h(A) = \{(i,j) \in C(A) : i - j \equiv h \pmod{m}\},\$$

$$RD_h(A) = \{(i,j) \in C(A) : i + j \equiv h \pmod{m}\},\$$
(1)

respectively. The left diagonal of A is $LD_0(A)$, the right diagonal of A is $RD_{m-1}(A)$. The matrix A represents a *pandiagonal* Latin $m \times m$ -square if every element of Z_m appears as an entry of A exactly once in every row, in every column, in every parallel to the left diagonal, and in every parallel to the right diagonal. Special pandiagonal Latin squares were considered in [1] and [4]. Hedayat [7] solved the existence problem for pandiagonal Latin squares:

Lemma 1. A pandiagonal Latin $m \times m$ -square exists, if and only if $m \equiv \pm 1 \pmod{6}$.

A region (see [2]) of a Latin $m \times m$ -square A consists of m distinct cells of A. A regional partition of A is a partition RP of the set C(A) of all cells of A into m disjoint regions. The Latin square A is gerecht (German for "fair", plural is gerechte) with respect to RP, if every element of Z_m appears exactly once in every region of A belonging to RP (cf. [2] and [3]). Gerechte Latin squares play an important role in the design of experiments (see e.g. [5] or [8]). The complexity of constructing gerechte designs is considered in [10].

We now assume $m = n^2$. Then the n^4 cells in C(A) can be partitioned into n^2 disjoint $n \times n$ -blocks

$$B^{(s,t)} = \{(i,j) \in C(A) : i = sn + u, j = tn + v, 0 \le u < n, 0 \le v < n\}$$

for $0 \leq s < n, 0 \leq t < n$. The $m \times m$ -matrix A with entries from Z_m , $m = n^2$, is an $n^2 \times n^2$ -Sudoku, if it is a Latin square which is gerecht with respect to the regional partition defined by the blocks of A. A pandiagonal Sudoku must also be gerecht with respect to the regional partition defined by the parallels to the left diagonal and by the parallels to the right diagonal. For a pandiagonal $n^2 \times n^2$ -Sudoku $n \equiv \pm 1 \pmod{6}$ is necessary by Lemma 1. C. Boyer [6] presents a pandiagonal 25×25 -Sudoku. But so far no general construction seems to be available. In Section 2 we construct pandiagonal $n^2 \times n^2$ -Sudokus for every $n \equiv \pm 1 \pmod{6}$.

All properties of a Latin square A which we consider here are maintained if we expose the entries of A to a bijection $f: Z_m \to Z_m$. Particularly, if $A = (a_{i,j})$ is a pandiagonal Sudoku then $f(A) = (f(a_{i,j}))$ is also a pandiagonal Sudoku. The Latin $m \times m$ -square is normalized if the entries of the first row are $0, 1, \ldots, m-1$ in their natural order. For the existence problems of the special Sudokus we investigate in Section 3 we may restrict the discussion to normalized Sudokus.

A Latin square is called *row-cyclic* if the sequence of entries of every row results from the sequence of entries of the first row by a cyclic shift. The term *column-cyclic* is defined analogously. A Latin square is *cyclic* if it is both row-cyclic and column-cyclic. We prove that no cyclic Sudoku exists, but a row-cyclic $n^2 \times n^2$ -Sudoku exists for every $n \ge 2$. Our main topic in Section 3 is the existence of row-cyclic, pandiagonal $n^2 \times n^2$ -Sudokus. Necessarily, $n \equiv \pm 1 \pmod{6}$ by Lemma 1. The case n = 1 is trivial. By a computer search we found out all normalized, row-cyclic, pandiagonal $n^2 \times n^2$ -Sudokus for n = 5 and for n = 7. Their total number is 10 for n = 5, respectively 28 for n = 7. It turns out that all of these Sudokus can be constructed from very few (1 for n = 5 and 2 for n = 7) "basic" Sudokus by "elementary operations". It remains a challenging open problem to show the existence of row-cyclic, pandiagonal $n^2 \times n^2$ -Sudokus for $n \equiv \pm 1 \pmod{6}$.

2 Existence of Pandiagonal Sudokus

For the rest of this paper we assume $m = n^2$, $n \ge 1$, and $Z_m = \{0, 1, \ldots, m-1\}$. Note that, trivially, there exists a pandiagonal 1×1 -Sudoku.

Lemma 2. Let $x_0, x_1, \ldots, x_{m-1}$ be a sequence of integers in $Z_m, y \in Z_m, y \neq 0$, gcd(y, n) = 1. Suppose that the following conditions are satisfied.

- 1) $x_{k+1} \equiv x_k + y \pmod{n}$ for every $k = 0, 1, \dots, m-2$.
- 2) $k \in Z_m$, $l \in Z_m$, $k \neq l$, and $k \equiv l \pmod{n}$ imply $x_k \neq x_l$.

Then we have $\{x_0, x_1, \dots, x_{m-1}\} = Z_m$.

