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Abstract

It is shown that a pandiagonal n2×n2-Sudoku exists if and only if n ≡ ±1 (mod 6).
Also for these n the existence of row-cyclic, pandiagonal n2×n2-Sudokus is conjec-
tured and confirmed for n = 5 and n = 7.

1 Introduction

An m×m-matrix A = (ai,j) with entries from Zm = {0, 1, . . . ,m− 1} represents a Latin
m×m-square, if every row and every column of A contains every element of Zm exactly
once (see e.g. [9]). The set of cells of A is

C(A) = Zm × Zm = {(i, j) : i ∈ Zm, j ∈ Zm}.

The parallels of A to the left diagonal and to the right diagonal with parameter h ∈ Zm
are

LDh(A) = {(i, j) ∈ C(A) : i− j ≡ h (mod m)},
RDh(A) = {(i, j) ∈ C(A) : i+ j ≡ h (mod m)},

(1)

respectively. The left diagonal of A is LD0(A), the right diagonal of A is RDm−1(A). The
matrix A represents a pandiagonal Latin m × m-square if every element of Zm appears
as an entry of A exactly once in every row, in every column, in every parallel to the left
diagonal, and in every parallel to the right diagonal. Special pandiagonal Latin squares
were considered in [1] and [4]. Hedayat [7] solved the existence problem for pandiagonal
Latin squares:
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Lemma 1. A pandiagonal Latin m×m-square exists, if and only if m ≡ ±1 (mod 6).

A region (see [2]) of a Latin m×m-square A consists of m distinct cells of A. A regional
partition of A is a partition RP of the set C(A) of all cells of A into m disjoint regions.
The Latin square A is gerecht (German for “fair”, plural is gerechte) with respect to RP ,
if every element of Zm appears exactly once in every region of A belonging to RP (cf. [2]
and [3]). Gerechte Latin squares play an important role in the design of experiments (see
e.g. [5] or [8]). The complexity of constructing gerechte designs is considered in [10].

We now assume m = n2. Then the n4 cells in C(A) can be partitioned into n2 disjoint
n× n-blocks

B(s,t) = {(i, j) ∈ C(A) : i = sn+ u, j = tn+ v, 0 ≤ u < n, 0 ≤ v < n}

for 0 ≤ s < n, 0 ≤ t < n. The m × m-matrix A with entries from Zm, m = n2, is
an n2 × n2-Sudoku, if it is a Latin square which is gerecht with respect to the regional
partition defined by the blocks of A. A pandiagonal Sudoku must also be gerecht with
respect to the regional partition defined by the parallels to the left diagonal and by the
parallels to the right diagonal. For a pandiagonal n2 × n2-Sudoku n ≡ ±1 (mod 6) is
necessary by Lemma 1. C. Boyer [6] presents a pandiagonal 25 × 25-Sudoku. But so
far no general construction seems to be available. In Section 2 we construct pandiagonal
n2 × n2-Sudokus for every n ≡ ±1 (mod 6).

All properties of a Latin square A which we consider here are maintained if we expose
the entries of A to a bijection f : Zm → Zm. Particularly, if A = (ai,j) is a pandiagonal
Sudoku then f(A) = (f(ai,j)) is also a pandiagonal Sudoku. The Latin m×m-square is
normalized if the entries of the first row are 0, 1, . . . ,m− 1 in their natural order. For the
existence problems of the special Sudokus we investigate in Section 3 we may restrict the
discussion to normalized Sudokus.

A Latin square is called row-cyclic if the sequence of entries of every row results from
the sequence of entries of the first row by a cyclic shift. The term column-cyclic is defined
analogously. A Latin square is cyclic if it is both row-cyclic and column-cyclic. We prove
that no cyclic Sudoku exists, but a row-cyclic n2 × n2-Sudoku exists for every n ≥ 2.
Our main topic in Section 3 is the existence of row-cyclic, pandiagonal n2 × n2-Sudokus.
Necessarily, n ≡ ±1 (mod 6) by Lemma 1. The case n = 1 is trivial. By a computer search
we found out all normalized, row-cyclic, pandiagonal n2 × n2-Sudokus for n = 5 and for
n = 7. Their total number is 10 for n = 5, respectively 28 for n = 7. It turns out that all
of these Sudokus can be constructed from very few (1 for n = 5 and 2 for n = 7) “basic”
Sudokus by “elementary operations”. It remains a challenging open problem to show the
existence of row-cyclic, pandiagonal n2 × n2-Sudokus for further n ≡ ±1 (mod 6).

