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Abstract

We study Euclidean designs from the viewpoint of the potential energy. For
a finite set in Euclidean space, we formulate a linear programming bound for the
potential energy by applying harmonic analysis on a sphere. We also introduce the
concept of strong Euclidean designs from the viewpoint of the linear programming
bound, and we give a Fisher type inequality for strong Euclidean designs. A finite
set on Euclidean space is called a Euclidean a-code if any distinct two points in the
set are separated at least by a. As a corollary of the linear programming bound,
we give a method to determine an upper bound on the cardinalities of Euclidean
a-codes on concentric spheres of given radii. Similarly we also give a method to
determine a lower bound on the cardinalities of Euclidean t-designs as an analogue
of the linear programming bound.

1 Introduction

The concept of Euclidean designs is well-known as a natural generalization of spherical
designs to Euclidean space. The purpose of this paper is firstly to characterize Euclidean
designs in terms of the potential energy, secondly to extend the linear programming
bounds on a sphere to configurations of points in Euclidean space, and thirdly to introduce
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the concept of strong Euclidean designs which seems to be natural from the view point
of the linear programming bound.

Let t be a natural number, Sd−1 the (d − 1)-dimensional unit sphere centered at the
origin, and Pl(Rd) the vector space of polynomials of degree at most l in d variables
over R. A finite nonempty subset X on Sd−1 is called a spherical t-design if, for any
f(x) ∈ Pt(Rd), the following equality holds:

1

σ(Sd−1)

∫
Sd−1

f(x)dσ(x) =
1

|X|
∑
x∈X

f(x).

Here σ is an O(Rd)-invariant measure on Sd−1 and σ(Sd−1) denotes the surface volume of
the sphere Sd−1. The concept of spherical designs was defined by Delsarte-Goethals-Seidel
[8]. A spherical t-design is a configuration of points on the sphere so that the average
value of the integral of any polynomial of degree up to t on the sphere is replaced by the
average value on the configuration. A finite non-empty subset X on Sd−1(r), the sphere
of radius r centered at the origin, is also called a spherical t-design if 1

r
X is a spherical

t-design on the unit sphere Sd−1.
Let Z>0, Z>0 and R>0 denote the set of non-negative integers, positive integers and

positive real numbers, respectively. A spherical t-design is closely related to the following
Sidelnikov inequality (refer to [14]): for a finite subset X on Sd−1 and any l ∈ Z>0, it
holds that

1

|X|2
∑
x,y∈X

(x · y)l > Al :=


(l − 1)!!(d− 2)!!

(d+ l − 2)!!
if l ≡ 0 (mod 2),

0 otherwise.
(1)

Here x · y is the standard inner product, and l!! := l(l − 2) · · · , multiplying down to 1 if
l is odd and 2 if l is even, and 0!! := 1. It is well-known that X is a spherical t-design if
and only if for 0 6 l 6 t, equality holds in (1).

Consider a function f : (0, 4] → R. Then the potential energy of X for f is defined
to be PEf (X) :=

∑
x6=y∈X f(‖x − y‖2) (refer to [15, 5]). From Sidelnikov’s inequality

and the equivalent condition, we see that, for ft(r) = (4 − r)t, a spherical t-design X
minimizes the potential energy PEft(X) among all configurations of |X| points on Sd−1.
It is because

PEft(X) =
∑

x 6=y∈X

ft(‖x− y‖2)

=
∑

x 6=y∈X

(2 + 2(x · y))t

=
t∑

i=0

ai
∑

x6=y∈X

(x · y)i,

where ai is a positive number.
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The concept of spherical designs was naturally generalized to Euclidean space by
Neumaier-Seidel [11]. Let X be a finite subset in Rd and suppose O 6∈ X (for simplicity,
we always suppose this in this paper). We set RX := {‖x‖ | x ∈ X} = {r1, r2, . . . , rp},
Si = riS

d−1, RS := S1 ∪ S2 ∪ · · · ∪ Sp and Xi = X(ri) = X ∩ Si. σi denotes an O(Rd)-
invariant measure on Si. Also let w : X → R>0 and we put w(Xi) :=

∑
x∈Xi

w(x).

Definition 1.1 (Neumaier-Seidel [11]). Under the above notation, (X,w) is a Euclidean
t-design if for any f(x) ∈ Pt(Rd), the following equality holds:

p∑
i=1

w(Xi)

σ(Si)

∫
Si

f(x)dσi(x) =
∑
x∈X

w(x)f(x).

In Euclidean space, the following generalized Sidelnikov inequality holds:

Theorem 1 (Neumaier-Seidel [11]). Let X ⊂ Rd (|X| < ∞), w : X → R and l ∈ R>0.
Then the following inequality holds:

∑
x,y∈X

w(x)w(y)(x · y)l > Al

(∑
x∈X

w(x)‖x‖l
)2

. (2)

The actual generalized Sidelnikov inequality given by Neumaier-Seidel [11] is a more
general one, but in this paper we write the inequality in the form of Theorem 1 for the
purpose of viewing a relation to Euclidean designs.

