The smallest one-realization of a given set

Ping Zhao

Kefeng Diao

School of Science, Linyi University, Linyi, Shandong, 276005, China School of Science, Linyi University, Linyi, Shandong, 276005, China

zhaopingly@163.com

kfdiao@163.com

Kaishun Wang*

Sch. Math. Sci. & Lab. Math. Com. Sys. Beijing Normal University, Beijing 100875, China

wangks@bnu.edu.cn

Submitted: Oct 26, 2011; Accepted: Dec 9, 2011; Published: Jan 16, 2012 Mathematics Subject Classifications: 05C15, 05C65, 05C85

Abstract

For any set S of positive integers, a mixed hypergraph \mathcal{H} is a realization of S if its feasible set is S, furthermore, \mathcal{H} is a one-realization of S if it is a realization of S and each entry of its chromatic spectrum is either 0 or 1. Jiang et al. showed that the minimum number of vertices of a realization of $\{s,t\}$ with $2 \leq s \leq t-2$ is 2t-s. Král proved that there exists a one-realization of S with at most $|S|+2\max S-\min S$ vertices. In this paper, we determine the number of vertices of the smallest one-realization of a given set. As a result, we partially solve an open problem proposed by Jiang et al. in 2002 and by Král in 2004.

Key words: hypergraph coloring; mixed hypergraph; feasible set; chromatic spectrum; one-realization

1 Introduction

A mixed hypergraph on a finite set X is a triple $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$, where \mathcal{C} and \mathcal{D} are families of subsets of X, called the \mathcal{C} -edges and \mathcal{D} -edges, respectively. A bi-hypergraph is a mixed hypergraph with $\mathcal{C} = \mathcal{D}$. A sub-hypergraph $\mathcal{H}' = (X', \mathcal{C}', \mathcal{D}')$ of a mixed hypergraph $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a spanning sub-hypergraph if X' = X, and \mathcal{H}' is called a derived sub-hypergraph of \mathcal{H} on X', denoted by $\mathcal{H}[X']$, when $\mathcal{C}' = \{\mathcal{C} \in \mathcal{C} | \mathcal{C} \subseteq X'\}$ and $\mathcal{D}' = \{\mathcal{D} \in \mathcal{D} | \mathcal{D} \subseteq X'\}$. Two mixed hypergraphs $\mathcal{H}_1 = (X_1, \mathcal{C}_1, \mathcal{D}_1)$ and $\mathcal{H}_2 = (X_2, \mathcal{C}_2, \mathcal{D}_2)$

^{*}Corresponding author

are isomorphic if there exists a bijection ϕ from X_1 to X_2 that preserves the incidence between vertices and edges and maps each \mathcal{C} -edge of \mathcal{C}_1 onto a \mathcal{C} -edge of \mathcal{C}_2 and maps each \mathcal{D} -edge of \mathcal{D}_1 onto a \mathcal{D} -edge of \mathcal{D}_2 , and vice versa. The bijection ϕ is called an isomorphism from \mathcal{H}_1 to \mathcal{H}_2 .

A proper k-coloring of \mathcal{H} is a mapping from X into a set of k colors so that each \mathcal{C} -edge has two vertices with a Common color and each \mathcal{D} -edge has two vertices with Distinct colors. A strict k-coloring is a proper k-coloring using all of the k colors, and a mixed hypergraph is k-colorable if it has a strict k-coloring. The maximum (minimum) number of colors in a strict coloring of $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is the upper chromatic number $\overline{\chi}(\mathcal{H})$ (resp. lower chromatic number $\chi(\mathcal{H})$) of \mathcal{H} . The study of the colorings of mixed hypergraphs has made a lot of progress since its inception [7]. For more information, we would like refer readers to [3, 6, 8, 9].