Proof. Condition 1) implies $x_k = x_0 + ky \pmod{n}$ for $k = 0, 1, \ldots, m-1$. As y is invertible modulo n, we have for $0 \le k < m$, $0 \le l < m$:

$$x_k \equiv x_l \pmod{n} \iff k \equiv l \pmod{n}.$$
 (2)

In particular, this means that $x_0, x_1, \ldots, x_{n-1}$ represent all residues modulo n. If we define $R_i = \{z \in Z_m : z = x_i \pmod{n}\}$ then $Z_m = R_0 \cup R_1 \cup \ldots \cup R_{n-1}$ is the partition of Z_m into disjoint residue classes modulo n. For $0 \le i < n$ we see by (2) that the integers $x_i, x_{i+n}, \ldots, x_{i+(n-1)n}$ belong to R_i . Now condition 2) implies that these integers are pairwise distinct, therefore

$$R_i = \{x_i, x_{i+n}, \dots, x_{i+(n-1)n}\} \text{ for } 0 \le i < n \text{ and } \bigcup_{i=0}^{n-1} R_i = \{x_0, x_1, \dots, x_{m-1}\} = Z_m.$$

Each cell $(i, j) \in Z_m \times Z_m$ can also be described by 4 coordinates. Let

$$\begin{aligned} i &= sn + u, \quad 0 \le s < n, \quad 0 \le u < n, \\ j &= tn + v, \quad 0 \le t < n, \quad 0 \le v < n, \end{aligned}$$
 (3)

then we call (s, t, u, v) the 4-tuple representation of (i, j). For convenience we also identify (s, t, u, v) with the corresponding cell (i, j). The cell (s, t, u, v) belongs to the block $B^{(s,t)}$, s determines the block-row and t the block-column of A.

For integers x and y, with y > 0, we denote by x % y the least nonnegative residue of x modulo y.

Theorem 1. Suppose $m = n^2$, $n \ge 5$, $n \equiv \pm 1 \pmod{6}$. Choose integers a and b from $\{2, \ldots, n-1\}$ such that every number $a, a \pm 1, b, b \pm 1$ is coprime to n. Let the cell (i, j) be represented by the 4-tuple (s, t, u, v) according to (3). Define the entry $a_{i,j}$ of the $m \times m$ -Matrix A by

$$a_{i,j} = ((au + bs + t)\%n)n + (au + v)\%n.$$
(4)

Then A is a normalized pandiagonal $n^2 \times n^2$ -Sudoku.

Corollary 1. A pandiagonal $n^2 \times n^2$ -Sudoku exists if and only if $n \equiv \pm 1 \pmod{6}$.

The electronic journal of combinatorics $\mathbf{19}$ (2012), $\#\mathrm{P18}$

The assumption $n \equiv \pm 1 \pmod{6}$ is equivalent to the condition that n has no prime divisor 2 or 3. The requirements for $a, a \pm 1, b, b \pm 1$ in Theorem 1 can be satisfied e.g. by choosing a and b from $\{2,3\}$. Corollary 1 results from Theorem 1 in connection with Lemma 1, together with the fact that the case n = 1 is trivial.

Proof of Theorem 1. From (3) and (4) we deduce

$$a_{i,j} \equiv ai + j \pmod{n} \text{ for } 0 \le i < m, \ 0 \le j < m.$$

$$\tag{5}$$

For the first row of A we have i = s = u = 0. Now (3) and (4) imply $a_{0,j} = j$ for $0 \leq j < m$. Therefore, the first row of A has normalized form $0, 1, \ldots, m-1$. It remains to show that every row, every column, every block, and every parallel to the left/right diagonal of A contains every element of Z_m exactly once. According to these tasks we decompose the rest of the proof into four parts.

1) Rows. We partition Z_m into n disjoint intervals I_q of n successive integers:

$$I_q = \{qn, qn+1, \dots, qn+n-1\}, q = 0, 1, \dots, n-1.$$

Let $x_k = a_{i,k}$, $0 \le k < m$, be the entries of row *i* in *A*. By (5) we have $x_k \equiv ai + k \pmod{n}$ for $0 \le k < m$, which shows that the sequence (x_k) satisfies condition 1) of Lemma 2 with y = 1.

To show that the sequence (x_k) also satisfies condition 2) of Lemma 2, let $k, l \in Z_m$, $k \neq l, k \equiv l \pmod{n}$. Then we have

 $k = t_1 n + v, \ l = t_2 n + v$ with integers $t_1, t_2, v \in \{0, 1, \dots, n-1\}, \ t_1 \neq t_2$.

For row *i* the integers *s* and *u* are fixed by (3). According to (4) the integer x_k belongs to the interval I_{q_1} , $q_1 = (au + bs + t_1)\%n$, while x_l belongs to the interval I_{q_2} , $q_2 = (au + bs + t_2)\%n$. Now $t_1 \neq t_2$ implies $q_1 \neq q_2$ and $x_k \neq x_l$.

Both conditions in Lemma 2 are satisfied, therefore $\{x_0, x_1, \ldots, x_{m-1}\} = Z_m$.

2) Columns. Let $x_k = a_{k,j}$, $0 \le k < m$, be the entries of column j in A. By (5) we have $x_k \equiv ak + j \pmod{n}$ for $0 \le k < m$, which shows that the sequence (x_k) satisfies condition 1) of Lemma 2 with y = a. Here we utilize that a is coprime to n.