Let w′ : X −→ R>0 and set w(x) = w′(x)‖x‖2j in Theorem 1. Then

∑
x,y∈X

w′(x)w′(y)(‖x‖‖y‖)2j(x · y)l > Al

(∑
x∈X

w′(x)‖x‖2j+l

)2

. (3)

(X,w′) is a Euclidean t-design if and only if equality holds in (3) for all j > 0, l > 0 with
2j + l 6 t (cf. Lemma 2.5, the proof of Theorem 1 in Section 2).

For x ∈ Rd \ {O}, we set x̂ := x/‖x‖. We define the potential energy of a finite set in
Euclidean space which is not necessarily restricted to the sphere:

Definition 1.2. Let X ⊂ Rd \ {O} (|X| < ∞), w : X → R, and f : R2
>0 × [−1, 1] → R.

Then the potential energy of (X,w) for f is defined by

PEf (X,w) =
∑

x,y∈X,x 6=y

w(x)w(y)f(‖x‖, ‖y‖, x̂ · ŷ).

In particular, for the case when f(r, s, t) = (rst)l, the generalized Sidelnikov inequality
gives a lower bound on PEf (X,w).

Let Qi(t) = Q
(d)
i (t) be the Gegenbauer polynomial of degree i corresponding to the

sphere Sd−1, namely, {Qi(t)} are the orthogonal polynomials on the interval [−1, 1] with
respect to the weight function (1− t2)(d−3)/2. In this paper, they are nomalized as Qi(1) =
dim Harmi(Rd), where Harmi(Rd) is defined in Section 2 (see (7)).
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In [15], Yudin gave a linear programming bound on the potential energy using harmonic
analysis on the sphere. Applying his method, we obtain a lower bound on the potential
energy of a finite set on concentric spheres:

Theorem 2. Let X ⊂ Rd \ {O} (|X| < ∞) and w : X → R, and let f : R2
>0 ×

[−1, 1] → R, g0 : R2
>0 → R, and gij : R>0 → R (i, j ∈ Z>0). If h(r, s, t) = g0(r, s) +∑

i,j>1 gij(r)gij(s)Qj(t) satisfies the condition that

f(r, s, t) > h(r, s, t), (r, s ∈ RX, t ∈ [−1, 1]),

then the following inequality holds:

PEf (X,w) >
∑
x,y∈X

w(x)w(y)g0(‖x‖, ‖y‖)−
∑
x∈X

w(x)2h(‖x‖, ‖x‖, 1). (4)

Moreover equality holds in (4) if and only if for any x, y ∈ X (x 6= y), f(‖x‖, ‖y‖, x̂ · ŷ) =
h(‖x‖, ‖y‖, x̂ · ŷ), and∑

x,y∈X

w(x)w(y)gij(‖x‖)gij(‖y‖)Qj(x̂ · ŷ) = 0 (∀i > 1,∀j > 1). (5)

We give a proof of Theorem 2 in Section 2.
Suppose that RX and |X(r)| are given and suppose that g0(r, s) is a polynomial and

each gij(r) is a monomial. Then seeking g0 and gij which maximize the lower bound (4)
in Theorem 2, is reduced to solving a linear programming problem. Therefore we may
consider Theorem 2 as a linear programming bound in Euclidean space.

Next we set gij(r) := aijr
2i+j (aij 6= 0) if 2i + j 6 t, and gij(r) := 0 otherwise. Then

we will see by Lemma 2.5 that the condition (5) is equivalent for (X,w) to be a Euclidean
t-design. Therefore we see that a Euclidean t-design minimizes the potential energy for
the functions h(r, s, t) = g0(r, s) +

∑
i,j>1 gij(r)gij(s)Qj(t). The purpose of this paper is

to introduce the following concept:

Definition 1.3. (X,w) is called a strong Euclidean t-design if the following condition
holds: ∑

x,y∈X

w(x)w(y)(‖x‖‖y‖)iQj(x̂ · ŷ) = 0 (0 6 ∀i 6 t, 1 6 ∀j 6 t). (6)

Strong Euclidean t-designs can be interpreted as the strongest designs among those
minimizing the potential energy in the case when we take monomials as gij’s in Theorem
2. Also the property of being strong Euclidean t-designs can be expressed as being finite
sets on concentric spheres such that, for any continuous function on some space depending
on the parameter t, the average value of the integral on the concentric spheres is replaced
by the average value on the set (see the proof of Theorem 3 in Section 3). Therefore by
Seymour-Zaslavsky’s theorem [13], strong Euclidean t-designs exist for any t.

For Euclidean designs, the Fisher type inequality is famous in algebraic combinatorics
and numerical analysis (cf. [7, 9, 10, 2]). Therefore it is natural to ask whether a Fisher
type inequality holds for strong Euclidean designs, too. We say (X,w) is antipodal if
X = −X, w(x) = w(−x). Then the following is the main result of this paper:
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Theorem 3. Let (X,w) be a strong Euclidean t-design on p concentric spheres. Assume
that p > e+ 1. Then the following inequality holds:

|X| >


(e+ 1)

{(
d+ e− 1

e

)
+

(
d+ e− 2

e− 1

)}
if t = 2e,

2(e+ 1)

(
d+ e− 1

e

)
if (X,w) is antipodal and

t = 2e+ 1.

