On Ryser's conjecture

P.E. Haxell*

A.D. Scott

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont., Canada N2L 3G1 Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford OX1 3LB, UK

pehaxell@math.uwaterloo.ca

scott@maths.ox.ac.uk

Submitted: Sep 23, 2011; Accepted: Jan 15, 2012; Published: Jan 21, 2012 Mathematics Subject Classification: 05C70, 05C65

Abstract

Motivated by an old problem known as Ryser's Conjecture, we prove that for r=4 and r=5, there exists $\epsilon>0$ such that every r-partite r-uniform hypergraph \mathcal{H} has a cover of size at most $(r-\epsilon)\nu(\mathcal{H})$, where $\nu(\mathcal{H})$ denotes the size of a largest matching in \mathcal{H} .

1 Introduction

In this paper we are concerned with a packing and covering problem in hypergraphs. A hypergraph consists of a vertex set V and a set \mathcal{H} of edges, where each edge is a nonempty subset of $V = V(\mathcal{H})$. We say \mathcal{H} has rank r if the largest size of an edge is r, and that \mathcal{H} is r-uniform if every edge has size r. The packing number (also called matching number) $\nu(\mathcal{H})$ of \mathcal{H} is the size of a largest matching in \mathcal{H} , where a matching is a set of pairwise disjoint edges in \mathcal{H} . The covering number $\tau(\mathcal{H})$ of \mathcal{H} is the size of a smallest cover of \mathcal{H} , where a cover is a subset $W \subset V$ such that every edge of \mathcal{H} contains a vertex of W. It is clear that if \mathcal{H} has rank r then $\tau(\mathcal{H}) \leq r\nu(\mathcal{H})$, and this is attained for example by the complete r-uniform hypergraph \mathcal{K}_{2r-1}^r with 2r-1 vertices, which has $\nu(\mathcal{K}_{2r-1}^r) = 1$ and $\tau(\mathcal{K}_{2r-1}^r) = r$.

Our focus here is on a long-standing open problem known as Ryser's Conjecture, which states that if \mathcal{H} is an r-partite r-uniform hypergraph then $\tau(\mathcal{H}) \leq (r-1)\nu(\mathcal{H})$ (see e.g. [4, 9]; a stronger version of the conjecture was proposed by Lovász [6]). Here \mathcal{H} being r-partite means that its vertex set has a partition $V_1 \cup \cdots \cup V_r$ and every edge contains exactly one vertex of each V_i . When r=2 this is the classical theorem of König, and for r=3, after a number of partial results [8, 10, 5], the conjecture was proved by Aharoni

^{*}Research of P. Haxell partially supported by NSERC

[1]. Apart from these two cases, very little is known about the problem. If true, the statement is best possible whenever r-1 is a prime power (see e.g. [9]). Until now no nontrivial bound of the form $\tau(\mathcal{H}) \leq (r-\epsilon)\nu(\mathcal{H})$ for $\epsilon > 0$ and any $r \geq 4$ was known.

A hypergraph \mathcal{H} is said to be *intersecting* if $\nu(\mathcal{H}) = 1$. Even for intersecting hypergraphs, Ryser's Conjecture is open for all $r \geq 6$. There are many examples showing the result would be best possible in this case, and they can be quite sparse (see [7]). For $r \leq 5$, however, the conjecture has been proved in the special case of intersecting hypergraphs.

Theorem 1.1. (Tuza [9]) If \mathcal{H} is an intersecting r-partite hypergraph of rank r and $r \leq 5$ then $\tau(\mathcal{H}) \leq r - 1$.

Our aim in this paper is to prove the following theorem, the proof of which depends on Theorem 1.1, and thus give a nontrivial upper bound for Ryser's problem in the cases r = 4 and r = 5.

Theorem 1.2. For each of r = 4 and r = 5, there exists a positive constant ϵ such that $\tau(\mathcal{H}) \leq (r - \epsilon)\nu(\mathcal{H})$ for every r-partite r-uniform hypergraph \mathcal{H} .

2 General r

We begin the proof of Theorem 1.2 in this section, arguing in terms of general r. We then complete the proof for r = 4 and r = 5 respectively in the next two sections.

Let \mathcal{J} be an r-partite r-uniform hypergraph, with a fixed partition $V_1 \cup \ldots \cup V_r$. Let \mathcal{B} be a matching of size $\nu(\mathcal{J})$ in \mathcal{J} . It is clear that $V(\mathcal{B})$ is a cover of \mathcal{J} of size $r\nu(\mathcal{J})$. For $B_j \in \mathcal{B}$ we let \mathcal{H}_j denote the set of edges of \mathcal{J} that intersect $V(\mathcal{B})$ only in vertices of B_j . Note then that \mathcal{H}_j is intersecting and $B_j \in \mathcal{H}_j$.

We call an edge $A \in \mathcal{J}$ bad if $A \cap V(\mathcal{B}) = \{v\}$ for some v. The vertex v is also called bad, and we say A is i-bad where v is in the ith colour class V_i of the r-partition of \mathcal{J} . Note that each bad edge is in \mathcal{H}_j for some j. Let $\mathcal{B}_1 = \{B_j \in \mathcal{B} : B_j \text{ has } r \text{ bad vertices}\}$.