To show that the sequence (x_k) also satisfies condition 2) of Lemma 2, let $k, l \in Z_m$, $k \neq l, k \equiv l \pmod{n}$. Then we have

$$k = s_1 n + u, \ l = s_2 n + u$$
 with integers $s_1, s_2, u \in \{0, 1, \dots, n-1\}, \ s_1 \neq s_2$.

For column j the integers t and v are fixed by (3). According to (4) the integer x_k belongs to the interval I_{q_1} , $q_1 = (au + bs_1 + t)\%n$, while x_l belongs to the interval I_{q_2} , $q_2 = (au + bs_2 + t)\%n$. Now $s_1 \neq s_2$ and b coprime to n implies $q_1 \neq q_2$ and $x_k \neq x_l$.

Both conditions in Lemma 2 are satisfied, therefore $\{x_0, x_1, \ldots, x_{m-1}\} = Z_m$.

3) Blocks. For the block $B^{(s,t)}$ the integers s and t in (4) are fixed. The integer u determines a row of $B^{(s,t)}$, while v determines a column of $B^{(s,t)}$. In row u of $B^{(s,t)}$ the value of q(u) = (au+bs+t)%n is fixed, while (au+v)%n assumes all values $0, 1, \ldots, n-1$ for $v = 0, 1, \ldots, n-1$. According to (4) this means that row u of $B^{(s,t)}$ contains exactly the numbers of the interval $I_{q(u)}$. As a is coprime to n, the term q(u) assumes all values $0, 1, \ldots, n-1$ for $0 \le u < n$. The set of entries of $B^{(s,t)}$ is

$$\bigcup_{u=0}^{n-1} I_{q(u)} = I_0 \cup I_1 \cup \ldots \cup I_{n-1} = Z_m.$$

4) Parallels to the left/right diagonal. According to (1), the sequence (x_k) of entries in $LD_h(A)$, respectively $RD_h(A)$ is given by

$$x_k = a_{(h+\epsilon k)\%m,k}, \ k \in Z_m, \ \epsilon = \begin{cases} 1 & \text{for } LD_h(A) \\ -1 & \text{for } RD_h(A) \end{cases}$$
(6)

From (5) we deduce

 $x_k \equiv a(h + \epsilon k) + k \pmod{n}$ for $0 \le k < m$,

which implies

$$x_{k+1} \equiv x_k + a\epsilon + 1 \pmod{n}$$
 for $0 \le k < m - 1$.

As $a\epsilon + 1$ is coprime to n, we see that the sequence (x_k) satisfies condition 1) of Lemma 2 with $y = a\epsilon + 1$.

To confirm condition 2) of Lemma 2 we assume

$$k = t_1 n + v, \ l = t_2 n + v, \ t_1 \neq t_2, \ \text{with} \ t_1, t_2, v \in \{0, 1, \dots, n-1\}.$$
 (7)

By (6) we see

$$\begin{array}{rcl} x_k &=& a_{i,j} & \text{with} & i &=& (h+\epsilon k)\%m, \quad j &=& k, \\ x_l &=& a_{i',j'} & \text{with} & i' &=& (h+\epsilon l)\%m, \quad j' &=& l. \end{array}$$

We find integers u and w such that

$$h + \epsilon v = wn + u, \ 0 \le u \le n.$$

Then we have

$$\begin{aligned} i &= (h + \epsilon v + \epsilon t_1 n)\%m &= (u + (w + \epsilon t_1)n)\%m, \\ i' &= (h + \epsilon v + \epsilon t_2 n)\%m &= (u + (w + \epsilon t_2)n)\%m. \end{aligned}$$

This implies that i and i' have the following representations with suitable integers s_1, s_2 :

$$i = u + s_1 n, \quad 0 \le s_1 < n, \quad s_1 \equiv w + \epsilon t_1 \pmod{n},$$

 $i' = u + s_2 n, \quad 0 \le s_2 < n, \quad s_2 \equiv w + \epsilon t_2 \pmod{n}.$

The electronic journal of combinatorics 19 (2012), #P18

We use these representations for i and i' and those for k and l in (7) to determine x_k and x_l by (4).

$$\begin{aligned} x_k &= ((au+bs_1+t_1)\%n)n &+ (au+v)\%n, \\ x_l &= ((au+bs_2+t_2)\%n)n &+ (au+v)\%n. \end{aligned}$$

Setting $q_1 = (au + bs_1 + t_1)\% n$, $q_2 = (au + bs_2 + t_2)\% n$ and inserting s_1 , s_2 , we achieve

$$\begin{array}{rcl} x_k & \in & I_{q_1}, & q_1 & = & (au+bw+(b\epsilon+1)t_1)\%n, \\ x_l & \in & I_{q_2}, & q_2 & = & (au+bw+(b\epsilon+1)t_2)\%n. \end{array}$$

Now $q_1 = q_2$ would imply $t_1 \equiv t_2 \pmod{n}$, because $b\epsilon + 1$ is invertible modulo n. But this contradicts (7). So we conclude $q_1 \neq q_2$ and $x_k \neq x_l$.