We give a proof of Theorem 3 in Section 3.
Let (X,w) be a strong Euclidean t-design on p concentric spheres and assume p 6 t+1.

Then we will see by Lemma 3.1 that each Xi is a spherical t-design. On the other
hand, it is easy to see that if Xi is a spherical t-design for any i, then X is a strong
Euclidean t-design. Hence when p 6 t + 1, strong Euclidean t-designs are character-
ized by the property that each Xi is a spherical t-design. So it is essential to con-
sider the case when p > t + 2. Such an example certainly exists. For example, let
X = {(1, 0), (−1, 1), (−1,−1), (2, 2), (2,−2), (−3, 0)} and w ≡ 1. Then (X,w) is a strong
Euclidean 1-design, but each Xi is not a spherical 1-design.

Moreover if a tight spherical t-design exists on Sd−1 (for the definition of tight spherical
t-design, see [8] or Theorem 4 in Section 3 of this paper), then putting a tight spherical
t-design on each e+ 1 concentric sphere, we obtain an example attaining the lower bound
in Theorem 3.

Definition 1.4. A finite set in Euclidean space is called a Euclidean a-code if any distinct
two points in the set are separated at least by a. ds.

Finally in Section 4, as a corollary of Theorem 2, we give a method to calculate an
upper bound of the cardinality of a Euclidean a-code under the condition that the radii
of concentric spheres on which the code lies are given.

2 Linear programming bound

Let 4 be the Laplacian, that is, 4 = ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d
, and set

Homi(Rd) = {f(x) ∈ R[x1, . . . , xd] | f(x) is homogeneous of degree i},
Harmi(Rd) = {f(x) ∈ Homi(Rd) | 4(f(x)) = 0}. (7)

First we give an equivalent condition for X to be a spherical t-design:

Lemma 2.1 (cf. [8]). Let X be a finite non-empty set on Sd−1. Then the following are
equivalent:

(1) X is a spherical t-design.
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(2) For any 1 6 l 6 t, φ ∈ Harml(Rd),∑
x∈X

φ(x) = 0.

We also give an equivalent condition for (X,w) to be a Euclidean t-design:

Lemma 2.2 (cf. [11]). Let X be a finite non-empty set in Rd\{0} and w : X → R>0.
Then the following are equivalent:

(1) (X,w) is a Euclidean t-design.

(2) For any 1 6 l 6 t, φ ∈ Harml(Rd) and 0 6 j 6
[
t−l
2

]
,∑

x∈X

w(x)‖x‖2jφ(x) = 0.

We define a non-degenerate inner product in the space Pl(Rd) as follows: for f , g ∈
Pl(Rd),

〈f, g〉 :=

∫
Sd−1

f(x)g(x)dσ(x).

In a similar way to the above, define an inner product in the vector spaces Homi(Rd) and
Harmi(Rd). The following addition formula of the Gegenbauer polynomials is well-known:

Lemma 2.3 (cf. [8]). Let {φl,1, . . . φl,hl
} be an orthonormal basis of Harml(Rd). Then for

any x, y ∈ Sd−1, we have
hl∑
i=1

φl,i(x)φl,i(y) = Ql(x · y).

The following is immediate from the previous lemma.

Lemma 2.4 (cf. [12]). For any non-negative integer i and any finite subset X ⊂ Sd−1,
the matrix

(
Qi(x · y)

)
x,y∈X indexed by X ×X is positive semi-definite.

We state an equivalent condition for (X,w) to be a Euclidean t-design, in terms of the
Gegenbauer polynomials.

Lemma 2.5. (X,w) is a Euclidean t-design if and only if for 1 6 l 6 t and 0 6 j 6
[
t−l
2

]
,

the following equality holds:∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)l+2jQl (x̂ · ŷ) = 0.
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Proof. Let {φl,1, . . . φl,hl
} be an orthonormal basis of Harml(Rd). Then

hl∑
i=1

(∑
x∈X

w(x)‖x‖2jφl,i(x)

)2

=

hl∑
i=1

∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)2jφl,i(x)φl,i(y)

=

hl∑
i=1

∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)2j+lφl,i(x̂)φl,i(ŷ)

=
∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)2j+lQl(x̂ · ŷ).

The last equality follows from Lemma 2.3. By Lemma 2.2, X is a Euclidean t-design

if and only if
∑hl

i=1

(∑
x∈X w(x)‖x‖2jφl,i(x)

)2
= 0 holds for 1 6 i 6 hl, 1 6 l 6 t and

0 6 j 6
[
t−l
2

]
. Therefore the proof is completed.

Proof of Theorem 2. By Definition 1.2,

PEf (X) =
∑

x,y∈X, x6=y

w(x)w(y)f(‖x‖, ‖y‖, x̂ · ŷ).

Since f(r, s, t) > h(r, s, t) for any r, s and t and since w(x) > 0 for any x ∈ X, we have

PEf (X) >
∑

x6=y∈X

w(x)w(y)h(‖x‖, ‖y‖, x̂ · ŷ)

=
∑
x,y∈X

w(x)w(y)h(‖x‖, ‖y‖, x̂ · ŷ)−
∑
x∈X

w(x)2h(‖x‖, ‖x‖, 1)

=
∑
x,y∈X

w(x)w(y)g0(‖x‖, ‖y‖)

+
∑
x,y∈X

∑
i,j>1

w(x)w(y)gij(‖x‖)gij(‖y‖)Qj(x̂ · ŷ)

−
∑
x∈X

w(x)2h(‖x‖, ‖x‖, 1).