2 Existence of Pandiagonal Sudokus

For the rest of this paper we assume m = n2, n ≥ 1, and Zm = {0, 1, . . . ,m − 1}. Note
that, trivially, there exists a pandiagonal 1× 1-Sudoku.
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Lemma 2. Let x0, x1, . . . , xm−1 be a sequence of integers in Zm, y ∈ Zm, y 6= 0,
gcd(y, n) = 1. Suppose that the following conditions are satisfied.

1) xk+1 ≡ xk + y (mod n) for every k = 0, 1, . . . ,m− 2.

2) k ∈ Zm, l ∈ Zm, k 6= l, and k ≡ l (mod n) imply xk 6= xl.

Then we have {x0, x1, . . . , xm−1} = Zm.

Proof. Condition 1) implies xk = x0+ky (mod n) for k = 0, 1, . . . ,m−1. As y is invertible
modulo n, we have for 0 ≤ k < m, 0 ≤ l < m:

xk ≡ xl (mod n) ⇐⇒ k ≡ l (mod n). (2)

In particular, this means that x0, x1, . . . , xn−1 represent all residues modulo n. If we
define Ri = {z ∈ Zm : z = xi (mod n)} then Zm = R0 ∪ R1 ∪ . . . ∪ Rn−1 is the partition
of Zm into disjoint residue classes modulo n. For 0 ≤ i < n we see by (2) that the
integers xi, xi+n, . . . , xi+(n−1)n belong to Ri. Now condition 2) implies that these integers
are pairwise distinct, therefore

Ri = {xi, xi+n, . . . , xi+(n−1)n} for 0 ≤ i < n and
n−1⋃
i=0

Ri = {x0, x1, . . . , xm−1} = Zm.

Each cell (i, j) ∈ Zm × Zm can also be described by 4 coordinates. Let

i = sn+ u, 0 ≤ s < n, 0 ≤ u < n,
j = tn+ v, 0 ≤ t < n, 0 ≤ v < n,

(3)

then we call (s, t, u, v) the 4-tuple representation of (i, j). For convenience we also identify
(s, t, u, v) with the corresponding cell (i, j). The cell (s, t, u, v) belongs to the block B(s,t),
s determines the block-row and t the block-column of A.

For integers x and y, with y > 0, we denote by x%y the least nonnegative residue of
x modulo y.

Theorem 1. Suppose m = n2, n ≥ 5, n ≡ ±1 (mod 6). Choose integers a and b from
{2, . . . , n − 1} such that every number a, a ± 1, b, b ± 1 is coprime to n. Let the cell
(i, j) be represented by the 4-tuple (s, t, u, v) according to (3). Define the entry ai,j of the
m×m-Matrix A by

ai,j = ((au+ bs+ t)%n)n+ (au+ v)%n. (4)

Then A is a normalized pandiagonal n2 × n2-Sudoku.

Corollary 1. A pandiagonal n2 × n2-Sudoku exists if and only if n ≡ ±1 (mod 6).
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The assumption n ≡ ±1 (mod 6) is equivalent to the condition that n has no prime
divisor 2 or 3. The requirements for a, a ± 1, b, b ± 1 in Theorem 1 can be satisfied
e.g. by choosing a and b from {2, 3}. Corollary 1 results from Theorem 1 in connection
with Lemma 1, together with the fact that the case n = 1 is trivial.

Proof of Theorem 1. From (3) and (4) we deduce

ai,j ≡ ai+ j (mod n) for 0 ≤ i < m, 0 ≤ j < m. (5)

For the first row of A we have i = s = u = 0. Now (3) and (4) imply a0,j = j for
0 ≤ j < m. Therefore, the first row of A has normalized form 0, 1, . . . ,m− 1. It remains
to show that every row, every column, every block, and every parallel to the left/right
diagonal of A contains every element of Zm exactly once. According to these tasks we
decompose the rest of the proof into four parts.

1) Rows. We partition Zm into n disjoint intervals Iq of n successive integers:

Iq = {qn, qn+ 1, . . . , qn+ n− 1}, q = 0, 1, . . . , n− 1.

