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Abstract

It is shown that a pandiagonal n? xn2-Sudoku exists if and only if n = 41 (mod 6).
Also for these n the existence of row-cyclic, pandiagonal n? x n?-Sudokus is conjec-
tured and confirmed for n =5 and n = 7.

1 Introduction

An m x m-matrix A = (a; ;) with entries from Z,, = {0,1,...,m — 1} represents a Latin
m X m-square, if every row and every column of A contains every element of Z,, exactly
once (see e.g. [9]). The set of cells of A is

CA)=Zpn X Zpy ={(i,]) 11 € Zpny j € Zn}-

The parallels of A to the left diagonal and to the right diagonal with parameter h € Z,,
are

LDy(A) ={(i,j) € C(A): i —j=h (mod m)},
RDy(A) ={(i,j) € C(A): i+ j=h (mod m)},

respectively. The left diagonal of A is LDy(A), the right diagonal of A is RD,,,_1(A). The
matrix A represents a pandiagonal Latin m x m-square if every element of Z,, appears
as an entry of A exactly once in every row, in every column, in every parallel to the left
diagonal, and in every parallel to the right diagonal. Special pandiagonal Latin squares
were considered in [1] and [4]. Hedayat [7] solved the existence problem for pandiagonal
Latin squares:

(1)
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Lemma 1. A pandiagonal Latin m X m-square ezists, if and only if m = £1 (mod 6).

A region (see [2]) of a Latin m x m-square A consists of m distinct cells of A. A regional
partition of A is a partition RP of the set C'(A) of all cells of A into m disjoint regions.
The Latin square A is gerecht (German for “fair”, plural is gerechte) with respect to RP,
if every element of Z,, appears exactly once in every region of A belonging to RP (cf. [2]
and [3]). Gerechte Latin squares play an important role in the design of experiments (see
e.g. [5] or [8]). The complexity of constructing gerechte designs is considered in [10].

We now assume m = n?. Then the n* cells in C'/(4) can be partitioned into n? disjoint
n X n-blocks

BEY = {(i,j) € C(A): i=sn+u, j=tn+v, 0<u<n, 0<v<n}

for 0 < s <n, 0 <t < n. The m x m-matrix A with entries from Z,,, m = n?, is
an n? x n2-Sudoku, if it is a Latin square which is gerecht with respect to the regional
partition defined by the blocks of A. A pandiagonal Sudoku must also be gerecht with
respect to the regional partition defined by the parallels to the left diagonal and by the
parallels to the right diagonal. For a pandiagonal n? x n?-Sudoku n = 41 (mod 6) is
necessary by Lemma 1. C. Boyer [6] presents a pandiagonal 25 x 25-Sudoku. But so
far no general construction seems to be available. In Section 2 we construct pandiagonal
n? x n?-Sudokus for every n = 41 (mod 6).

All properties of a Latin square A which we consider here are maintained if we expose
the entries of A to a bijection f : Z,, — Z,,. Particularly, if A = (a;;) is a pandiagonal
Sudoku then f(A) = (f(a;;)) is also a pandiagonal Sudoku. The Latin m x m-square is
normalized if the entries of the first row are 0,1,...,m — 1 in their natural order. For the
existence problems of the special Sudokus we investigate in Section 3 we may restrict the
discussion to normalized Sudokus.

A Latin square is called row-cyclic if the sequence of entries of every row results from
the sequence of entries of the first row by a cyclic shift. The term column-cyclic is defined
analogously. A Latin square is cyclic if it is both row-cyclic and column-cyclic. We prove
that no cyclic Sudoku exists, but a row-cyclic n? x n?-Sudoku exists for every n > 2.
Our main topic in Section 3 is the existence of row-cyclic, pandiagonal n? x n2-Sudokus.
Necessarily, n = +1 (mod 6) by Lemma 1. The case n = 1 is trivial. By a computer search
we found out all normalized, row-cyclic, pandiagonal n? x n2-Sudokus for n = 5 and for
n = 7. Their total number is 10 for n = 5, respectively 28 for n = 7. It turns out that all
of these Sudokus can be constructed from very few (1 for n =5 and 2 for n = 7) “basic”
Sudokus by “elementary operations”. It remains a challenging open problem to show the
existence of row-cyclic, pandiagonal n? x n?-Sudokus for further n = +1 (mod 6).