By Lemma 2.4,
(
Qj(x · y)

)
is positive semi-definite. Hence for any i, j > 1, we have∑

x,y∈X

w(x)w(y)gij(‖x‖)gij(‖y‖)Qj(x̂ · ŷ) > 0.

Namely

PEf (X) >
∑
x,y∈X

w(x)w(y)g0(‖x‖, ‖y‖)−
∑
x∈X

w(x)2h(‖x‖, ‖x‖, 1).

Therefore the inequality (4) holds. The condition to satisfy equality in (4) is clear.
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Now by using Theorem 2, it is easy to prove the generalized Sidelnikov inequality in
Theorem 1. First we quote the following well-known lemma:

Lemma 2.6 ([1], Lemma 3.4.3). Let tl =
∑l

i=0Al,iQl−i(t) be the expansion in the Gegen-
bauer polynomials. Then

Al,i =


l!!(d− 2)!!

i!!(d+ 2l − i− 2)!!
if i ≡ 0 (mod 2),

0 otherwise.

Proof of Theorem 1. In Theorem 2, we set f(r, s, t) = (rs)ltl,{
g0j(r) =

√
Al,l−jr

l 0 6 j 6 l
gij(r) = 0 i 6= 0

and g0(r, s) = g00(r)g00(s). Then by Lemma 2.6,

h(r, s, t) = g0(r, s) +
∑
i,j>1

gij(r)gij(s)Qj(t)

=
l∑

j=0

Al,l−j(rs)
lQj(t) = (rs)ltl = f(r, s, t).

Therefore the conditions in Theorem 2 hold. Hence

PEf (X) =
∑

x 6=y∈X

w(x)w(y)f(‖x‖, ‖y‖, x̂ · ŷ) =
∑

x 6=y∈X

w(x)w(y)(x · y)l

>
∑
x,y∈X

w(x)w(y)g0(‖x‖, ‖y‖)−
∑
x∈X

w(x)2h(‖x‖, ‖x‖, 1)

=
∑
x,y∈X

w(x)w(y)Al,l(‖x‖‖y‖)l −
∑
x∈X

w(x)2f(‖x‖, ‖x‖, 1)

= Al,l

(∑
x∈X

w(x)‖x‖l
)2

−
∑
x∈X

w(x)2f(‖x‖, ‖x‖, 1).

Since Al,l = Al, we have

∑
x,y∈X

w(x)w(y)(x · y)l > Al

(∑
x∈X

w(x)‖x‖l
)2

.

3 Fisher type inequality

In this section, we give a Fisher type inequality for strong Euclidean designs. First we
show the following lemma:

the electronic journal of combinatorics 19 (2012), #P2 8



Lemma 3.1. Let (X,w) be a strong Euclidean t-design on p concentric spheres, and
w : X → R>0 be constant on each concentric sphere. Suppose t+ 1 > p. Then each Xi is
a spherical t-design.

Proof. Let (X,w) be a strong Euclidean t-design. Then by Definition 1.3, for 0 6 i 6 t
and 1 6 j 6 t ∑

x,y∈X

w(x)w(y)(‖x‖‖y‖)iQj(x̂ · ŷ) = 0.

Let {φl,1, . . . φl,hl
} be an orthonormal basis of Harml(Rd). Then for any j,

hl∑
i=1

(∑
x∈X

w(x)‖x‖jφl,i(x)

)2

=

hl∑
i=1

∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)jφl,i(x)φl,i(y)

=

hl∑
i=1

∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)j+lφl,i(x̂)φl,i(ŷ)

=
∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)j+lQl(x̂ · ŷ).

The last equality follows from Lemma 2.3. Therefore (X,w) is a strong Euclidean t-
design if and only if the following equalities hold: for 1 6 l 6 t, φ(x) ∈ Harml(Rd) and
−l 6 j 6 t− l,

∑
x∈X

w(x)‖x‖jφ(x) =

p∑
i=1

|ri|j
∑
x∈Xi

w(x)φ(x) = 0. (8)

Fix φ ∈ Harml(Rd) and regard {
∑

x∈Xi
w(x)φ(x)}pi=1 as variables. Then the matrix coef-

ficient of the linear system (8) is
r−l1 r−l2 . . . r−lp

r−l+1
1 r−l+1

2 . . . r−l+1
p

...
...

...
...

rt−l1 rt−l2 . . . rt−lp


.

When t+1 > p, the rank of this matrix is p. Hence for any 1 6 i 6 p and φ ∈ Harml(Rd),
we have ∑

x∈Xi

w(x)φ(x) = 0.

Now because of the fact that w(x) is constant on each concentric sphere, each Xi is a
spherical t-design by Lemma 2.1.