A coloring of \mathcal{H} may be viewed as a partition of the vertex set, where each color class consists of vertices assigned to the same color. Then no class contains a \mathcal{D} -edge, and each \mathcal{C} -edge meets some class in more than one vertex. Such partitions are called feasible partitions. So a strict n-coloring $c = \{C_1, C_2, \ldots, C_n\}$ of a mixed hypergraph means that C_1, C_2, \ldots, C_n are the n color classes under c.

The set of all the values k such that \mathcal{H} has a strict k-coloring is called the feasible set of \mathcal{H} , denoted by $\mathcal{F}(\mathcal{H})$. For each k, let r_k denote the number of partitions of the vertex set corresponding to the strict colorings of \mathcal{H} with k colors. The vector $R(\mathcal{H}) = (r_1, r_2, \ldots, r_{\overline{k}})$ is called the chromatic spectrum of \mathcal{H} . A mixed hypergraph has a gap at k if its feasible set contains elements larger and smaller than k but omits k. A gap of size g means g consecutive gaps. If some gaps occur, the feasible set and the chromatic spectrum of \mathcal{H} are said to be broken, and if there are no gaps then they are called continuous or gap-free. If S is a set of positive integers, we say that a mixed hypergraph \mathcal{H} is a realization of S if $\mathcal{F}(\mathcal{H}) = S$. A mixed hypergraph \mathcal{H} is a one-realization of S if it is a realization of S and all the entries of the chromatic spectrum of \mathcal{H} are either 0 or 1. This concept was firstly introduced by Král [4].

Bujtás et al. [1] gave a necessary and sufficient condition for a set S to be the feasible set of an r-uniform mixed hypergraph. Kündgen et al. [5] found a one-realization of $\{2,4\}$ on 6 vertices for planar hypergraphs. Jiang et al. [2] proved that a set S of positive integers is a feasible set of a mixed hypergraph if and only if $1 \notin S$ or S is an interval. They also discussed the bound on the number of vertices of a mixed hypergraph with a gap, in particular, the minimum number of vertices of a realization of $\{s,t\}$ with $2 \le s \le t-2$ is 2t-s. Moreover, they also mentioned that the question of finding the minimum number of vertices in a mixed hypergraph with feasible set S of size at least 3 remains open. In [10], we obtained an upper bound on the minimum number of vertices of 3-uniform bihypergraphs with a given feasible set. Král [4] proved that there exists a one-realization of S with at most $|S| + 2 \max S - \min S$ vertices, and proposed the following problem: what is the number of vertices of the smallest mixed hypergraph whose spectrum is equal to a given spectrum (r_1, r_2, \ldots, r_m) ?

In this paper, we determine the number of vertices of the smallest one-realization of a given set and obtain the following result:

Theorem 1.1 For any integers $2 \le n_s < \cdots < n_2 < n_1$, let $\delta(S)$ denote the number of vertices of the smallest one-realization of $S = \{n_1, n_2, \dots, n_s\}$. Then

$$\delta(S) = \begin{cases} 2n_1 - n_s, & \text{if } n_1 > n_2 + 1, \\ 2n_1 - n_s - 1, & \text{if } n_1 = n_2 + 1. \end{cases}$$

As a result, we partially solve the above open problem proposed by Jiang et al. and by Král.

2 Proof of Theorem 1.1

In this section we always assume that $S = \{n_1, n_2, \dots, n_s\}$ is a set of integers with $2 \le n_s < \dots < n_2 < n_1$. We first show that the number $\delta(S)$ given in Theorem 1.1 is a lower bound on the number of vertices of the smallest one-realization of S, then construct two families of mixed hypergraphs which meet the bounds.

Jiang et al. [2] discussed the bound on the number of vertices of a mixed hypergraph with a gap.

Proposition 2.1 ([2, Theorem 3]) If $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is an s-colorable mixed hypergraph with a gap at t-1, then $|X| \geq 2t-s$. For $2 \leq s \leq t-2$, this bound is sharp.