Let xk = ai,k, 0 ≤ k < m, be the entries of row i in A. By (5) we have xk ≡ ai+k (mod n)
for 0 ≤ k < m, which shows that the sequence (xk) satisfies condition 1) of Lemma 2 with
y = 1.

To show that the sequence (xk) also satisfies condition 2) of Lemma 2, let k, l ∈ Zm,
k 6= l, k ≡ l (mod n). Then we have

k = t1n+ v, l = t2n+ v with integers t1, t2, v ∈ {0, 1, . . . , n− 1}, t1 6= t2.

For row i the integers s and u are fixed by (3). According to (4) the integer xk belongs
to the interval Iq1 , q1 = (au + bs + t1)%n, while xl belongs to the interval Iq2 , q2 =
(au+ bs+ t2)%n. Now t1 6= t2 implies q1 6= q2 and xk 6= xl.

Both conditions in Lemma 2 are satisfied, therefore {x0, x1, . . . , xm−1} = Zm.

2) Columns. Let xk = ak,j, 0 ≤ k < m, be the entries of column j in A. By (5) we
have xk ≡ ak + j (mod n) for 0 ≤ k < m, which shows that the sequence (xk) satisfies
condition 1) of Lemma 2 with y = a. Here we utilize that a is coprime to n.

To show that the sequence (xk) also satisfies condition 2) of Lemma 2, let k, l ∈ Zm,
k 6= l, k ≡ l (mod n). Then we have

k = s1n+ u, l = s2n+ u with integers s1, s2, u ∈ {0, 1, . . . , n− 1}, s1 6= s2.

For column j the integers t and v are fixed by (3). According to (4) the integer xk
belongs to the interval Iq1 , q1 = (au + bs1 + t)%n, while xl belongs to the interval Iq2 ,
q2 = (au+ bs2 + t)%n. Now s1 6= s2 and b coprime to n implies q1 6= q2 and xk 6= xl.

Both conditions in Lemma 2 are satisfied, therefore {x0, x1, . . . , xm−1} = Zm.

the electronic journal of combinatorics 19 (2012), #P18 4



3) Blocks. For the block B(s,t) the integers s and t in (4) are fixed. The integer u
determines a row of B(s,t), while v determines a column of B(s,t). In row u of B(s,t) the
value of q(u) = (au+bs+ t)%n is fixed, while (au+v)%n assumes all values 0, 1, . . . , n−1
for v = 0, 1, . . . , n− 1. According to (4) this means that row u of B(s,t) contains exactly
the numbers of the interval Iq(u). As a is coprime to n, the term q(u) assumes all values
0, 1, . . . , n− 1 for 0 ≤ u < n. The set of entries of B(s,t) is

n−1⋃
u=0

Iq(u) = I0 ∪ I1 ∪ . . . ∪ In−1 = Zm.

4) Parallels to the left/right diagonal. According to (1), the sequence (xk) of entries in
LDh(A), respectively RDh(A) is given by

xk = a(h+εk)%m,k, k ∈ Zm, ε =

{
1 for LDh(A)
−1 for RDh(A)

. (6)

From (5) we deduce

xk ≡ a(h+ εk) + k (mod n) for 0 ≤ k < m,

which implies
xk+1 ≡ xk + aε+ 1 (mod n) for 0 ≤ k < m− 1.

As aε + 1 is coprime to n, we see that the sequence (xk) satisfies condition 1) of Lemma
2 with y = aε+ 1.

To confirm condition 2) of Lemma 2 we assume

k = t1n+ v, l = t2n+ v, t1 6= t2, with t1, t2, v ∈ {0, 1, . . . , n− 1}. (7)

By (6) we see

xk = ai,j with i = (h+ εk)%m, j = k,
xl = ai′,j′ with i′ = (h+ εl)%m, j′ = l.

We find integers u and w such that

h+ εv = wn+ u, 0 ≤ u < n.

Then we have

i = (h+ εv + εt1n)%m = (u+ (w + εt1)n)%m,
i′ = (h+ εv + εt2n)%m = (u+ (w + εt2)n)%m.