The following theorem is the well-known Fisher type inequality for spherical designs:
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Theorem 4 (Delsarte-Goethals-Seidel [8]). Let X ⊂ Sd−1 be a spherical t-design. Then

|X| >


(
d+ e− 1

e

)
+

(
d+ e− 2

e− 1

)
if t = 2e,

2

(
d+ e− 1

e

)
if t = 2e+ 1.

(9)

A spherical t-design X is tight if equality holds in (9). By Lemma 3.1 and Theorem
4, we obtain the following corollary:

Corollary 3.1. Let (X,w) be a strong Euclidean t-design on p concentric spheres. Sup-
pose that w : X → R>0 be constant on each concentric sphere and that t+ 1 > p. Then

|X| >


p

{(
d+ e− 1

e

)
+

(
d+ e− 2

e− 1

)}
if t = 2e,

2p

(
d+ e− 1

e

)
if t = 2e+ 1.

In the sequel, suppose that p is sufficiently large comparing to t. Our proof below
follows Delsarte-Seidel [7]. For a subspace P of Pol(Rd), put ‖x‖jP := {‖x‖jf(x) | f ∈
P}. We set

Pol′(Rd) := Pol(Rd) + ‖x‖Pol(Rd).

We remark that the sum of the right hand side is a direct sum. It is because, if there
exist nonzeros f , g ∈ Pol(Rd) such that f + ‖x‖g = 0, then f 2 = ‖x‖2g2. Because
‖x‖2 = x21 + · · · + x2d is irreducible in Pol(Rd), we have a contradiction since the parities
of ‖x‖2 = x21 + · · ·+ x2d in the left and right hand side are different. Set

Pol′j(Rd) := Polj(Rd) + ‖x‖Polj−1(Rd),

Hom′j(Rd) := Homj(Rd) + ‖x‖Homj−1(Rd).

Then

Pol′j(Rd) =

j⊕
i=0

Hom′j(Rd).

Generally for T ⊂ Rd, we denote by Homl(T ) (resp. Harml(T )) the vector space of ele-
ments of Homl(Rd) (resp. Harml(Rd)) which are restricted on T . For example we write
Pol(T ) = {f |T | f ∈ Pol(Rd)}, where f |T denotes a restricted function on T for f .

Lemma 3.2.
Hom′j(RS) = Homj(RS)⊕ (‖x‖Homj−1)(RS).

Proof. Take any f ∈ Homj(RS) and g ∈ Homj−1(RS) such that f = ‖x‖g, then we have
f 2(x) = ‖x‖2g2(x) as polynomials. Since ‖x‖2 = x21 + x22 + · · · + x2d is an irreducible
element of the polynomial ring, checking the parities of ‖x‖2 = x21 + x22 + · · · + x2d in the
left and right hand side, we have f = g = 0. Therefore the sum of the right hand side is
a direct sum.
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Lemma 3.3. Suppose that RS consists of p concentric spheres. Then we have

Hom′j(RS) ⊂
p∑

i=1

Hom′j+i(RS). (10)

Proof. For f ∈ Hom′j(Rd), we have the following identity on RS: for y ∈ RS

f(y)
∏

r∈RX

(r − ‖y‖) = 0. (11)

Expanding (11), we see that f(y) is written as a linear combination with respect to
‖y‖if(y) (i = 1, 2, . . . , p), where ‖y‖if(y) ∈ Hom′j+i(RS).

Lemma 3.4. Suppose that RS consists of p concentric spheres. Then we have

Pol′j(RS) =

p−1⊕
i=0

Hom′j−i(RS)

Proof. By (10), we have

Pol′j(RS) =

j∑
i=0

Hom′i(RS) =

p−1∑
i=0

Hom′j−i(RS). (12)

Therefore it is enough to show that the sum of the right hand side is a direct sum. First
we show that for the restriction homomorphism φ : Pol′j(Rd)→ Pol′j(RS),

Ker φ = Pol′j−p(Rd)
∏

r∈RX

(r − ‖x‖). (13)

Clearly we have

Ker φ ⊃ Pol′j−p(Rd)
∏

r∈RX

(r − ‖x‖).

Conversely, take f + ‖x‖g ∈ Ker φ, (f ∈ Polj(Rd), g ∈ Polj−1(Rd)). For r1 ∈ RX,

f(x) + ‖x‖g(x) = f(x) + r1g(x)− (r1 − ‖x‖)g(x).

Hence f(x) + r1g(x) is zero on r1S
d−1. By Hilbert’s Nullstellensatz, there exists some

h(x) ∈ Polj−2(Rd) such that f(x) + r1g(x) = (r21 − ‖x‖2)h(x). Therefore we have

f(x) + ‖x‖g(x) = (r1 − ‖x‖) {(r1 + ‖x‖)h(x)− g(x)} .

Similarly, replacing f(x) + ‖x‖g(x) and r1 by (r1 + ‖x‖)h(x)− g(x) and r2, respectively,
we see that there exists q(x) ∈ Pol′j−2(Rd) such that

f(x) + ‖x‖g(x) = (r1 − ‖x‖)(r2 − ‖x‖)q(x).
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Recursively we see that there exists r(x) ∈ Pol′j−p(Rd) such that

f(x) + ‖x‖g(x) =
∏

r∈RX

(r − ‖x‖)r(x).