Lemma 2.2

$$\delta(S) \ge \begin{cases} 2n_1 - n_s, & \text{if } n_1 > n_2 + 1, \\ 2n_1 - n_s - 1, & \text{if } n_1 = n_2 + 1. \end{cases}$$

Proof. Assume that $\mathcal{H} = (X, \mathcal{C}, \mathcal{D})$ is a one-realization of S.

Case 1. $n_1 > n_2 + 1$. Then \mathcal{H} has a gap at $n_1 - 1$. By Proposition 2.1, we have $\delta(S) \geq 2n_1 - n_s$.

Case 2. $n_1 = n_2 + 1$. Suppose $|X| \leq 2n_1 - (n_s + 2)$. For any strict n_1 -coloring $c_1 = \{C_1, C_2, \ldots, C_{n_1}\}$ of \mathcal{H} , there exist at least $n_s + 2$ color classes of size one. Suppose $C_1 = \{\alpha_1\}, C_2 = \{\alpha_2\}, \ldots, C_{n_s+2} = \{\alpha_{n_s+2}\}$. For any strict n_s -coloring c_s of \mathcal{H} , there are the following two possible cases.

Case 2.1. There exist three vertices in $\{\alpha_1, \alpha_2, \dots, \alpha_{n_s+2}\}$ which fall into a common color class under c_s . Suppose $\alpha_1, \alpha_2, \alpha_3$ are in a common color class under c_s . Then $\{\alpha_1, \alpha_2\}, \{\alpha_1, \alpha_3\}, \{\alpha_2, \alpha_3\} \notin \mathcal{D}$, which implies that $\{C_1 \cup C_2, C_3, \dots, C_{n_1}\}, \{C_1 \cup C_3, C_2, C_4, \dots, C_{n_1}\}, \{C_1, C_2 \cup C_3, C_4, \dots, C_{n_1}\}$ are strict n_2 -colorings of \mathcal{H} . Therefore, \mathcal{H} is not a one-realization of S, a contradiction.

Case 2.2. There exist two pairs of vertices in $\{\alpha_1, \alpha_2, \dots, \alpha_{n_s+2}\}$ each of which falls into a common color class under c_s . Suppose α_1, α_2 are in a common color class and α_3, α_4 are in common color class under c_s . Then $\{\alpha_1, \alpha_2\}, \{\alpha_3, \alpha_4\} \notin \mathcal{D}$. It follows that $\{C_1 \cup C_2, C_3, \dots, C_{n_1}\}$ and $\{C_1, C_2, C_3 \cup C_4, C_5, \dots, C_{n_1}\}$ are strict n_2 -colorings of \mathcal{H} . Then \mathcal{H} is not a one-realization of S, a contradiction. Hence, $\delta(S) \geq 2n_1 - n_s - 1$.

In the rest of this section, we shall construct two families of mixed hypergraphs which meet the bound in Lemma 2.2.

For any positive integer n, let [n] denote the set $\{1, 2, \ldots, n\}$.

Construction I. For any positive integer $s \geq 2$, let

$$X_{n_1,\dots,n_s}^0 = \{(\underbrace{i,i,\dots,i}_{s}) | i = 1,2,\dots,n_s - 1\},$$

$$X_{n_1,\dots,n_s}^1 = \bigcup_{t=2}^s \bigcup_{j=n_t}^{n_{t-1}-1} \{(\underbrace{j,\dots,j}_{t-1},n_t,n_{t+1},\dots,n_s), (\underbrace{j,\dots,j}_{s-t+1},\underbrace{1,\dots,1}_{s-t+1})\}.$$

Suppose

$$X_{n_1,\dots,n_s}^* = X_{n_1,\dots,n_s}^0 \cup X_{n_1,\dots,n_s}^1 \cup \{(n_1,n_2,\dots,n_s)\},$$

$$\mathcal{D}_{n_1,\dots,n_s}^* = \{\{(x_1,x_2,\dots,x_s),(y_1,y_2,\dots,y_s)\} | x_i \neq y_i, i \in [s]\},$$

$$\mathcal{C}_{n_1,\dots,n_s}^* = \{\{(x_1,\dots,x_s),(y_1,\dots,y_s),(z_1,\dots,z_s)\} | |\{x_j,y_j,z_j\}| = 2, j \in [s]\}.$$