This implies that i and i′ have the following representations with suitable integers s1, s2:

i = u+ s1n, 0 ≤ s1 < n, s1 ≡ w + εt1 (mod n),
i′ = u+ s2n, 0 ≤ s2 < n, s2 ≡ w + εt2 (mod n).
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We use these representations for i and i′ and those for k and l in (7) to determine xk and
xl by (4).

xk = ((au+ bs1 + t1)%n)n + (au+ v)%n,
xl = ((au+ bs2 + t2)%n)n + (au+ v)%n.

Setting q1 = (au+ bs1 + t1)%n, q2 = (au+ bs2 + t2)%n and inserting s1, s2, we achieve

xk ∈ Iq1 , q1 = (au+ bw + (bε+ 1)t1)%n,
xl ∈ Iq2 , q2 = (au+ bw + (bε+ 1)t2)%n.

Now q1 = q2 would imply t1 ≡ t2 (mod n), because bε+ 1 is invertible modulo n. But this
contradicts (7). So we conclude q1 6= q2 and xk 6= xl.

Conditions 1) and 2) of Lemma 2 are satisfied, therefore {x0, x1, . . . , xm−1} = Zm.
�

3 Row-cyclic Pandiagonal Sudokus

In this section we will present all normalized, row-cyclic, pandiagonal n2×n2-Sudokus for
n = 5 and for n = 7. But first we are going to disprove the existence of cyclic Sudokus
for n ≥ 2.

Throughout this section A = (ai,j) is an m×m-matrix with entries ai,j ∈ Zm, m = n2.
Suppose that the sequence of integers (ak), 0 ≤ k < m, represents a permutation of the
elements of Zm. We call (ak) residual (with respect to m = n2) if there are integers rs,
0 ≤ rs < n, for 0 ≤ s < n, such that

asn ≡ asn+1 ≡ . . . ≡ asn+n−1 ≡ rs (mod n) for every s = 0, 1, . . . , n− 1.

Observe that our assumptions imply {r0, r1, . . . , rn−1} = {0, 1, . . . , n− 1}.

Theorem 2. Let the m×m-matrix A, m = n2, represent a normalized row-cyclic Latin
square. Then A is an n2 × n2-Sudoku if and only if the sequence (ak), 0 ≤ k < m, of the
entries in the first column of A is residual.

Proof. First we assume that A is a normalized, row-cyclic n2 × n2-Sudoku. The entries
a0, a1, . . . , am−1 of the first column of A uniquely determine every other entry of A. Fix
some s ∈ {0, 1, . . . , n− 1}. The integers asn+u, 0 ≤ u < n, form the sequence of entries of
the first column in block B(s,0). The set of entries in row u of B(s,0), 0 ≤ u < n, is

Tu = {asn+u, (asn+u + 1)%m, . . . , (asn+u + n− 1)%m}.

As the block B(s,0) contains every integer in Zm exactly once, the sets T0, T1, . . . , Tn−1
constitute a partition of Zm into disjoint subsets. Consider the element (asn + n)%m of
Zm. It does not belong to T0 = {asn, (asn + 1)%m, . . . , (asn + n − 1)%m}, but to one of
the sets T1, T2, . . . , Tn−1, without loss of generality

((asn + n)%m) ∈ T1 = {asn+1, (asn+1 + 1)%m, . . . , (asn+1 + n− 1)%m}.
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The only element x ∈ T1 with ((x− 1)%m) 6∈ T1 is x = asn+1, therefore

((asn + n)%m) = asn+1 and asn ≡ asn+1 (mod n).

Continuing in this way we obtain

asn ≡ asn+1 ≡ . . . ≡ asn+n−1 (mod n) for every s = 0, 1, . . . , n− 1,

which means that the sequence (ak) is residual.
To prove the converse, let A be a normalized, row-cyclic Latin m×m-square, m = n2,

with residual first column (ak), 0 ≤ k < m. The entries bk of column j of A, 0 ≤ j < m,
are

bk = (ak + j)%m for 0 ≤ k < m.

Now (ak) residual implies (bk) residual, so every column of A is residual.
Consider an arbitrary block B(s,t) of A, 0 ≤ s < n, 0 ≤ t < n. We show that B(s,t)

contains every element of Zm. The entries ck in the first column of B(s,t) are

ck = (asn+k + tn)%m for 0 ≤ k < n.

The set of entries in row u of B(s,t), 0 ≤ u < n, is

Mu = {cu, (cu + 1)%m, . . . , (cu + n− 1)%m}.