Therefore we have Kerφ ⊂ Pol′j−p(Rd)
∏

r∈RX(r − ‖x‖).
By (13),

dim Pol′j(RS) = dim Pol′j(Rd)− dim Pol′j−p(Rd).

Using Hom′i(Rd) ' Hom′i(RS), we have

dim Pol′j(RS) =

p−1∑
i=0

dim Hom′j−i(Rd) =

p−1∑
i=0

dim Hom′j−i(RS).

This implies that the sum of the right hand side in (12) is a direct sum.

Proof of Theorem 3. The following decomposition is well-known (cf. [11]):

Homi(Rd) =

[ i
2
]⊕

j=0

‖x‖2jHarmi−2j(Rd).

We set

Pt :=
t⊕

i=0

t−i⊕
j=−i

‖x‖jHarmi(Rd) =
t∑

i=0

t−i∑
j=−i

‖x‖jHomi(Rd).

Then for any f(x) =
∑t

i=0

∑t−i
j=−i ‖x‖jfi(x) ∈ Pt with fi ∈ Harmi(Rd),

p∑
k=1

w(Xk)

|Sk|

∫
Sk

f(x)dσk(x) =

p∑
k=1

t−i∑
j=−i

rjk
w(Xk)

|Sk|

t∑
i=0

∫
Sk

fi(x)dσk(x)

=

p∑
k=1

t−i∑
j=−i

rjk
w(Xk)

|Sk|

∫
Sk

f0(x)dσk(x) =

p∑
k=1

t−i∑
j=−i

rjkw(Xk)f0(x)

=

p∑
k=1

t−i∑
j=−i

∑
x∈Xk

w(x)‖x‖jf0(x) =
t−i∑
j=−i

∑
x∈X

w(x)‖x‖jf0(x).

Let (X,w) be a strong Euclidean t-design. Then by the equivalent condition (8) for (X,w)
to be a strong Euclidean t-design, we have

t−i∑
j=−i

∑
x∈X

w(x)‖x‖jf0(x) =
t∑

i=0

t−i∑
j=−i

∑
x∈X

w(x)‖x‖jfi(x) =
∑
x∈X

w(x)f(x).

Therefore for any f ∈ Pt,

p∑
k=1

w(Xk)

|Sk|

∫
Sk

f(x)dσk(x) =
∑
x∈X

w(x)f(x). (14)
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Suppose t = 2e. Then we have Pt = PePe = 〈f · g | f, g ∈ Pe〉, where 〈f · g | f, g ∈ Pe〉 is
the vector space expanded by f · g (f, g ∈ Pe).

We define the non-degenerate inner products [·, ·] and 〈·, ·〉RS on Pe(X) and Pe(RS),
respectively, as follows: for f , g ∈ Pe,

[f, g] :=
∑
x∈X

w(x)f(x)g(x), (15)

〈f, g〉RS :=

p∑
i=1

w(Xi)

|Si|

∫
Si

f(x)g(x)dσi(x). (16)

Then (14) is equivalent to that, for any f , g ∈ Pe,

[f, g] = 〈f, g〉RS.

This implies that the restriction map ρe : Pe(RS)→ Pe(X) is an injective homomorphism.
Hence |X| is bounded below by dimPe(RS).

Set Te := (‖x‖ePe)(RS) =
∑t

i=0

∑t−i
j=−i (‖x‖e+jHomi) (RS). Since dimPe(RS) =

dimTe, it is enough to calculate dimTe. Generally we have the following:

(‖x‖2Homi−2)(RS) ⊂ Homi(RS). (17)

Therefore

Te =
e+1∑
i=1

(‖x‖iHome−1)(RS) +
e∑

i=0

(‖x‖iHome)(RS).

By the assumption p > e+ 1, this sum is a direct sum by Lemma 3.2 and 3.4. So we have

dimTe = (e+ 1)

{(
d+ e− 1

e

)
+

(
d+ e− 2

e− 1

)}
.

Next we suppose that (X,w) is antipodal and that t = 2e+ 1. Then set

P ′2e(Rd) =
e⊕

i=0

2e+1−2i⊕
j=−2i

‖x‖jHarm2i(Rd) =
e∑

i=0

2e+1−2i∑
j=−2i

‖x‖jHom2i(Rd).

We assume that X is a disjoint union of Y and −Y . Then in a similar way to the case
when t = 2e, we see that (X,w) is a strong Euclidean (2e + 1)-design if and only if for
any f ∈ P ′2e the following holds:

p∑
i=1

w(Xi)

|Si|

∫
Si

f(x)dσi(x) =
∑
y∈Y

w(y)f(y). (18)

Set

P ′′e (Rd) =

[ e
2
]∑

k=0

2k∑
j=−e+2k

‖x‖jHome−2k(Rd).
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Then we have P ′2e(Rd) ⊃ P ′′e (Rd) · P ′′e (Rd). Therefore when we also define the non-
degenerate inner products in the space P ′′e (Y ) and P ′′e (RS) in the same way as (15) and
(16), we see by (18) that, for any f , g ∈ P ′′e

[f, g] = 〈f, g〉RS.