Then $\mathcal{H}^*_{n_1,\dots,n_s} = (X^*_{n_1,\dots,n_s}, \mathcal{C}^*_{n_1,\dots,n_s}, \mathcal{D}^*_{n_1,\dots,n_s})$ is a mixed hypergraph with $2n_1 - n_s$ vertices. Let

$$X_{n_1,\dots,n_s} = \{(x_1,x_2,\dots,x_s) | x_i \in [n_i], i \in [s]\},$$

$$X_{ij}^s = \{(x_1,x_2,\dots,x_{i-1},j,x_{i+1},\dots,x_s) | x_k \in [n_k], k \in [s] \setminus \{i\}\}, j \in [n_i].$$

Then, for any $i \in [s]$,

$$c_i^{s*} = \{X_{i1}^*, X_{i2}^*, \dots, X_{in_i}^*\}$$

is a strict n_i -coloring of $\mathcal{H}^*_{n_1,\dots,n_s}$, where $X^*_{ij} = X^*_{n_1,\dots,n_s} \cap X^s_{ij}$, $j \in [n_i]$. For the case of $s = 3, n_1 = 7, n_2 = 4, n_3 = 2$, we have

$$X_{7,4,2}^* = \{(1,1,1)\} \cup \{(2,2,2), (2,2,1), (3,3,2), (3,3,1)\} \\ \cup \{(4,4,2), (4,1,1), (5,4,2), (5,1,1), (6,4,2), (6,1,1)\} \cup \{(7,4,2)\}.$$

Lemma 2.3 \mathcal{H}_{n_1,n_2}^* is a one-realization of $\{n_1,n_2\}$.

Proof. Under any strict coloring $c = \{C_1, C_2, \dots, C_m\}$ of \mathcal{H}_{n_1, n_2}^* , the vertices (1, 1), $(2, 2), \dots, (n_2, n_2)$ fall into distinct color classes. For each $i \in [n_2]$, suppose $(i, i) \in C_i$. Then, for any $i \in [n_2 - 1]$ and $j \in [n_1 - n_2 - 1]$, the \mathcal{D} -edge $\{(n_2 + j, n_2), (i, i)\}$ implies that $(n_2 + j, n_2) \notin C_i$ and the \mathcal{D} -edge $\{(n_2 + j, 1), (n_2, n_2)\}$ implies that $(n_2 + j, 1) \notin C_{n_2}$. Since $\{(1, 1), (n_2, 1), (n_2, n_2)\}$ is a \mathcal{C} -edge, $(n_2, 1) \in C_1 \cup C_{n_2}$.

Case 1. $(n_2, 1) \in C_1$. The fact that $\{(n_2, 1), (n_2, n_2), (n_2 + 1, n_2)\}$ is a \mathcal{C} -edge follows that $(n_2 + 1, n_2) \in C_{n_2}$. From the \mathcal{C} -edge $\{(n_2, 1), (n_2 + 1, 1), (n_2 + 1, n_2)\}$, we observe $(n_2 + 1, 1) \in C_1$. Similarly, $(n_2 + j, 1) \in C_1$, $(n_2 + j, n_2) \in C_{n_2}$ for any $j \in [n_1 - n_2 - 1]$ and $(n_1, n_2) \in C_{n_2}$. Therefore, $c = c_2^{2*}$.

Case 2. $(n_2, 1) \in C_{n_2}$. The \mathcal{D} -edge $\{(n_2, 1), (n_2+1, n_2)\}$ implies that $(n_2+1, n_2) \notin C_{n_2}$. Suppose $(n_2+1, n_2) \in C_{n_2+1}$. From the \mathcal{C} -edge $\{(n_2, 1), (n_2+1, 1), (n_2+1, n_2)\}$, we have $(n_2+1,1) \in C_{n_2+1}$. Similarly, $(n_2+j,n_2), (n_2+j,1) \in C_{n_2+j}$ for any $j \in [n_1-n_2-1]$ and $(n_1,n_2) \in C_{n_1}$. Therefore, $c=c_1^{2*}$.