Conditions 1) and 2) of Lemma 2 are satisfied, therefore $\{x_0, x_1, \ldots, x_{m-1}\} = Z_m$.

3 Row-cyclic Pandiagonal Sudokus

In this section we will present all normalized, row-cyclic, pandiagonal $n^2 \times n^2$ -Sudokus for n = 5 and for n = 7. But first we are going to disprove the existence of cyclic Sudokus for $n \ge 2$.

Throughout this section $A = (a_{i,j})$ is an $m \times m$ -matrix with entries $a_{i,j} \in Z_m$, $m = n^2$. Suppose that the sequence of integers (a_k) , $0 \le k < m$, represents a permutation of the elements of Z_m . We call (a_k) residual (with respect to $m = n^2$) if there are integers r_s , $0 \le r_s < n$, for $0 \le s < n$, such that

 $a_{sn} \equiv a_{sn+1} \equiv \ldots \equiv a_{sn+n-1} \equiv r_s \pmod{n}$ for every $s = 0, 1, \ldots, n-1$.

Observe that our assumptions imply $\{r_0, r_1, ..., r_{n-1}\} = \{0, 1, ..., n-1\}.$

Theorem 2. Let the $m \times m$ -matrix A, $m = n^2$, represent a normalized row-cyclic Latin square. Then A is an $n^2 \times n^2$ -Sudoku if and only if the sequence (a_k) , $0 \le k < m$, of the entries in the first column of A is residual.

Proof. First we assume that A is a normalized, row-cyclic $n^2 \times n^2$ -Sudoku. The entries $a_0, a_1, \ldots, a_{m-1}$ of the first column of A uniquely determine every other entry of A. Fix some $s \in \{0, 1, \ldots, n-1\}$. The integers $a_{sn+u}, 0 \le u < n$, form the sequence of entries of the first column in block $B^{(s,0)}$. The set of entries in row u of $B^{(s,0)}, 0 \le u < n$, is

$$T_u = \{a_{sn+u}, (a_{sn+u}+1)\% m, \dots, (a_{sn+u}+n-1)\% m\}.$$

As the block $B^{(s,0)}$ contains every integer in Z_m exactly once, the sets $T_0, T_1, \ldots, T_{n-1}$ constitute a partition of Z_m into disjoint subsets. Consider the element $(a_{sn} + n)\% m$ of Z_m . It does not belong to $T_0 = \{a_{sn}, (a_{sn} + 1)\% m, \ldots, (a_{sn} + n - 1)\% m\}$, but to one of the sets $T_1, T_2, \ldots, T_{n-1}$, without loss of generality

$$((a_{sn}+n)\%m) \in T_1 = \{a_{sn+1}, (a_{sn+1}+1)\%m, \dots, (a_{sn+1}+n-1)\%m\}.$$

The electronic journal of combinatorics $\mathbf{19}$ (2012), $\#\mathrm{P18}$

The only element $x \in T_1$ with $((x-1)\%m) \notin T_1$ is $x = a_{sn+1}$, therefore

$$((a_{sn}+n)\%m) = a_{sn+1}$$
 and $a_{sn} \equiv a_{sn+1} \pmod{n}$.

Continuing in this way we obtain

$$a_{sn} \equiv a_{sn+1} \equiv \ldots \equiv a_{sn+n-1} \pmod{n}$$
 for every $s = 0, 1, \ldots, n-1$,

which means that the sequence (a_k) is residual.

To prove the converse, let A be a normalized, row-cyclic Latin $m \times m$ -square, $m = n^2$, with residual first column (a_k) , $0 \le k < m$. The entries b_k of column j of A, $0 \le j < m$, are

$$b_k = (a_k + j)\%m$$
 for $0 \le k < m$.

Now (a_k) residual implies (b_k) residual, so every column of A is residual.

Consider an arbitrary block $B^{(s,t)}$ of $A, 0 \leq s < n, 0 \leq t < n$. We show that $B^{(s,t)}$ contains every element of Z_m . The entries c_k in the first column of $B^{(s,t)}$ are

$$c_k = (a_{sn+k} + tn)\%m$$
 for $0 \le k < n$.

The set of entries in row u of $B^{(s,t)}$, $0 \le u < n$, is

$$M_u = \{c_u, (c_u + 1)\% m, \dots, (c_u + n - 1)\% m\}.$$

As part of the residual column tn of A the integers $c_0, c_1, \ldots, c_{n-1}$ are distinct, but belong to the same residue class modulo n. Therefore, the sets $M_0, M_1, \ldots, M_{n-1}$ constitute a partition of Z_m into disjoint subsets. The set of entries in block $B^{(s,t)}$ is

$$M_0 \cup M_1 \cup \ldots \cup M_{n-1} = Z_m.$$

Corollary 2. Let A be a normalized, row-cyclic $n^2 \times n^2$ -Sudoku. Then every column of A is residual.

Corollary 3. Row-cyclic $n^2 \times n^2$ -Sudokus exist for every $n \ge 2$, but no cyclic Sudokus.