2 Existence of Pandiagonal Sudokus

For the rest of this paper we assume m = n?, n > 1, and Z,, = {0,1,...,m — 1}. Note
that, trivially, there exists a pandiagonal 1 x 1-Sudoku.

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P18 2



Lemma 2. Let xg,x1,...,%,_1 be a sequence of integers in Z,, y € Zmym, y # 0,
gcd(y,n) = 1. Suppose that the following conditions are satisfied.

1) g1 = zr +y (modn) for every k=0,1,...,m—2.
2) k€ Zy, L€ Zy, k#I1, and k=1 (mod n) imply x) # ;.
Then we have {xg,x1,...,Tm-1} = Zm.

Proof. Condition 1) implies 2, = z¢+ky (mod n) for k =0,1,...,m—1. As y is invertible
modulo n, we have for 0 < k <m, 0 <[l <m:

zp =x; (mod n) <= k=1 (mod n). (2)

In particular, this means that xg,x,...,x,_1 represent all residues modulo n. If we
define R; ={z € Z,,: z=x; (mod n)} then Z,, = RyU Ry U...U R,_; is the partition
of Z,, into disjoint residue classes modulo n. For 0 < i < n we see by (2) that the
integers T, Titn, - - -, Tiy(n—1)n belong to R;. Now condition 2) implies that these integers
are pairwise distinct, therefore

n—1
Ri = {IEZ',ZEH_n, c 7$i+(n71)n} for 0 S 1 <n and U RZ = {1’0,(E1, c. ;xm—l} = Zm
i=0
]
Each cell (i,7) € Z,, X Z,, can also be described by 4 coordinates. Let
1=sn+u, 0<s<n, 0Zu<n, (3)
j=tn+v, 0<t<n, 0<v<n,

then we call (s,t,u,v) the 4-tuple representation of (7, ). For convenience we also identify
(s,t,u,v) with the corresponding cell (i, j). The cell (s,t,u,v) belongs to the block B®#),
s determines the block-row and t the block-column of A.

For integers x and y, with y > 0, we denote by %y the least nonnegative residue of
x modulo y.

Theorem 1. Suppose m = n* n > 5, n = +1 (mod 6). Choose integers a and b from
{2,...,n — 1} such that every number a, a £ 1, b, b+ 1 is coprime to n. Let the cell
(i,7) be represented by the 4-tuple (s,t,u,v) according to (3). Define the entry a;; of the
m X m-Matriz A by

a;; = ((au+bs+t)%n)n+ (au+ v)%n. (4)
Then A is a normalized pandiagonal n? x n*-Sudoku.

Corollary 1. A pandiagonal n* x n?-Sudoku exists if and only if n = +1 (mod 6).
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The assumption n = +1 (mod 6) is equivalent to the condition that n has no prime
divisor 2 or 3. The requirements for a, a =1, b, b &= 1 in Theorem 1 can be satisfied
e.g. by choosing a and b from {2,3}. Corollary 1 results from Theorem 1 in connection
with Lemma 1, together with the fact that the case n =1 is trivial.

Proof of Theorem 1. From (3) and (4) we deduce
a;; =ai+j (mod n) for 0 <i<m, 0<j<m. (5)

For the first row of A we have i = s = u = 0. Now (3) and (4) imply ao; = j for
0 < j < m. Therefore, the first row of A has normalized form 0,1,...,m — 1. It remains
to show that every row, every column, every block, and every parallel to the left/right
diagonal of A contains every element of Z,, exactly once. According to these tasks we
decompose the rest of the proof into four parts.

1) Rows. We partition Z,, into n disjoint intervals I, of n successive integers:
I, = {gn, gqn+1,..., gqn+n—1}, ¢=0,1,...,n— 1.

Let z, = a;, 0 < k < m, be the entries of row i in A. By (5) we have z;, = ai+k (mod n)
for 0 < k < m, which shows that the sequence (xy) satisfies condition 1) of Lemma 2 with
y=1.

To show that the sequence (xy) also satisfies condition 2) of Lemma 2, let k,l € Z,,,,
k #1, k=1 (mod n). Then we have

k=tin+wv, | =tyn+ v with integers t1,to,v € {0,1,...,n— 1}, t; # to.

For row i the integers s and wu are fixed by (3). According to (4) the integer x; belongs
to the interval I, ¢1 = (au + bs + t;)%n, while z; belongs to the interval I, ¢ =
(au + bs + t2)%n. Now t1 # ty implies ¢ # g2 and xy # ;.