Hence, the desired result follows.

Theorem 2.4 $\mathcal{H}_{n_1,\ldots,n_s}^*$ is a one-realization of S.

Proof. By Lemma 2.3, the conclusion is true for s=2.

Let $X' = \{(x_2, x_2, x_3, \dots, x_s) | x_j \in [n_j], j \in [s] \setminus \{1\}\}$. Then $\mathcal{H}' = \mathcal{H}^*_{n_1, \dots, n_s}[X']$ is isomorphic to $\mathcal{H}^*_{n_2, n_3, n_4, \dots, n_s}$. By induction, all the strict colorings of \mathcal{H}' are as follows:

$$c'_i = \{X'_{i1}, X'_{i2}, \dots, X'_{in_i}\}, \quad i \in [s] \setminus \{1\},$$

where $X'_{ij} = X' \cap X^*_{ij}, j \in [n_i]$. For any strict coloring $c = \{C_1, \ldots, C_m\}$ of $\mathcal{H}^*_{n_1, \ldots, n_s}$, the vertices $(1, 1, \ldots, 1), (2, 2, \ldots, 2), \ldots, (n_s, n_s, \ldots, n_s)$ fall into distinct color classes. Without loss of generality, suppose $(i, i, \ldots, i) \in C_i$ for any $i \in [n_s]$. Then there are the following two possible cases.

Case 1. $c|_{X'} = c'_2$. The C-edge $\{(1, 1, ..., 1), (n_2, 1, ..., 1), (n_2, n_2, n_3, ..., n_s)\}$ implies that $(n_2, 1, ..., 1) \in C_1 \cup C_{n_2}$.

Case 1.1. $(n_2, 1, ..., 1) \in C_1$. From the \mathcal{D} -edge $\{(1, ..., 1), (n_2 + 1, n_2, n_3, ..., n_s)\}$ and the \mathcal{C} -edge $\{(n_2, n_2, n_3, ..., n_s), (n_2 + 1, n_2, n_3, ..., n_s), (n_2, 1, ..., 1)\}$, we observe $(n_2 + 1, n_2, n_3, ..., n_s) \in C_{n_2}$. By the \mathcal{C} -edge $\{(n_2, n_2, n_3, ..., n_s), (n_2 + 1, 1, ..., 1), (n_2, 1, ..., 1)\}$ and the \mathcal{D} -edge $\{(n_2, n_2, n_3, ..., n_s), (n_2 + 1, 1, ..., 1)\}$, we observe $(n_2 + 1, 1, ..., 1) \in C_1$. Similarly, $(n_2 + j, 1, ..., 1) \in C_1$, $(n_2 + j, n_2, n_3, ..., n_s) \in C_{n_2}$ for any $j \in [n_1 - n_2 - 1]$ and $(n_1, n_2, ..., n_s) \in C_{n_2}$. Therefore, $c = c_2^{s*}$.

Case 1.2. $(n_2, 1, ..., 1) \in C_{n_2}$. Note that $(n_2 + j, 1, ..., 1) \notin C_k$ for any $j \in [n_1 - n_2 - 1]$ and $k \in [n_2] \setminus \{1\}$. If $(n_2 + 1, 1, ..., 1) \in C_1$, from the C-edge $\{(n_2 + 1, 1, ..., 1), (n_2, n_2, n_3, ..., n_s), (n_2 + 1, n_2, ..., n_s)\}$, we observe $(n_2 + 1, n_2, ..., n_s) \in C_1 \cup C_{n_2}$, contrary to the fact that both $\{(1, 1, ..., 1), (n_2 + 1, n_2, ..., n_s)\}$ and $\{(n_2, 1, ..., 1), (n_2 + 1, n_2, ..., n_s)\}$ are D-edges. Then, $(n_2 + 1, 1, ..., 1) \notin C_1$. Suppose $(n_2 + 1, 1, ..., 1) \in C_{n_2+1}$. The C-edge $\{(n_2 + 1, 1, ..., 1), (n_2 + 1, n_2, n_3, ..., n_s), (n_2, 1, ..., 1)\}$ implies $(n_2 + 1, n_2, ..., n_s) \in C_{n_2+1}$. Similarly, $(n_2 + j, 1, ..., 1), (n_2 + j, n_2, ..., n_s) \in C_{n_2+j}$ for any $j \in [n_1 - n_2 - 1]$ and $(n_1, n_2, ..., n_s) \in C_{n_1}$. Therefore, $c = c_1^{s*}$.