Lemma 2.1. If
$$\tau(\mathcal{J}) > (r - 1/2r)|\mathcal{B}|$$
 then $|\mathcal{B}_1| > |\mathcal{B}|/2$.

Proof. Suppose that $|\mathcal{B}_1| \leq |\mathcal{B}|/2$. Then there is a colour class i such that at least $|\mathcal{B}|/2r$ of the $B_j \notin \mathcal{B}_1$ have no i-bad vertex. Let \mathcal{B}^* denote the set of these B_j . But then $\bigcup_{B_j \notin \mathcal{B}^*} B_j \cup \bigcup_{B_j \in \mathcal{B}^*} B_j \setminus V_i$ is a cover of \mathcal{J} of size at most $r(|\mathcal{B}| - |\mathcal{B}^*|) + (r-1)|\mathcal{B}^*| \leq (r-1/2r)|\mathcal{B}|$.

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed. Either \mathcal{J} has a suitably small cover, or we can find a special subset of \mathcal{B} whose size is a positive proportion of $|\mathcal{B}|$ (in this case \mathcal{B}_1 which is at least half of \mathcal{B}) about which we can make a further assumption. We may then cover all edges of \mathcal{J} that intersect any edge of \mathcal{B} that is not in the special subset by taking every vertex of every edge of \mathcal{B} not in the special subset. This will not change the hypergraphs \mathcal{H}_j , or the notion of bad, for the edges of \mathcal{J} that remain. We then focus on showing that the remaining edges have a suitably small cover (in this

case of size at most $(r - \alpha)|\mathcal{B}_1|$ for some fixed positive α). In our proof of Theorem 1.2 we will apply this procedure r + 2 times for r = 4, and r + 3 times for r = 5.

By Lemma 2.1 we may assume that $|\mathcal{B}_1| > |\mathcal{B}|/2$. As outlined in the previous paragraph, we let $\mathcal{J}_1 = \{A \in \mathcal{J} : A \cap B_j = \emptyset \text{ for all } B_j \in \mathcal{B} \setminus \mathcal{B}_1\}$. Then $\nu(\mathcal{J}_1) = |\mathcal{B}_1|$, and $\tau(\mathcal{J}) \leq r(|\mathcal{B}| - |\mathcal{B}_1|) + \tau(\mathcal{J}_1)$.

Lemma 2.2. If $\tau(\mathcal{J}_1) > (r-1/2)|\mathcal{B}_1|$ then there is a matching of 1-bad edges in \mathcal{J}_1 of size at least $|\mathcal{B}_1|/2r$.

Proof. Let $\mathcal{M} = \{M_1, \dots, M_t\}$ be a maximum matching of 1-bad edges in \mathcal{J}_1 . Note that since each \mathcal{H}_i is intersecting, all edges of \mathcal{M} are in distinct \mathcal{H}_i , say $\mathcal{H}_1, \dots, \mathcal{H}_t$. Then

$$\bigcup_{j=1}^{t} (M_j \cup B_j) \cup \bigcup_{j>t} B_j \setminus V_1$$

is a cover of \mathcal{J}_1 of size at most $(2r-1)|\mathcal{M}| + (r-1)(|\mathcal{B}_1| - |\mathcal{M}| = (r-1)|\mathcal{B}_1| + r|\mathcal{M}|)$. If $|\mathcal{M}| < |\mathcal{B}_1|/2r$ then this is at most $(r-1/2)|\mathcal{B}_1|$.

By Lemma 2.2 we may assume that there is a matching \mathcal{M} of 1-bad edges in \mathcal{J}_1 of size at least $|\mathcal{B}_1|/2r$. Let $\mathcal{B}_2 = \{B_j \in \mathcal{B}_1 : B_j \cap M_k \neq \emptyset \text{ for some } M_k \in \mathcal{M}\}$. Then $|\mathcal{B}_2| = |\mathcal{M}| \geq |\mathcal{B}_1|/2r$. Let $\mathcal{J}_2 = \{A \in \mathcal{J}_1 : A \cap B_j = \emptyset \text{ for all } B_j \in \mathcal{B}_1 \setminus \mathcal{B}_2\}$. Then $\nu(\mathcal{J}_2) = |\mathcal{B}_2|$, and $\tau(\mathcal{J}_1) \leq r(|\mathcal{B}_1| - |\mathcal{B}_2|) + \tau(\mathcal{J}_2)$. We may repeat this argument another r-1 times for colour classes V_2, \ldots, V_r until we reach a hypergraph \mathcal{J}_{r+1} and a matching \mathcal{B}_{r+1} in \mathcal{J}_{r+1} , in which there exists a matching \mathcal{M}_i of *i*-bad edges with $|\mathcal{M}_i| = |\mathcal{B}_{r+1}|$ for each *i*. Each edge of \mathcal{M}_i is in a distinct \mathcal{H}_j , and $\nu(\mathcal{J}_{r+1}) = |\mathcal{B}_{r+1}|$. To prove Theorem 1.2 it will suffice to show that \mathcal{J}_{r+1} has a cover of size at most $(r-\alpha)|\mathcal{B}_{r+1}|$ for some fixed positive α .