Therefore we see that the restriction map ρ′e : P ′′e (RS) → P ′′e (Y ) is injective. Hence,
|Y | is bounded below by dimP ′′e (RS). In particular, |X| = 2|Y | > 2 dimP ′′e (RS). Set
T ′e := (‖x‖eP ′′e )(RS). Then from the fact that dimP ′′e (RS) = dimT ′e and from (17), we
have

T ′e = Home(RS) + ‖x‖Home(RS) + · · ·+ ‖x‖eHome(RS). (19)

When p > e + 1, by Lemma 3.4, the sum of the right hand side in (19) is a direct sum.
Therefore dimT ′e = (e+ 1)

(
d+e−1

e

)
.

4 Bounds for Euclidean a-codes and Euclidean de-

signs

In this section, we give a method to obtain a bound of the cardinality of Euclidean a-codes
and Euclidean designs.

Theorem 5. Let X ⊂ Rd (|X| < ∞) be a Euclidean a-code, g0 : R2
>0 → R, gij : R>0 →

R (i, j > 1) and h(r, s, t) = g0(r, s) +
∑

i,j>1 gij(r)gij(s)Qj(t). Assume that

h(r, s, t) 6 0, (r2 + s2 − 2rst > a2, r, s ∈ RX).

Then we have the following inequality:∑
x,y∈X

g0(‖x‖, ‖y‖) 6
∑
x∈X

h(‖x‖, ‖x‖, 1). (20)

Proof. Set

f(r, s, t) =

{
+∞ if r2 + s2 − 2rst < a2,

0 otherwise.

Since h(r, s, t) 6 0, (r2 + s2 − 2rst > a2, r, s ∈ RX) by the assumption, we have
f(r, s, t) > h(r, s, t), (r, s ∈ RX, t ∈ [−1, 1]). Therefore, setting w ≡ 1, we have the
following inequality by Theorem 2,

PEf (X,w) >
∑
x,y∈X

g0(‖x‖, ‖y‖)−
∑
x∈X

h(‖x‖, ‖x‖, 1). (21)

If
∑

x,y∈X g0(‖x‖, ‖y‖) >
∑

x∈X h(‖x‖, ‖x‖, 1), then the right hand side of (21) is positive,

and so PEf (X,w) = +∞. Hence, there exist x 6= y ∈ X such that ‖x − y‖2 6 a2. This
contradicts to that X is a Euclidean a-code.
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Corollary 4.1. Let X ⊂ Rd be a Euclidean a-code, RX = {r1, . . . , rp} and Xi = X ∩
riS

d−1. Set fij(r, s, t) = (rs)iQj(t), (i, j > 0), and h(r, s, t) =
∑

i,j aijfi,j(r, s, t), aij >
0 (∀j > 1). Assume that h(r, s, t) 6 0, (r2 + s2 − 2rst > a2, r, s ∈ RX). Then the
following inequality holds:

∑
i

ai0

(
p∑

k=1

rik|Xk|

)2

6
p∑

k=1

h(rk, rk, 1)|Xk|. (22)

Proof. Set gij(r) =
√
aijr

i (j > 1) and w ≡ 1, and use Theorem 5.

In (22), the left hand side is of degree two and the right hand side is of degree one with
respect to |Xi|. So (22) gives an upper bound of |Xi| if we could find a good function.

Remark 1. Let X ⊂ Rd be a Euclidean a-code and x̂ := {x̂ | x ∈ X}. If |x̂| < |X|,
namely if there exist x 6= y ∈ X such that x̂ = ŷ, then Xi and Xj are separated at least
by a where x ∈ Xi and y ∈ Xj. Hence, the condition of a Euclidean a-code does not give
any restriction between Xi and Xj. Therefore, it is enough to consider the case |x̂| = |X|.
For x, y ∈ X, (‖x‖ = r, ‖y‖ = s), we have ‖x− y‖2 = r2 + s2 − 2rst > a2. For r, s ∈ RX,
set

zrs :=
r2 + s2 − a2

2rs
, z := max{zrs | r, s ∈ RX}.

Then since X is a Euclidean a-code, we have x̂ · ŷ 6 z (∀x, y ∈ X). So x̂ is a spherical
z-code. The linear programming bound of the usual Delsarte method for spherical z-codes
is a method as seeking a polynomial h(t) =

∑
i aiQi(t) such that ai > 0 (∀i > 1), a0 > 0

and h(t) 6 0 (∀t ∈ [−1, z]) (refer to [6]). In Corollary 4.1, if aij = 0 (∀i > 1), then (22)
is the same to the linear programming bound of the Delsarte method. Since functions
h(t) or bounds appearing in the Delsarte bounds are particular cases in ones of Corollary
4.1. So there is a possibility to improve the bound obtained by using the Delsarte method
directly to Euclidean a-codes as above.

Example 1. Let X be a Euclidean 1-code in R2 with radii 1 and 1.16. We want to give an
upper bound on |X1| and |X2|. First we apply the usual Delsarte method to X. Under the
same notation to Remark 1, z = 1057/1682. Set a1 = 1.013212587, a2 = 0.6040849486,
a3 = 0.3325651473, a4 = 0.1442439181, a5 = 0.03803128022 and

h(t) = 1 + a1Q1(t) + a2Q2(t) + a3Q3(t) + a4Q4(t) + a5Q5(t).

h(t) satisfies the conditions ai > 0 (∀i > 1), a0 > 0, and h(t) 6 0 (∀t ∈ [−1, z]). Therefore
by the Delsarte method, we obtain |X| < h(1) = 7.057164402. This bound is the best
one which is obtained by considering the projection x̂ because the regular 7-gon on the
unit circle is a spherical z-code.