Both conditions in Lemma 2 are satisfied, therefore {zg, z1,...,Zm_1} = Zp.

2) Columns. Let xp = aj, 0 < k < m, be the entries of column j in A. By (5) we
have 2y = ak + j (mod n) for 0 < k < m, which shows that the sequence (xj) satisfies
condition 1) of Lemma 2 with y = a. Here we utilize that a is coprime to n.

To show that the sequence () also satisfies condition 2) of Lemma 2, let &k, € Z,,,
k #1, k=1 (mod n). Then we have

k = sin+u, | = syn + u with integers s1, so,u € {0,1,....,n— 1}, $1 # ss.

For column j the integers ¢ and v are fixed by (3). According to (4) the integer z

belongs to the interval I, ¢ = (au + bsy + t)%n, while z; belongs to the interval I,

q2 = (au + bsy + t)%n. Now s; # sy and b coprime to n implies ¢ # g2 and x) # ;.
Both conditions in Lemma 2 are satisfied, therefore {xg, z1,...,Zm_1} = Zp-
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3) Blocks. For the block B! the integers s and t in (4) are fixed. The integer u
determines a row of B®? while v determines a column of B!, In row u of BGY the
value of q(u) = (au+bs+1t)%n is fixed, while (au+v)%n assumes all values 0,1,...,n—1
forv=0,1,...,n — 1. According to (4) this means that row u of B®% contains exactly
the numbers of the interval Iyw). As a is coprime to n, the term g(u) assumes all values
0,1,...,n—1for 0 < u < n. The set of entries of B is

n—1
U Lw = LUuLu.. UL, = Z,

u=0

4) Parallels to the left/right diagonal. According to (1), the sequence (zy) of entries in
LDy(A), respectively RD;(A) is given by

B B 1 for LDp(A)
T = Q(h4-ek)%m,k» ke Zma €= { ~1 for RDh(A) : (6>

From (5) we deduce
zr = a(h+€k) 4+ k (mod n) for 0 < k < m,

which implies
Ty = xp+ae+1 (modn) for 0 <k <m— 1.

As ae + 1 is coprime to n, we see that the sequence (xy) satisfies condition 1) of Lemma
2 with y = ae + 1.
To confirm condition 2) of Lemma 2 we assume

k=tin+uv, l =ton+wv, t; #ty, with ty,t5,0 € {0,1,...,n—1}. (7)
By (6) we see

T, = a;; with ¢ = (h+ek)%m, j = Kk,
T = apy with ¢ (h+el)%m, j l.

We find integers u and w such that
h+ev=wn+u, 0 <u<n.

Then we have

i = (h+ev+etin)%m = (u+ (w+ et;)n)%m,
i" = (h+ev+etan)%m = (u+ (w+ etz)n)%m.

This implies that i and " have the following representations with suitable integers sq, sa:

w + ety (mod n),
w + €ty (mod n).

1 = u+sn 0<s<n, &

! = u+sm, 0<sy<n, S
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We use these representations for i and i’ and those for k£ and [ in (7) to determine z;, and
x; by (4).

r, = ((au+bs; +t1)%n)n + (au+ v)%n,

v = ((au+bsy+t2)%n)n + (au + v)%n.

Setting q; = (au + bsy + t1)%n, g2 = (au + bsy + t3)%n and inserting s;, so, we achieve

r, € I, @ = (au+bw+ (be+ 1)ty)%n,
v € I,, @ = (au+bw+ (be+ 1)ty)%n.

Now ¢; = ¢ would imply ¢; = t5 (mod n), because be + 1 is invertible modulo n. But this
contradicts (7). So we conclude ¢; # ¢2 and xy # ;.
Conditions 1) and 2) of Lemma 2 are satisfied, therefore {zo,z1,...,Tmn_1} = Zp.
O

3 Row-cyclic Pandiagonal Sudokus

In this section we will present all normalized, row-cyclic, pandiagonal n? x n?-Sudokus for
n =5 and for n = 7. But first we are going to disprove the existence of cyclic Sudokus
for n > 2.

Throughout this section A = (a; ;) is an m X m-matrix with entries a; ; € Z,,, m = n?.
Suppose that the sequence of integers (ax), 0 < k < m, represents a permutation of the
elements of Z,,. We call (ay) residual (with respect to m = n?) if there are integers r,,
0<r,<n,for 0 <s<n,such that

Usp = Ospi1 = -« = Qgpin_1 = Ts (mod n) for every s =0,1,...,n— 1.