Case 2. There exists a $k \in [s] \setminus \{1,2\}$ such that $c|_{X'} = c'_k$. In this case, we have $(n_2, n_2, n_3, \ldots, n_k, \ldots, n_s) \in C_{n_k}$. For each $j \in [n_1 - n_2 - 1]$, the \mathcal{D} -edge $\{(n_2 + j, 1, \ldots, 1), (n_2, n_2, n_3, \ldots, n_k, \ldots, n_s)\}$ implies that $(n_2 + j, 1, \ldots, 1) \notin C_{n_k}$. From the \mathcal{C} -edge $\{(1, 1, \ldots, 1), (n_2, n_2, n_3, \ldots, n_k, \ldots, n_s), (n_2, 1, \ldots, 1)\}$ and the \mathcal{D} -edge $\{(n_k, \ldots, n_k, n_{k+1}, \ldots, n_s), (n_2, 1, \ldots, 1)\}$, we get $(n_2, 1, \ldots, 1) \in C_1$. For $j \in [n_1 - n_2 - 1]$, the \mathcal{C} -edge $\{(n_2 + j, 1, \ldots, 1), (n_2, n_2, n_3, \ldots, n_s), (n_2, 1, \ldots, 1)\}$ implies that $(n_2 + j, 1, \ldots, 1) \in C_1$.

For any $j \in [n_1 - n_2]$, from the \mathcal{D} -edge $\{(1, 1, ..., 1), (n_2 + j, n_2, ..., n_s)\}$, we have $(n_2 + j, n_2, ..., n_s) \notin C_1$. Moreover, the \mathcal{C} -edge $\{(n_2, n_2, n_3, ..., n_s), (n_2 + j, 1, ..., 1), (n_2 + j, n_2, n_3, ..., n_s)\}$ implies that $(n_2 + j, n_2, n_3, ..., n_s) \in C_{n_k}$ for any $j \in [n_1 - n_2 - 1]$. The fact that $\{(n_1, ..., n_s), (n_2, n_2, n_3, ..., n_s), (n_2, 1, ..., 1)\}$ is a \mathcal{C} -edge follows that $(n_1, n_2, n_3, ..., n_s) \in C_{n_k}$. Hence, $c = c_k^{s*}$.

By the above discussion, the desired result follows.

Next, we shall construct another family of mixed hypergraphs.

Construction II. Let $X'' = X_{n_1,\dots,n_s}^* \setminus \{(n_2,1,\dots,1)\}$ and $\mathcal{H}'' = \mathcal{H}_{n_1,\dots,n_s}^*[X'']$. Then, for any $i \in [s]$,

$$c_i'' = \{X_{i1}'', X_{i2}'', \dots, X_{in_i}''\}$$

is a strict n_i -coloring of \mathcal{H}'' , where $X''_{ij} = X'' \cap X^s_{ij}, j \in [n_i]$.

Theorem 2.5 If $n_1 = n_2 + 1$, the \mathcal{H}'' is a one-realization of S.