Proof. Assume that A is a normalized, cyclic $m \times m$ -Sudoku, $m = n^2$, $n \ge 2$. By Corollary 2 the sequence of entries in every column of A has to be residual. A cyclic shift of the entries in the first column by p, $0 \le p < m$, positions results in a residual sequence if and only if p is a multiple of n, p = kn, $0 \le k < n$. As there are only n such shifts, it is not possible to generate all m > n distinct columns of A by a cyclic shift from its first column.

A normalized, row-cyclic $m \times m$ -Latin square A is uniquely determined by the sequence (a_k) of entries $a_0 = 0, a_2, \ldots, a_{m-1}$ in its first column. Now it is no problem to choose (a_k) residual with respect to $m = n^2$ and thus achieve that A becomes a normalized, row-cyclic Sudoku.

We introduce numerical and positional operations on $Z^{m \times m}$, the set of all $m \times m$ matrices with entries in $Z_m = \{0, 1, \ldots, m-1\}$. Let $f : Z_m \to Z_m$ be a bijection. The numerical operation f on $Z^{m \times m}$ is defined by

$$f(A) = (f(a_{i,j}))$$
 for $A = (a_{i,j}) \in Z^{m \times m}$

Numerical operations preserve all properties described by the terms Latin square, Sudoku, row-cyclic, and pandiagonal. A simple numerical operation is defined by t_w , the additive shift by $w \in Z_m$,

$$t_w(x) = (x+w)\%m$$
 for $x \in Z_m$

The set of all cells associated with the matrices in $Z^{m \times m}$ is $Z_m \times Z_m$. Let $P : Z_m \times Z_m \to Z_m \times Z_m$ be a bijection. The positional operation P on $Z^{m \times m}$ is defined by

$$P(A) = (a_{P(i,j)})$$
 for $A = (a_{i,j}) \in Z^{m \times m}$

Naturally, a numerical operation f and a positional operation P on $Z^{m \times m}$ commute, $f \circ P = P \circ f$. Here we will apply the following positional operations to $A \in Z^{m \times m}$:

- RR: reverses the order of the rows of A,
- RC: reverses the order of the columns of A,
- CS_q : induces a cyclic shift of the rows of A by q rows, row i becomes row (i+q)%m, $0 \le q \le m$.

These operations preserve all properties described by the terms Latin square, row-cyclic, and pandiagonal. If $m = n^2$, then RR and RC map Sudoku to Sudoku. The same is true for CS_q , if q = kn, $0 \le k \le n$.

From now on we assume that $A = (a_{i,j}) \in \mathbb{Z}^{m \times m}$ is a normalized and row-cyclic $m \times m$ -Sudoku, $m = n^2$, $n \ge 2$. Such a Sudoku A is completely determined by the sequence $(a_i) = (a_{i,0})$ of entries in its first column,

$$a_{i,j} = (a_i + j)\%m$$
 for $i \in Z_m, j \in Z_m$.

For this reason we call (a_i) the generating sequence of A. It is residual. We introduce special operations for A, which preserve the properties we are interested in. We define the complement Comp(A) and the k-partner $P_k(A)$ for $1 \le k \le n$.

Consider the bijection $f_0: Z_m \to Z_m$ given by $f_0(x) = (-x-1)\% m$ for $x \in Z_m$ as a numerical operation on $Z^{m \times m}$. Then we define the complement operator by

$$Comp = f_0 \circ RC. \tag{8}$$

Proposition 1. Let $A = (a_{i,j}) \in Z^{m \times m}$ be a normalized, row-cyclic Sudoku with generating sequence (a_i) . Then $B = (b_{i,j}) = Comp(A)$ is a normalized, row-cyclic Sudoku with generating sequence (b_i) ,

$$b_i = (m - a_i)\%m$$
 for $i \in Z_m$

If A is pandiagonal then B = Comp(A) is also pandiagonal.

The electronic journal of combinatorics 19 (2012), #P18

Proof. Clearly, $B = Comp(A) = f_0 \circ RC(A)$ is a row-cyclic Sudoku and it is pandiagonal if A is pandiagonal. As A is normalized, the sequence of entries in the first row of RC(A) is $m - 1, m - 2, \ldots, 0$. Applying f_0 , this becomes $0, 1, \ldots, m - 1$, which means that B is normalized.

As A is normalized and row-cyclic the sequence of entries in the last column of A is given by $(a_i + m - 1)\%m$, $0 \le i < m$. This is also the sequence of entries in the first column of RC(A). Applying f_0 , we obtain

$$b_i = (-a_i)\% m = (m - a_i)\% m$$
 for $0 \le i < m$.

Corollary 4. For every normalized, row-cyclic Sudoku A we have $Comp \circ Comp(A) = A$.

Proof. $Comp \circ Comp(A)$ and A have the same generating sequence.

Let $1 \leq k \leq n$ and $A \in \mathbb{Z}^{m \times m}$ be a normalized, row-cyclic Sudoku with generating sequence $(a_i), w(A) = (-a_{kn-1})\%m$. The *k*-partner of A is defined by

$$P_k(A) = Comp \circ t_{w(A)} \circ CS_{kn} \circ RR(A).$$
(9)

Observe that the operator P_k depends on the entries of the matrix it is applied to.