As part of the residual column tn of A the integers c0, c1, . . . , cn−1 are distinct, but belong
to the same residue class modulo n. Therefore, the sets M0,M1, . . . ,Mn−1 constitute a
partition of Zm into disjoint subsets. The set of entries in block B(s,t) is

M0 ∪M1 ∪ . . . ∪Mn−1 = Zm.

Corollary 2. Let A be a normalized, row-cyclic n2 × n2-Sudoku. Then every column of
A is residual.

Corollary 3. Row-cyclic n2 × n2-Sudokus exist for every n ≥ 2, but no cyclic Sudokus.

Proof. Assume that A is a normalized, cyclic m × m-Sudoku, m = n2, n ≥ 2. By
Corollary 2 the sequence of entries in every column of A has to be residual. A cyclic shift
of the entries in the first column by p, 0 ≤ p < m, positions results in a residual sequence
if and only if p is a multiple of n, p = kn, 0 ≤ k < n. As there are only n such shifts, it
is not possible to generate all m > n distinct columns of A by a cyclic shift from its first
column.

A normalized, row-cyclic m×m-Latin square A is uniquely determined by the sequence
(ak) of entries a0 = 0, a2, . . . , am−1 in its first column. Now it is no problem to choose (ak)
residual with respect to m = n2 and thus achieve that A becomes a normalized, row-cyclic
Sudoku.
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We introduce numerical and positional operations on Zm×m, the set of all m × m-
matrices with entries in Zm = {0, 1, . . . ,m − 1}. Let f : Zm → Zm be a bijection. The
numerical operation f on Zm×m is defined by

f(A) = (f(ai,j)) for A = (ai,j) ∈ Zm×m.

Numerical operations preserve all properties described by the terms Latin square, Sudoku,
row-cyclic, and pandiagonal. A simple numerical operation is defined by tw, the additive
shift by w ∈ Zm,

tw(x) = (x+ w)%m for x ∈ Zm.

The set of all cells associated with the matrices in Zm×m is Zm × Zm. Let P :
Zm × Zm → Zm × Zm be a bijection. The positional operation P on Zm×m is defined by

P (A) = (aP (i,j)) for A = (ai,j) ∈ Zm×m.

Naturally, a numerical operation f and a positional operation P on Zm×m commute,
f ◦ P = P ◦ f . Here we will apply the following positional operations to A ∈ Zm×m:

RR : reverses the order of the rows of A,
RC : reverses the order of the columns of A,
CSq : induces a cyclic shift of the rows of A by q rows,

row i becomes row (i+ q)%m, 0 ≤ q ≤ m.

These operations preserve all properties described by the terms Latin square, row-cyclic,
and pandiagonal. If m = n2, then RR and RC map Sudoku to Sudoku. The same is true
for CSq, if q = kn, 0 ≤ k ≤ n.

From now on we assume that A = (ai,j) ∈ Zm×m is a normalized and row-cyclic m×m-
Sudoku, m = n2, n ≥ 2. Such a Sudoku A is completely determined by the sequence
(ai) = (ai,0) of entries in its first column,

ai,j = (ai + j)%m for i ∈ Zm, j ∈ Zm.

For this reason we call (ai) the generating sequence of A. It is residual. We introduce
special operations for A, which preserve the properties we are interested in. We define
the complement Comp(A) and the k-partner Pk(A) for 1 ≤ k ≤ n.

Consider the bijection f0 : Zm → Zm given by f0(x) = (−x − 1)%m for x ∈ Zm as a
numerical operation on Zm×m. Then we define the complement operator by

Comp = f0 ◦RC. (8)

Proposition 1. Let A = (ai,j) ∈ Zm×m be a normalized, row-cyclic Sudoku with gener-
ating sequence (ai). Then B = (bi,j) = Comp(A) is a normalized, row-cyclic Sudoku with
generating sequence (bi),

bi = (m− ai)%m for i ∈ Zm.

If A is pandiagonal then B = Comp(A) is also pandiagonal.
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Proof. Clearly, B = Comp(A) = f0 ◦RC(A) is a row-cyclic Sudoku and it is pandiagonal
if A is pandiagonal. As A is normalized, the sequence of entries in the first row of RC(A)
is m− 1,m− 2, . . . , 0. Applying f0, this becomes 0, 1, . . . ,m− 1, which means that B is
normalized.