Observe that our assumptions imply {r¢,r1,...,7—1} = {0,1,...,n — 1}.

Theorem 2. Let the m X m-matriz A, m = n?, represent a normalized row-cyclic Latin

square. Then A is an n* x n*-Sudoku if and only if the sequence (a), 0 < k < m, of the
entries in the first column of A is residual.

Proof. First we assume that A is a normalized, row-cyclic n? x n?-Sudoku. The entries
ag, @y, . .., ay,_1 of the first column of A uniquely determine every other entry of A. Fix
some s € {0,1,...,n—1}. The integers ag, 1, 0 < u < n, form the sequence of entries of
the first column in block B®9. The set of entries in row u of B&0, 0 < u < n, is

Tu = {asn+ua (&sn+u + 1)%m7 ] (a/sn+u +n— 1)%m}

As the block B®9 contains every integer in Z,, exactly once, the sets Ty, T4, ..., Th_1
constitute a partition of Z,, into disjoint subsets. Consider the element (as, + n)%m of
Zm- Tt does not belong to Ty = {asn, (as, + 1)%m, ..., (as, +n — 1)%m}, but to one of
the sets T, T, ..., T,_1, without loss of generality

((asn + n)%m> € Tl = {a'sn+1> (asn-i-l + 1)%7’)’1,, ) (asn-i-l +n— 1)%m}
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The only element = € T} with ((x — 1)%m) € T} is * = ag,+1, therefore
((asn +n)%m) = asnr1 and ag, = ag,11 (mod n).
Continuing in this way we obtain
Usp = Qspi] = - .. = Ggppn—1 (mod n) for every s =0,1,...,n—1,

which means that the sequence (ay) is residual.

To prove the converse, let A be a normalized, row-cyclic Latin m x m-square, m = n?,
with residual first column (ax), 0 < k < m. The entries by, of column j of A, 0 < j < m,
are

b = (ar + 7)%m for 0 < k < m.

Now (ay) residual implies (by) residual, so every column of A is residual.
Consider an arbitrary block B®Y of A, 0 < s < n, 0 <t < n. We show that B®?
contains every element of Z,,. The entries ¢, in the first column of B®Y are

ek = (gpar +tn)%m for 0 < k < n.
The set of entries in row u of B®), 0 < u < n, is
M, ={cy, (cu + D)%m, ..., (c, + n — 1)%m}.

As part of the residual column ¢n of A the integers cg, 1, . .., ¢,_1 are distinct, but belong
to the same residue class modulo n. Therefore, the sets My, M, ..., M,_1 constitute a
partition of Z,, into disjoint subsets. The set of entries in block B®? is

M()UMlU...UMn,l:Zm.
O

Corollary 2. Let A be a normalized, row-cyclic n? x n?-Sudoku. Then every column of
A is residual.

Corollary 3. Row-cyclic n* x n?-Sudokus exist for every n > 2, but no cyclic Sudokus.

Proof. Assume that A is a normalized, cyclic m x m-Sudoku, m = n?, n > 2. By
Corollary 2 the sequence of entries in every column of A has to be residual. A cyclic shift
of the entries in the first column by p, 0 < p < m, positions results in a residual sequence
if and only if p is a multiple of n, p = kn, 0 < k < n. As there are only n such shifts, it
is not possible to generate all m > n distinct columns of A by a cyclic shift from its first
column.

A normalized, row-cyclic m x m-Latin square A is uniquely determined by the sequence

(ax) of entries ag = 0, as, ..., a1 in its first column. Now it is no problem to choose (ay)
residual with respect to m = n? and thus achieve that A becomes a normalized, row-cyclic
Sudoku. 0
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We introduce numerical and positional operations on Z"*™ the set of all m x m-
matrices with entries in Z,, = {0,1,...,m — 1}. Let f : Z,, — Z,, be a bijection. The
numerical operation f on Z™*™ is defined by

f(A) = (f(aiy)) for A = (a;;) € 2™,

Numerical operations preserve all properties described by the terms Latin square, Sudoku,
row-cyclic, and pandiagonal. A simple numerical operation is defined by %, the additive
shift by w € Z,,,

tw(z) = (x +w)%m for © € Z,,.