Next we apply Theorem 5. Let

a10 = 0.9880278352, a11 = 0.9837793599, a20 = 0.5699046690, a21 = 1.335167172,

a30 = 0.2971650220, a31 = 1.382817397, a40 = 0.1180592309, a41 = 1.022839342,

a50 = 0.02673442743, a51 = 0.4412833120,
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and g0(r, s) ≡ 1, gi1(r) =
√
ai0, gi2(r) =

√
ai1(r − 1) for 1 6 i 6 5. Set

h(r, s, t) = g0(r, s) +
5∑

i=1

(gi1(r)gi1(s) + gi2(r)gi2(s))Qi(t).

Then we can check easily that h(r, s, t) satisfies the conditions in Theorem 5. Therefore
by Theorem 5, we have the following inequlity:

|X|2 6 |X1|h(1, 1, 1) + |X2|h(1.2, 1.2, 1) = 6.625132485|X1|+ 7.118347881|X2|,

where the second equality of the above is due to an approximate calculation. Solving the
above inequality for each given |X1|, we have that if |X1| = 1, then |X2| 6 7− |X1| and if
|X1| = 2, 3, 4, 5, then |X2| 6 6−|X1|. This implies that Theorem 5 improves the Delsarte
method in the case when |X1| = 2, 3, 4, 5.

Now we give a linear programming bound on the cardinality of a Euclidean t-design.
Set A(X(r), X(s)) := {x̂ · ŷ | x ∈ X(r), y ∈ X(s), x̂ 6= ŷ}.

Theorem 6. Let (X,w) be a Euclidean t-design. Suppose that w(x) is constant on each
concentric sphere and denote by w(‖x‖) := w(x). Set

I := {(i, j) ∈ Z2
>0 | 0 6 i 6 t, there exists k ∈ Z>0 such that i = 2k + j or j = 0}.

Assume that for any (i, j) 6∈ I, aij 6 0 and f(r, s, t) =
∑

i,j>0 aijfij(r, s, t). Moreover,
assume that f(r, s, t) > 0 (∀r, s ∈ RX, ∀t ∈ [−1, 1]). Then, we have the following
inequality:

∑
i>0

ai0

(∑
r∈RX

w(r)ri|X(r)|

)2

>
∑

r,s∈R(X)

w(r)w(s)f(r, s, 1)dr,s,1, (23)

where
dr,s,t := ]{(x, y) ∈ X2 | x ∈ X(r), y ∈ X(s), x̂ · ŷ = t}.

Proof. We estimate the following value:∑
i,j

aij
∑
x,y∈X

w(x)w(y)fij(‖x‖, ‖y‖, x̂ · ŷ). (24)

Since (X,w) is a Euclidean t-design,

(24) =
∑
i>0

ai0
∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)i

+
∑

(i,j)6∈I

aij
∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)iQj(x̂ · ŷ).
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By the assumption, aij 6 0 (∀(i, j) 6∈ I) and by Lemma 2.4,∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)iQj(x̂ · ŷ) > 0.

Hence,

(24) 6
∑
i>0

ai0
∑
x,y∈X

w(x)w(y)(‖x‖‖y‖)i =
∑
i>0

ai0

(∑
r∈RX

w(r)ri|X(r)|

)2

.

On the other hand, by f(r, s, t) > 0 (∀r, s ∈ RX, ∀t ∈ [−1, 1]), we have

(24) =
∑
x,y∈X

w(x)w(y)
∑
i,j

aijfij(‖x‖, ‖y‖, x̂ · ŷ)

=
∑
x,y∈X

w(x)w(y)f(‖x‖, ‖y‖, x̂ · ŷ)

>
∑

r,s∈R(X)

w(r)w(s)f(r, s, 1)dr,s,1

In (23), the left hand side is of degree two and the right hand side is of degree one
with respect to |Xi|. Therefore (23) gives a lower bound of |Xi| if we could find a good
function f .
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[11] A. Neumaier and J. J. Seidel, Discrete measures for spherical designs, eutactic stars
and lattices, Nederl. Akad. Westensch. Proc. Ser. A 91 (Indag. Math. 50) (1988),
321–334.

[12] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942),
96–108.

[13] P. Seymour and T. Zaslavsky, Averaging sets: a generalization of mean values and
spherical designs, Adv. in Math. 52 (1984), no. 3, 213–240.

[14] V.M. Sidelnikov, New bounds for the density of sphere packings in an n-dimensional
Euclidean space, Mat. Sb. 85 (1974), English translation, Math. USSR Sbornik, 24
(1974), 147–157.

[15] V. A. Yudin, Minimum potential energy of a point system of charges (Russian),
Diskret. Mat. 4 (1992), 115–121; translation in Discrete Math. Appl. 3 (1993), 75–
81.

the electronic journal of combinatorics 19 (2012), #P2 18