As A is normalized and row-cyclic the sequence of entries in the last column of A is
given by (ai + m − 1)%m, 0 ≤ i < m. This is also the sequence of entries in the first
column of RC(A). Applying f0, we obtain

bi = (−ai)%m = (m− ai)%m for 0 ≤ i < m.

Corollary 4. For every normalized, row-cyclic Sudoku A we have Comp◦Comp(A) = A.

Proof. Comp ◦ Comp(A) and A have the same generating sequence.

Let 1 ≤ k ≤ n and A ∈ Zm×m be a normalized, row-cyclic Sudoku with generating
sequence (ai), w(A) = (−akn−1)%m. The k-partner of A is defined by

Pk(A) = Comp ◦ tw(A) ◦ CSkn ◦RR(A). (9)

Observe that the operator Pk depends on the entries of the matrix it is applied to.

Proposition 2. Let A = (ai,j) ∈ Zm×m be a normalized, row-cyclic Sudoku with gene-
rating sequence (ai). Then B = Pk(A) has the following properties.

a) B is a normalized and row-cyclic Sudoku.
If A is pandiagonal then B is also pandiagonal.

b) If (bi) is the generating sequence of B, then bkn−1 = akn−1.

c) Comp ◦ Pk(A) = Pk ◦ Comp(A).

d) Pk ◦ Pk(A) = A.

Proof. a) Clearly, B = Pk(A) = Comp ◦ tw(A) ◦CSkn ◦RR(A) is a row-cyclic Sudoku and
B is pandiagonal, if A is pandiagonal. The integer akn−1 = akn−1,0 is the last entry in the
first column belonging to the k-th block of this column. In CSkn ◦RR(A) = D this entry
is in position (0, 0). The integer w(A) = (−akn−1)%m is chosen such that the additive
shift tw(A) normalizes D. But if tw(A)(D) is normalized, then Pk(A) = Comp ◦ tw(A)(D) is
also normalized by Proposition 1.

b) The entry in position (kn − 1, 0) of CSkn ◦ RR(A) is the entry of A in position
(0, 0), which is 0. This entry is transformed by tw(A) to tw(A)(0) = w(A) = (−akn−1)%m.
By Proposition 1 the application of the operator Comp results in

bkn−1 = akn−1%m = akn−1.
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c) By Corollary 4 we know that Comp ◦ Comp is the identity operator. Therefore,
(9) implies

Comp ◦ Pk(A) = tw ◦ CSkn ◦RR(A), w = (−akn−1)%m. (10)

We utilize that numerical and positional operations commute. The same is true for RC
and CSkn and also for RC and RR. Of course, RC ◦RC is the identity operator.

Pk ◦ Comp(A) =Comp ◦ tu ◦ CSkn ◦RR ◦ Comp(A)

=f0 ◦RC ◦ tu ◦ CSkn ◦RR ◦ f0 ◦RC(A)

=f0 ◦ tu ◦ f0 ◦ CSkn ◦RR(A)

(11)

Here we have u = (−ckn−1)%m, where ckn−1 is the entry of Comp(A) in position (kn−1, 0),
which by Proposition 1 is

ckn−1 = (m− akn−1)%m , therefore u = akn−1%m = akn−1.

In view of (10) and (11) it remains to show

f0 ◦ tu ◦ f0 = tw.

For every x ∈ Zm we have

f0 ◦ tu ◦ f0(x) = f0 ◦ tu((−x− 1)%m)

= f0((−x− 1 + u)%m) = f0((−x− 1 + akn−1)%m)

= (x+ 1− akn−1 − 1)%m = (x+ w)%m = tw(x).

d) According to (8) and (9) we have

Pk ◦ Pk(A) = Comp ◦ tu ◦ CSkn ◦RR ◦ Comp ◦ tw ◦ CSkn ◦RR(A)

= f0 ◦RC ◦ tu ◦ CSkn ◦RR ◦ f0 ◦RC ◦ tw ◦ CSkn ◦RR(A).
(12)

Here w = (−akn−1)%m and u = (−bkn−1)%m, where bkn−1 is the entry of Pk(A) in position
(kn − 1, 0), which by b) is bkn−1 = akn−1. It follows u = (−akn−1)%m = w, tu = tw. In
(12) we commute operations suitably and cancel RC ◦RC so that we obtain

Pk ◦ Pk(A) = f0 ◦ tw ◦ f0 ◦ tw ◦ CSkn ◦RR ◦ CSkn ◦RR(A). (13)

For every x ∈ Zm we have f0 ◦ tw(x) = f0((x+ w)%m) = (−x− w − 1)%m and so

(f0 ◦ tw) ◦ (f0 ◦ tw)(x) = f0 ◦ tw((−x− w − 1)%m) = (−(−x− w − 1)− w − 1)%m = x.