The set of all cells associated with the matrices in Z™*™ is Z,, X Z,,. Let P :
L X Loy = Z X Zy be a bijection. The positional operation P on Z™*™ is defined by

P(A) = (aP(z}j)) for A = (am‘) e zmxm,

Naturally, a numerical operation f and a positional operation P on Z™*™ commute,
foP = Po f. Here we will apply the following positional operations to A € Z"*":

RR: reverses the order of the rows of A,

RC' . reverses the order of the columns of A,

CS, . induces a cyclic shift of the rows of A by g rows,
row ¢ becomes row (i + ¢)%m, 0 < ¢ < m.

These operations preserve all properties described by the terms Latin square, row-cyclic,
and pandiagonal. If m = n?, then RR and RC map Sudoku to Sudoku. The same is true
for CS,, if g =Fkn, 0 <k <n.

From now on we assume that A = (a; ;) € Z™*™ is a normalized and row-cyclic m x m-
Sudoku, m = n?, n > 2. Such a Sudoku A is completely determined by the sequence
(a;) = (a;p) of entries in its first column,

ai; = (a; + j)%m for i € Z,, j € Z,.

For this reason we call (a;) the generating sequence of A. It is residual. We introduce
special operations for A, which preserve the properties we are interested in. We define
the complement Comp(A) and the k-partner Py(A) for 1 <k <n.

Consider the bijection fy : Z,, — Z,, given by fo(z) = (—x — 1)%m for x € Z,, as a
numerical operation on Z™*™. Then we define the complement operator by

Comp = foo RC. (8)

Proposition 1. Let A = (a;;) € Z™™ be a normalized, row-cyclic Sudoku with gener-
ating sequence (a;). Then B = (b; ;) = Comp(A) is a normalized, row-cyclic Sudoku with
generating sequence (b;),

b = (m — a;)%m fori € Z,,.

If A is pandiagonal then B = Comp(A) is also pandiagonal.
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Proof. Clearly, B = Comp(A) = foo RC(A) is a row-cyclic Sudoku and it is pandiagonal
if A is pandiagonal. As A is normalized, the sequence of entries in the first row of RC'(A)
ism—1,m—2,...,0. Applying fo, this becomes 0,1,...,m — 1, which means that B is
normalized.

As A is normalized and row-cyclic the sequence of entries in the last column of A is
given by (a; + m — 1)%m, 0 < i < m. This is also the sequence of entries in the first
column of RC(A). Applying fy, we obtain

b; = (—a;)%m = (m — a;)%m for 0 <i < m.
0
Corollary 4. For every normalized, row-cyclic Sudoku A we have CompoComp(A) = A.

Proof. Comp o Comp(A) and A have the same generating sequence. n

Let 1 <k <nand A € Z™ be a normalized, row-cyclic Sudoku with generating
sequence (a;), w(A) = (—agn—1)%m. The k-partner of A is defined by

Py(A) = Comp oty o CSpno RR(A). (9)
Observe that the operator P, depends on the entries of the matrix it is applied to.

Proposition 2. Let A = (a;;) € Z™™ be a normalized, row-cyclic Sudoku with gene-
rating sequence (a;). Then B = Pi(A) has the following properties.

a) B is a normalized and row-cyclic Sudoku.
If A is pandiagonal then B is also pandiagonal.

b) If (b;) is the generating sequence of B, then by, 1 = Qgn_1.
c) Compo Py(A) = PyoComp(A).

Proof. a) Clearly, B = P,(A) = Comp oty ay o CSk, 0 RR(A) is a row-cyclic Sudoku and
B is pandiagonal, if A is pandiagonal. The integer ax,—1 = ag,—1,0 is the last entry in the
first column belonging to the k-th block of this column. In C'Sy,, 0o RR(A) = D this entry
is in position (0,0). The integer w(A) = (—ag,—1)%m is chosen such that the additive
shift ¢,,(4) normalizes D. But if ¢,,4)(D) is normalized, then P;(A) = Comp oty a)(D) is
also normalized by Proposition 1.

b) The entry in position (kn — 1,0) of C'Si, o RR(A) is the entry of A in position
(0,0), which is 0. This entry is transformed by t,a) t0 ty(a)(0) = w(A) = (—aprp—1)%m.
By Proposition 1 the application of the operator Comp results in

bknfl = aknfl%m = Qgp—1-

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P18 9



c¢) By Corollary 4 we know that Comp o Comp is the identity operator. Therefore,
(9) implies
Comp o Py(A) =t, 0 CSy,0 RR(A), w= (—ag,_1)%m. (10)

We utilize that numerical and positional operations commute. The same is true for RC'
and CSg, and also for RC' and RR. Of course, RC o RC is the identity operator.