Proposition 2. Let $A = (a_{i,j}) \in Z^{m \times m}$ be a normalized, row-cyclic Sudoku with generating sequence (a_i) . Then $B = P_k(A)$ has the following properties.

- a) B is a normalized and row-cyclic Sudoku. If A is pandiagonal then B is also pandiagonal.
- b) If (b_i) is the generating sequence of B, then $b_{kn-1} = a_{kn-1}$.
- c) $Comp \circ P_k(A) = P_k \circ Comp(A).$
- d) $P_k \circ P_k(A) = A$.

Proof. a) Clearly, $B = P_k(A) = Comp \circ t_{w(A)} \circ CS_{kn} \circ RR(A)$ is a row-cyclic Sudoku and B is pandiagonal, if A is pandiagonal. The integer $a_{kn-1} = a_{kn-1,0}$ is the last entry in the first column belonging to the k-th block of this column. In $CS_{kn} \circ RR(A) = D$ this entry is in position (0,0). The integer $w(A) = (-a_{kn-1})\%m$ is chosen such that the additive shift $t_{w(A)}$ normalizes D. But if $t_{w(A)}(D)$ is normalized, then $P_k(A) = Comp \circ t_{w(A)}(D)$ is also normalized by Proposition 1.

b) The entry in position (kn - 1, 0) of $CS_{kn} \circ RR(A)$ is the entry of A in position (0, 0), which is 0. This entry is transformed by $t_{w(A)}$ to $t_{w(A)}(0) = w(A) = (-a_{kn-1})\% m$. By Proposition 1 the application of the operator *Comp* results in

$$b_{kn-1} = a_{kn-1}\% m = a_{kn-1}.$$

c) By Corollary 4 we know that $Comp \circ Comp$ is the identity operator. Therefore, (9) implies

$$Comp \circ P_k(A) = t_w \circ CS_{kn} \circ RR(A), \quad w = (-a_{kn-1})\%m.$$

$$\tag{10}$$

We utilize that numerical and positional operations commute. The same is true for RC and CS_{kn} and also for RC and RR. Of course, $RC \circ RC$ is the identity operator.

$$P_{k} \circ Comp(A) = Comp \circ t_{u} \circ CS_{kn} \circ RR \circ Comp(A)$$

= $f_{0} \circ RC \circ t_{u} \circ CS_{kn} \circ RR \circ f_{0} \circ RC(A)$
= $f_{0} \circ t_{u} \circ f_{0} \circ CS_{kn} \circ RR(A)$ (11)

Here we have $u = (-c_{kn-1})\% m$, where c_{kn-1} is the entry of Comp(A) in position (kn-1, 0), which by Proposition 1 is

$$c_{kn-1} = (m - a_{kn-1})\% m$$
, therefore $u = a_{kn-1}\% m = a_{kn-1}$.

In view of (10) and (11) it remains to show

$$f_0 \circ t_u \circ f_0 = t_w.$$

For every $x \in Z_m$ we have

$$f_0 \circ t_u \circ f_0(x) = f_0 \circ t_u((-x-1)\%m)$$

= $f_0((-x-1+u)\%m) = f_0((-x-1+a_{kn-1})\%m)$
= $(x+1-a_{kn-1}-1)\%m = (x+w)\%m = t_w(x).$

d) According to (8) and (9) we have

$$P_k \circ P_k(A) = Comp \circ t_u \circ CS_{kn} \circ RR \circ Comp \circ t_w \circ CS_{kn} \circ RR(A)$$

= $f_0 \circ RC \circ t_u \circ CS_{kn} \circ RR \circ f_0 \circ RC \circ t_w \circ CS_{kn} \circ RR(A).$ (12)

Here $w = (-a_{kn-1})\%m$ and $u = (-b_{kn-1})\%m$, where b_{kn-1} is the entry of $P_k(A)$ in position (kn - 1, 0), which by b) is $b_{kn-1} = a_{kn-1}$. It follows $u = (-a_{kn-1})\%m = w$, $t_u = t_w$. In (12) we commute operations suitably and cancel $RC \circ RC$ so that we obtain

$$P_k \circ P_k(A) = f_0 \circ t_w \circ f_0 \circ t_w \circ CS_{kn} \circ RR \circ CS_{kn} \circ RR(A).$$
(13)

For every $x \in Z_m$ we have $f_0 \circ t_w(x) = f_0((x+w)\%m) = (-x-w-1)\%m$ and so

$$(f_0 \circ t_w) \circ (f_0 \circ t_w)(x) = f_0 \circ t_w((-x - w - 1)\% m) = (-(-x - w - 1) - w - 1)\% m = x.$$