Now (13) implies
Pk ◦ Pk(A) = CSkn ◦RR ◦ CSkn ◦RR(A).

If B1, . . . , Bn is the sequence of blocks in an arbitrary block-column of A then the cor-
responding sequence in CSkn ◦ RR(A) is B′k, B

′
k−1, . . . , B

′
1, B

′
n, B

′
n−1, . . . , B

′
k+1. Here B′i

results from Bi by reversing the order of the rows of Bi, 1 ≤ i ≤ n. If we apply this opera-
tion twice to A then we end up with the original matrix A. This means Pk◦Pk(A) = A.
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The notions of complement and k-partner can be transferred to partial Sudokus. We
define a partial Sudoku by a generating sequence a0 = 0, a1, . . . , aqn−1, 1 ≤ q < n, that
can be extended to a residual sequence over Zm. The partial Sudoku generated by this
sequence is the qn×m-matrix A′ = (a′i,j) with entries:

a′i,j = (ai + j)%m for 0 ≤ i < qn, 0 ≤ j < m.

Now A′ has an extension to a normalized, row-cyclic, pandiagonal m×m-Sudoku, if and
only if all k-partners of A′, 1 ≤ k ≤ q, and their complements have such an extension. This
fact considerably abbreviates the search for normalized, row-cyclic, pandiagonal Sudokus.

We now present our computer results for n = 5 and for n = 7. There are exactly 10
normalized, row-cyclic, pandiagonal 25 × 25-Sudokus. They are given by the following
generating sequences.

S1 = (0, 5, 10, 20, 15, 8, 18, 13, 3, 23, 17, 7, 2, 22, 12, 6, 1, 16, 11, 21, 14, 9, 19, 24, 4)
S2 = (0, 20, 5, 10, 15, 11, 16, 21, 6, 1, 19, 4, 24, 14, 9, 3, 18, 13, 8, 23, 17, 12, 2, 22, 7)
S3 = (0, 20, 10, 5, 15, 8, 3, 13, 18, 23, 19, 24, 4, 14, 9, 2, 12, 7, 22, 17, 11, 1, 21, 16, 6)
S4 = (0, 15, 10, 5, 20, 14, 9, 24, 19, 4, 22, 17, 2, 7, 12, 8, 13, 18, 3, 23, 16, 1, 21, 11, 6)
S5 = (0, 10, 5, 20, 15, 9, 24, 19, 14, 4, 23, 18, 8, 3, 13, 6, 1, 11, 16, 21, 17, 22, 2, 12, 7)
S6 = (0, 20, 15, 5, 10, 17, 7, 12, 22, 2, 8, 18, 23, 3, 13, 19, 24, 9, 14, 4, 11, 16, 6, 1, 21)
S7 = (0, 5, 20, 15, 10, 14, 9, 4, 19, 24, 6, 21, 1, 11, 16, 22, 7, 12, 17, 2, 8, 13, 23, 3, 18)
S8 = (0, 5, 15, 20, 10, 17, 22, 12, 7, 2, 6, 1, 21, 11, 16, 23, 13, 18, 3, 8, 14, 24, 4, 9, 19)
S9 = (0, 10, 15, 20, 5, 11, 16, 1, 6, 21, 3, 8, 23, 18, 13, 17, 12, 7, 22, 2, 9, 24, 4, 14, 19)
S10 = (0, 15, 20, 5, 10, 16, 1, 6, 11, 21, 2, 7, 17, 22, 12, 19, 24, 14, 9, 4, 8, 3, 23, 13, 18)