Py o Comp(A) =Compot, o CSk, o RRo Comp(A)
=foo RC ot,oCSy, o RRo fyo RC(A) (11)
:fO © tu o fO © CSkn o RR(A>

Here we have u = (—cg,—1)%m, where ¢k, is the entry of Comp(A) in position (kn—1,0),
which by Proposition 1 is

Chn—1 = (M — agn_1)%m , therefore u = ap,_1%m = ag,_1.
In view of (10) and (11) it remains to show

fOOtuofOth-
For every x € Z,, we have

fO o tu o fﬂ(m) = fO Otu((_x - 1)%m)
= fol(—z — 1+ u)%m) = fo((—z — 1+ ag,_1)%m)
= (41— ag1 — D%m = (x +w)%m = t,(x).

d) According to (8) and (9) we have

P, o P, (A) = Compot,oCSg, 0o RRoCompot,oCSy, o RR(A)

12
= fooRCot,oCSk,0RRo foo RC oty 0CSy, o RR(A). (12)

Here w = (—ag,_1)%m and u = (—bg,_1)%m, where by, 1 is the entry of P,(A) in position
(kn — 1,0), which by b) is bgy—1 = agn_1. It follows u = (—ag,—1)%m = w, t, = t,. In
(12) we commute operations suitably and cancel RC' o RC so that we obtain

Pi.oP.(A) = footyo footy,oCSk, 0o RRoCSk, o RR(A). (13)
For every « € Z,, we have fyot,(z) = fo((x +w)%m) = (—x —w — 1)%m and so
(footw)o(footy)(z) = footw((—z —w—1)%m)=(—(—2z—w—-1)—w—1)%m = x.

Now (13) implies
Py o P,(A) = CSy, 0 RRoCSy, o RR(A).

If By,..., B, is the sequence of blocks in an arbitrary block-column of A then the cor-
responding sequence in CSy, o RR(A) is By, B, _4,...,B{,B,,B,_,,...,B,,,. Here B;

results from B; by reversing the order of the rows of B;, 1 < i < n. If we apply this opera-
tion twice to A then we end up with the original matrix A. This means PyoP,(A) = A. O
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The notions of complement and k-partner can be transferred to partial Sudokus. We
define a partial Sudoku by a generating sequence ay = 0,a4,...,ag—1, 1 < ¢ < n, that
can be extended to a residual sequence over Z,,. The partial Sudoku generated by this
sequence is the gn x m-matrix A" = (a; ;) with entries:

a;; = (a;+j)%m for 0 <i<gn, 0<j<m.

Now A’ has an extension to a normalized, row-cyclic, pandiagonal m x m-Sudoku, if and
only if all k-partners of A, 1 < k < ¢, and their complements have such an extension. This
fact considerably abbreviates the search for normalized, row-cyclic, pandiagonal Sudokus.

We now present our computer results for n = 5 and for n = 7. There are exactly 10
normalized, row-cyclic, pandiagonal 25 x 25-Sudokus. They are given by the following
generating sequences.

S, = (0,5,10,20,15, 8,18,13,3,23, 17,7,2,22,12, 6,1,16,11,21, 14,9,19,24,4)
= (0,20,5,10,15, 11,16,21,6,1, 19,4,24,14,9, 3,18,13,8,23, 17,12,2,22,7)

,20,10,5,15, 8,3,13,18,23, 19,24,4,14,9, 2,12,7,22,17, 11,1,21,16,6)
,15,10,5,20, 14,9,24,19,4, 22,17,2,7,12, 8,13,18,3,23, 16,1,21,11,6)
,10,5,20,15, 9,24,19,14,4, 23,18,8,3,13, 6,1,11,16,21, 17,22,2,12,7)
,20,15,5,10, 17,7,12,22,2, 8,18,23,3,13, 19,24,9,14,4, 11,16,6,1,21)
,5,20,15,10, 14,9,4,19,24, 6,21,1,11,16, 22,7,12,17,2, 8,13,23,3,18)
,5,15,20,10, 17,22,12,7,2, 6,1,21,11,16, 23,13,18,3,8, 14,24,4,9,19)
0,10,15,20,5, 11,16,1,6,21, 3,8,23,18,13, 17,12,7,22,2, 9,24,4,14,19)
Sio = (0,15,20,5,10, 16,1,6,11,21, 2,7,17,22,12, 19,24,14,9,4, 8,3,23,13,18)