Now (13) implies

$$P_k \circ P_k(A) = CS_{kn} \circ RR \circ CS_{kn} \circ RR(A).$$

If B_1, \ldots, B_n is the sequence of blocks in an arbitrary block-column of A then the corresponding sequence in $CS_{kn} \circ RR(A)$ is $B'_k, B'_{k-1}, \ldots, B'_1, B'_n, B'_{n-1}, \ldots, B'_{k+1}$. Here B'_i results from B_i by reversing the order of the rows of $B_i, 1 \le i \le n$. If we apply this operation twice to A then we end up with the original matrix A. This means $P_k \circ P_k(A) = A$. \Box

The notions of complement and k-partner can be transferred to partial Sudokus. We define a partial Sudoku by a generating sequence $a_0 = 0, a_1, \ldots, a_{qn-1}, 1 \le q < n$, that can be extended to a residual sequence over Z_m . The partial Sudoku generated by this sequence is the $qn \times m$ -matrix $A' = (a'_{i,j})$ with entries:

$$a'_{i,j} = (a_i + j)\%m$$
 for $0 \le i < qn, \ 0 \le j < m$.

Now A' has an extension to a normalized, row-cyclic, pandiagonal $m \times m$ -Sudoku, if and only if all k-partners of A', $1 \le k \le q$, and their complements have such an extension. This fact considerably abbreviates the search for normalized, row-cyclic, pandiagonal Sudokus.

We now present our computer results for n = 5 and for n = 7. There are exactly 10 normalized, row-cyclic, pandiagonal 25×25 -Sudokus. They are given by the following generating sequences.

$S_1 = (0, 5, 10, 20, 15,$	8, 18, 13, 3, 23,	17, 7, 2, 22, 12,	6, 1, 16, 11, 21,	14, 9, 19, 24, 4)
$S_2 = (0, 20, 5, 10, 15,$	11, 16, 21, 6, 1,	19, 4, 24, 14, 9,	3, 18, 13, 8, 23,	17, 12, 2, 22, 7)
$S_3 = (0, 20, 10, 5, 15, $	8, 3, 13, 18, 23,	19, 24, 4, 14, 9,	2, 12, 7, 22, 17,	11, 1, 21, 16, 6)
$S_4 = (0, 15, 10, 5, 20,$	14, 9, 24, 19, 4,	22, 17, 2, 7, 12,	8, 13, 18, 3, 23,	16, 1, 21, 11, 6)
$S_5 = (0, 10, 5, 20, 15,$	9, 24, 19, 14, 4,	23, 18, 8, 3, 13,	6, 1, 11, 16, 21,	17, 22, 2, 12, 7)
$S_6 = (0, 20, 15, 5, 10,$	17, 7, 12, 22, 2,	8, 18, 23, 3, 13,	19, 24, 9, 14, 4,	11, 16, 6, 1, 21)
$S_7 = (0, 5, 20, 15, 10,$	14, 9, 4, 19, 24,	6, 21, 1, 11, 16,	22, 7, 12, 17, 2,	8, 13, 23, 3, 18)
$S_8 = (0, 5, 15, 20, 10,$	17, 22, 12, 7, 2,	6, 1, 21, 11, 16,	23, 13, 18, 3, 8,	14, 24, 4, 9, 19)
$S_9 = (0, 10, 15, 20, 5,$	11, 16, 1, 6, 21,	3, 8, 23, 18, 13,	17, 12, 7, 22, 2,	9, 24, 4, 14, 19)
$S_{10} = (0, 15, 20, 5, 10,$	16, 1, 6, 11, 21,	2, 7, 17, 22, 12,	19, 24, 14, 9, 4,	8, 3, 23, 13, 18)

In the sequel we use the same notation for the sequence S_j and the Sudoku it generates. We see five complementary pairs: (S_1, S_6) , (S_2, S_7) , (S_3, S_8) , (S_4, S_9) , and (S_5, S_{10}) . The k-partners of S_1 for k = 1, 2, 3, 4 are S_2, S_3, S_4, S_5 . The 5-partner of S_1 is S_1 itself. The k-partners of S_6 for k = 1, 2, 3, 4 are S_7, S_8, S_9, S_{10} . The 5-partner of S_6 is S_6 itself. The sequences S_1 and S_6 have another remarkable property. We call a generating sequence $S = (a_i), 0 \le i < m$, and its row-cyclic $m \times m$ -Sudoku reflexive if

$$a_0 + a_{m-1} \equiv a_1 + a_{m-2} \equiv \ldots \equiv a_{m-1} + a_0 \pmod{m}.$$
 (14)

If $S = (a_i)$ is reflexive then the complementary sequence $\overline{S} = ((m - a_i)\%m)$ is also reflexive. In the above list (S_1, S_6) is the only pair of complementary, reflexive sequences.

Proposition 3. Let $S = (a_i)$, $0 \le i < m$, be a reflexive generating sequence of the normalized, row-cyclic $m \times m$ -Sudoku $A = (a_{i,j})$, $m = n^2$. Then the n-partner of A is A itself, $P_n(A) = A$.