In the sequel we use the same notation for the sequence Sj and the Sudoku it generates.
We see five complementary pairs: (S1, S6), (S2, S7), (S3, S8), (S4, S9), and (S5, S10). The
k-partners of S1 for k = 1, 2, 3, 4 are S2, S3, S4, S5. The 5-partner of S1 is S1 itself. The
k-partners of S6 for k = 1, 2, 3, 4 are S7, S8, S9, S10. The 5-partner of S6 is S6 itself. The
sequences S1 and S6 have another remarkable property. We call a generating sequence
S = (ai), 0 ≤ i < m, and its row-cyclic m×m-Sudoku reflexive if

a0 + am−1 ≡ a1 + am−2 ≡ . . . ≡ am−1 + a0 (mod m). (14)

If S = (ai) is reflexive then the complementary sequence S̄ = ((m − ai)%m) is also
reflexive. In the above list (S1, S6) is the only pair of complementary, reflexive sequences.

Proposition 3. Let S = (ai), 0 ≤ i < m, be a reflexive generating sequence of the
normalized, row-cyclic m×m-Sudoku A = (ai,j), m = n2. Then the n-partner of A is A
itself, Pn(A) = A.

Proof. We determine Pn(A) according to (9).

Pn(A) = Comp ◦ tw ◦ CSm ◦RR(A), w = (−am−1)%m

Observe that CSm is the identity operator. The sequence of entries in the first column of
RR(A) is (am−1−i), i = 0, 1, . . . ,m− 1. The additive shift tw turns this sequence to

((am−1−i + w)%m) = ((am−1−i − am−1)%m).
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Finally, we get the generating sequence (bi) of Pn(A) by applying the Comp operator.
According to Proposition 1 we have

bi = (m− (am−1−i − am−1))%m = (−am−1−i + am−1)%m. (15)

We utilize the reflexivity condition (14) for (ai):

as + at ≡ a0 + am−1 ≡ am−1 (mod m) for s, t ∈ Zm with s+ t = m− 1.

For s = m− 1− i and t = i we obtain

am−1−i + ai ≡ am−1, am−1−i ≡ am−1 − ai (mod m).

Inserting am−1−i into (15) yields bi = ai for every i = 0, 1, . . . ,m−1. The normalized, row-
cyclic Sudokus Pn(A) and A have the same generating sequence, therefore Pn(A) = A.

All 10 normalized, row-cyclic, pandiagonal 25 × 25-Sudokus can be reproduced from
S1 by forming the k-partners of S1 and their complements for k = 1, 2, 3, 4, 5. We have a
similar result for n = 7, m = 49. There are exactly 28 normalized, row-cyclic, pandiagonal
49× 49-Sudokus. Among them are exactly two pairs (T1, T̄1) and (T2, T̄2) of complemen-
tary, reflexive Sudokus. All 28 normalized, row-cyclic, pandiagonal 49× 49-Sudokus can
be reproduced from T1 and T2 by forming the k-partners of T1, T2 and their complements
for k = 1, 2, . . . , 7. Here are the generating sequences of T1 and T2.

T1 = (0, 7, 28, 21, 42, 35, 14, 24, 10, 38, 17, 45, 31, 3, 5, 26, 47, 12, 19, 40, 33,
30, 44, 16, 2, 37, 9, 23, 20, 13, 34, 41, 6, 27, 48, 1, 22, 8, 36, 15, 43, 29,

39, 18, 11, 32, 25, 46, 4)

T2 = (0, 14, 28, 7, 35, 42, 21, 39, 25, 4, 11, 18, 46, 32, 23, 37, 2, 44, 30, 9, 16,
13, 20, 48, 27, 6, 34, 41, 38, 45, 24, 10, 3, 17, 31, 22, 8, 36, 43, 1, 29, 15,
33, 12, 19, 47, 26, 40, 5)

These results suggest the following

Conjecture. For every integer n ≡ ±1 (mod 6), n ≥ 5, m = n2, the following statements
are true.

1. The set RF (m) of reflexive, normalized, row-cyclic, pandiagonal m×m-Sudokus is
not empty.

2. The set RF (m) consists of pairs of complementary Sudokus. Form a reduced set
RFred(m) by taking only one Sudoku from each such pair. Then the set of all norma-
lized, row-cyclic, pandiagonal m×m-Sudokus is obtained by forming all k-partners,
1 ≤ k ≤ n, and their complements for every Sudoku in RFred(m). The size of this
set is 2n|RFred(m)|.
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