Sy = (
Ss = (
Sy=(
S5 = (
Se = (
S7=(
Sg = (
59:<

In the sequel we use the same notation for the sequence S; and the Sudoku it generates.
We see five complementary pairs: (51, S6), (S2,S7), (53,Ss), (S, S9), and (S5, S10). The
k-partners of Sy for k = 1,2,3,4 are Ss, 53,54, S5. The b-partner of Sy is S; itself. The
k-partners of Sg for k = 1,2,3,4 are S7, Sg, Sy, S19. The 5-partner of Sy is S¢ itself. The
sequences S; and Sg have another remarkable property. We call a generating sequence
S = (a;), 0 <i < m, and its row-cyclic m x m-Sudoku reflezive if

A+ ap1 = a1+ Ap2 = ... = ap_1 + ao (mod m). (14)

If S = (a;) is reflexive then the complementary sequence S = ((m — a;)%m) is also
reflexive. In the above list (51, S6) is the only pair of complementary, reflexive sequences.

Proposition 3. Let S = (a;), 0 < i < m, be a reflerive generating sequence of the
normalized, row-cyclic m x m-Sudoku A = (a; ;), m = n?. Then the n-partner of A is A

itself, P,(A) = A.
Proof. We determine P,(A) according to (9).
P,(A) = Compot,oCS, oRR(A), w=(—an_1)%m

Observe that C'S,, is the identity operator. The sequence of entries in the first column of
RR(A) is (am-1-4),i=0,1,...,m — 1. The additive shift ¢,, turns this sequence to

(ap—1—i +w)%m) = ((am-1-i — Qm_1)%m).

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P18 11



Finally, we get the generating sequence (b;) of P,(A) by applying the Comp operator.
According to Proposition 1 we have

b = (m — (am_1—i — Am-1))%m = (—am_1-; + Qpm_1)%m. (15)
We utilize the reflexivity condition (14) for (a;):
as + a; = ag + apm_1 = a1 (mod m) for s,t € Z,, with s+t =m — 1.
For s =m —1—1i and ¢t = ¢ we obtain
Um—1—i + @ = A1, Ap-1—; = Q1 — a; (mod m).

Inserting a,,_1_; into (15) yields b; = a; for every ¢ = 0,1, ..., m—1. The normalized, row-
cyclic Sudokus P,(A) and A have the same generating sequence, therefore P,(A) = A. O

All 10 normalized, row-cyclic, pandiagonal 25 x 25-Sudokus can be reproduced from
S1 by forming the k-partners of S; and their complements for k = 1,2,3,4,5. We have a
similar result for n = 7, m = 49. There are exactly 28 normalized, row-cyclic, pandiagonal
49 x 49-Sudokus. Among them are exactly two pairs (T, 71) and (Ty, Ty) of complemen-
tary, reflexive Sudokus. All 28 normalized, row-cyclic, pandiagonal 49 x 49-Sudokus can
be reproduced from T and T, by forming the k-partners of T, T5 and their complements
for k=1,2,...,7. Here are the generating sequences of T} and 75.

Ty = (0,7,28,21,42,35,14, 24,10,38,17,45,31,3, 5,26,47,12,19,40, 33,
30,44, 16,2,37,9,23, 20,13,34,41,6,27,48, 1,22.8,36,15,43,29,
39,18, 11, 32, 25, 46, 4)

T, = (0,14,28,7,35,42,21, 39,25,4,11,18,46,32, 23,37,2,44,30,9, 16,
13,20,48,27,6,34,41, 38,45,24,10,3,17,31, 22,8,36,43,1,29, 15,
33,12, 19,47, 26,40, 5)

These results suggest the following

Conjecture. For every integer n = +1 (mod 6), n > 5, m = n?, the following statements
are true.

1. The set RF(m) of reflexive, normalized, row-cyclic, pandiagonal m x m-Sudokus is
not empty.

2. The set RF(m) consists of pairs of complementary Sudokus. Form a reduced set
RF,.4(m) by taking only one Sudoku from each such pair. Then the set of all norma-
lized, row-cyclic, pandiagonal m x m-Sudokus is obtained by forming all k-partners,
1 <k < mn, and their complements for every Sudoku in RF,.q(m). The size of this
set is 2n|RF,cq(m)].
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