Proof. We determine $P_n(A)$ according to (9).

$$P_n(A) = Comp \circ t_w \circ CS_m \circ RR(A), \ w = (-a_{m-1})\%m$$

Observe that CS_m is the identity operator. The sequence of entries in the first column of RR(A) is (a_{m-1-i}) , $i = 0, 1, \ldots, m-1$. The additive shift t_w turns this sequence to

$$((a_{m-1-i} + w)\%m) = ((a_{m-1-i} - a_{m-1})\%m)$$

The electronic journal of combinatorics 19 (2012), #P18

Finally, we get the generating sequence (b_i) of $P_n(A)$ by applying the *Comp* operator. According to Proposition 1 we have

$$b_i = (m - (a_{m-1-i} - a_{m-1}))\% m = (-a_{m-1-i} + a_{m-1})\% m.$$
(15)

We utilize the reflexivity condition (14) for (a_i) :

 $a_s + a_t \equiv a_0 + a_{m-1} \equiv a_{m-1} \pmod{m}$ for $s, t \in Z_m$ with s + t = m - 1.

For s = m - 1 - i and t = i we obtain

$$a_{m-1-i} + a_i \equiv a_{m-1}, \ a_{m-1-i} \equiv a_{m-1} - a_i \pmod{m}$$

Inserting a_{m-1-i} into (15) yields $b_i = a_i$ for every $i = 0, 1, \ldots, m-1$. The normalized, rowcyclic Sudokus $P_n(A)$ and A have the same generating sequence, therefore $P_n(A) = A$. \Box

All 10 normalized, row-cyclic, pandiagonal 25×25 -Sudokus can be reproduced from S_1 by forming the k-partners of S_1 and their complements for k = 1, 2, 3, 4, 5. We have a similar result for n = 7, m = 49. There are exactly 28 normalized, row-cyclic, pandiagonal 49×49 -Sudokus. Among them are exactly two pairs (T_1, \overline{T}_1) and (T_2, \overline{T}_2) of complementary, reflexive Sudokus. All 28 normalized, row-cyclic, pandiagonal 49×49 -Sudokus can be reproduced from T_1 and T_2 by forming the k-partners of T_1, T_2 and their complements for $k = 1, 2, \ldots, 7$. Here are the generating sequences of T_1 and T_2 .

$$\begin{split} T_1 = & (0,7,28,21,42,35,14, & 24,10,38,17,45,31,3, & 5,26,47,12,19,40,33, \\ & 30,44,16,2,37,9,23, & 20,13,34,41,6,27,48, & 1,22,8,36,15,43,29, \\ & 39,18,11,32,25,46,4) \end{split} \\ T_2 = & (0,14,28,7,35,42,21, & 39,25,4,11,18,46,32, & 23,37,2,44,30,9,16, \\ & 13,20,48,27,6,34,41, & 38,45,24,10,3,17,31, & 22,8,36,43,1,29,15, \\ & 33,12,19,47,26,40,5) \end{split}$$

These results suggest the following

Conjecture. For every integer $n \equiv \pm 1 \pmod{6}$, $n \ge 5$, $m = n^2$, the following statements are true.

- 1. The set RF(m) of reflexive, normalized, row-cyclic, pandiagonal $m \times m$ -Sudokus is not empty.
- 2. The set RF(m) consists of pairs of complementary Sudokus. Form a reduced set $RF_{red}(m)$ by taking only one Sudoku from each such pair. Then the set of all normalized, row-cyclic, pandiagonal $m \times m$ -Sudokus is obtained by forming all k-partners, $1 \le k \le n$, and their complements for every Sudoku in $RF_{red}(m)$. The size of this set is $2n|RF_{red}(m)|$.

References

- ATKIN, A. O. L., HAY, L., AND LARSON, R. G. Enumeration and construction of pandiagonal Latin squares of prime order. *Computers and Mathematics with Applications* 9(2) (1983), 267–292.
- [2] BAILEY, R. A., CAMERON, P. J., AND CONNELLY, R. Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes. Am. Math. Monthly 115 (2008), 383–404.
- BEHRENS, W. U. Feldversuchsanordnungen mit verbessertem Ausgleich der Bodenunterschiede. Zeitschrift für Landwirtschaftliches Versuchs- und Untersuchungswesen 2 (1956) 176–193.
- [4] BELL, J., AND BRETT, S. Constructing orthogonal pandiagonal Latin squares and panmagic squares from modular n-queens solutions. J. of Combinatorial Designs 15(3) (2007), 221–234.
- [5] BETH, T., JUNGNICKEL, D., AND LENZ, H. Design Theory. Cambridge University Press, 1999.
- [6] BOYER, C. Smallest possible pandiagonal Sudoku. *Mathematics Today* (April 2006), page 70, available at *http://www.multimagie.com/English/SudokuPandiag.htm*.
- [7] HEDAYAT, A. A complete solution to the existence and nonexistence of Knut Vik designs and orthogonal Knut Vik designs. J. Combinatorial Theory (A) 22 (1977), 331–337.
- [8] STREET, A. P., AND STREET, D. J. Combinatorics of experimental design. Oxford University Press, 1987.
- [9] VAN LINT, J. H., AND WILSON, R. M. A course in combinatorics. Cambridge University Press, 1992.
- [10] VAUGHAN, E. R. The complexity of constructing Gerechte designs. Electron. J. Combin. 16(1) (2009), #R15.