Referring to the proof of Theorem 2.4, all the strict colorings of $\mathcal{H}_{n_2,n_2,n_3,\dots,n_s}^*$ are

$$c'_i = \{X'_{i1}, X'_{i2}, \dots, X'_{in_i}\}, \quad i \in [s] \setminus \{1\},$$

where $X' = \{(x_2, x_2, x_3, \dots, x_s) | x_j \in [n_j], j \in [s] \setminus \{1\} \}$ and $X'_{ij} = X' \cap X^*_{ij}, j \in [n_i]$. For any strict coloring $c = \{C_1, C_2, \dots, C_m\}$ of \mathcal{H}'' , there are the following two possible

cases.

Case 1. $c|_{X'}=c'_2$. That is to say, $(i,i,x_3,\ldots,x_s)\in C_i$ under the coloring c for any $(i,i,x_3,\ldots,x_s)\in X''$. By the proof of Theorem 2.4, $(n_1,n_2,n_3,\ldots,n_s)\notin C_i$ for any $j \in [n_2 - 1]$. Then, there are the following two possible subcases.

Case 1.1. $(n_1, n_2, n_3, \ldots, n_s) \in C_{n_2}$. It is immediate that $c = c_2''$.

Case 1.2 $(n_1, n_2, n_3, ..., n_s) \notin C_{n_2}$. Then $(n_1, n_2, n_3, ..., n_s) \in C_{n_1}$. It is immediate that $c = c_1''$.

There exists a $k \in [s] \setminus \{1,2\}$ such that $c|_{X'} = c'_k$. It is immediate Case 2. that $(n_k, \ldots, n_k, n_{k+1}, \ldots, n_s) \in C_{n_k}$ and $(\underline{n_k, \ldots, n_k}, 1, \ldots, 1) \in C_1$. From the \mathcal{C} -edge

 $\{(n_1, n_2, \ldots, n_s), (n_k, \ldots, n_k, n_{k+1}, \ldots, n_s), (n_k, \ldots, n_k, 1, \ldots, 1)\}$ and the \mathcal{D} -edge $\{(n_1, n_2, \ldots, n_s), (1, 1, \ldots, 1)\}$, we observe $(n_1, n_2, \ldots, n_s) \in C_{n_k}$. Therefore, $c = c_k''$. Hence, the desired result follows.

Combining Lemma 2.2, Theorems 2.4 and 2.5, the proof of Theorem 1.1 is completed.

Acknowledgment

We wish to thank the referees for their helpful suggestions. The research is supported by NSF of Shandong Province (No. ZR2009AM013), NCET-08-0052, NSF of China (10871027) and the Fundamental Research Funds for the Central Universities of China.

References

- [1] C. Bujtás, Zs. Tuza, Uniform mixed hypergraphs: the possible numbers of colors, *Graphs and Combin.* **24** (2008), 1–12.
- [2] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. West, The chromatic spectrum of mixed hypergraphs, *Graphs and Combin.* **18** (2002), 309–318.
- [3] D. Kobler and A. Kündgen, Gaps in the chromatic spectrum of face-constrained plane graphs, *Electronic J. Combin.* 8 (2001), #N3.
- [4] D. Král, On feasible sets of mixed hypergraphs, *Electronic J. Combin.* **11** (2004), #R19.
- [5] A. Kündgen, E. Mendelsohn and V. Voloshin, Coloring of planar mixed hypergraphs, Electronic J. Combin. 7 (2000), #R60.
- [6] Zs. Tuza and V. Voloshin, Problems and results on colorings of mixed hypergraphs, Horizons of Combinatorics, Bolyai Society Mathematical Studies 17, Springer-Verlag, 2008, pp. 235–255.
- [7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Combin. 11 (1995), 25–45.
- [8] V. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications, AMS, Providence, 2002.
- [9] V. Voloshin, Introduction to Graph and Hypergraphs Theory, Nova Scinece Publishers, Inc., New York, 2009.
- [10] P. Zhao, K. Diao and K. Wang, The chromatic spectrum of 3-uniform bi-hypergraphs, *Discrete Math.* **311** (2011), 2650–2656.