We denote by C_j the hypergraph consisting of the r edges of $\bigcup_{i=1}^r \mathcal{M}_i$ in \mathcal{J}_{r+1} that intersect B_j , together with the edge B_j itself. Then $C_j \subset \mathcal{H}_j$.

Lemma 2.3. For each C_j we have $\tau(C_j) \geq 2$, and no cover of C_j of size two consists of vertices from distinct colour classes.

Proof. If on the contrary $\tau(C_j) = 1$ then without loss of generality we may assume that the vertex of B_j of colour 1 covers C_j . But then the \mathcal{M}_2 -edge in C_j is not covered. Thus $\tau(C_j) \geq 2$.

Suppose now that vertices $v \in V_1$ and $w \in V_2$ form a cover of C_j . We may assume without loss of generality that v is in B_j . Then the \mathcal{M}_3 edge in C_j is not covered by v, hence w must not be in B_j . But then the M_2 edge in C_j is not covered by $\{v, w\}$.

Next we would like to restrict to a hypergraph in which $V(\mathcal{H}_j) \cap V(\mathcal{C}_k) \neq \emptyset$ if and only if j = k. To do this we will need to consider a more general setting in which our r-uniform hypergraph is replaced with a hypergraph of rank r.

A sunflower with centre C in a hypergraph is a set S of edges such that $S \cap S' = C$ for all $S \neq S'$ in S. Each edge of S is called a petal. A classical theorem of Erdős and

Rado [3] tells us that every hypergraph of rank r with more than $(t-1)^r r!$ edges contains a sunflower of size t.

Let \mathcal{H} be a hypergraph of rank r. We call a set \mathcal{S} of t edges in \mathcal{H} a giant sunflower if it forms a sunflower and $t \geq r(2r-4)+1$. Note that since t > r, if an intersecting hypergraph \mathcal{H} contains a giant sunflower \mathcal{S} with centre C, then $\mathcal{H}' = \mathcal{H} \setminus \mathcal{S} \cup \{C\}$ is also intersecting. We refer to the hypergraph \mathcal{H}' as the hypergraph obtained by picking the sunflower \mathcal{S} .

We apply the following procedure to each \mathcal{H}_j where $B_j \in \mathcal{B}_{r+1}$. If $\mathcal{H}_j = \mathcal{H}_j^0$ contains a giant sunflower \mathcal{S}_0 , we pick it to obtain \mathcal{H}_j^1 . We repeat this process with the current hypergraph \mathcal{H}_j^k to get \mathcal{H}_j^{k+1} , until for some u we obtain a hypergraph $\mathcal{D}_j = \mathcal{H}_j^u$ that is free of giant sunflowers. Then in particular each \mathcal{D}_j is intersecting. Let $\mathcal{J}' = (\mathcal{J}_{r+1} \setminus \bigcup_j \mathcal{H}_j) \cup \bigcup_j \mathcal{D}_j$. For every edge $A \in \mathcal{H}_j$ there exists a unique edge $\hat{A} \in \mathcal{J}'$ and a sequence of edges $A = A^0, \ldots, A^u = \hat{A}$ with $A^k \in \mathcal{H}_j^k$ such that for $i = 1, \ldots, u$, either $A^i = A^{i-1}$ or A^{i-1} is a petal of \mathcal{S}_{i-1} and A^i is its centre. We extend this definition to every $A \in \mathcal{J}_{r+1}$ by setting $\hat{A} = A$ for each $A \in \mathcal{J}_{r+1}$ that is not in any \mathcal{H}_j .

Note that \mathcal{J}' has rank at most r but may not be r-uniform. Also, we do not know that $\nu(\mathcal{J}') \leq \nu(\mathcal{J}_{r+1})$.

Lemma 2.4. Any cover of \mathcal{J}' is also a cover of \mathcal{J}_{r+1} .

Proof. Every edge A of \mathcal{J}_{r+1} has a subset \hat{A} that is an edge of \mathcal{J}' .

Thus to prove Theorem 1.2 it will suffice to find a cover of \mathcal{J}' of size $(r-\alpha)|\mathcal{B}_{r+1}|$ for some $\alpha > 0$.

Lemma 2.5. Let $\{A'_1, \ldots, A'_s\}$ be a matching of size $s \leq 2r - 3$ in \mathcal{J}' . Then there exists a matching $\{A_1, \ldots, A_s \in \mathcal{J}_{r+1}\}$ such that

- $A'_i \subseteq A_i$ for each i,
- if $A_i' \in \mathcal{D}_j$ then $A_i \in \mathcal{H}_j$.

Proof. If every $A'_i \in \mathcal{J}_{r+1}$ then we set $A_i = A'_i$ for each i. Otherwise, since each \mathcal{D}_j is intersecting, we may assume that $A'_1, \ldots, A'_{c-1} \in \mathcal{J}_{r+1}$, and that there are distinct \mathcal{D}_i for $c \leq i \leq s$ such that $A'_i \in \mathcal{D}_i$. Set $A_i = A'_i$ for each $1 \leq i \leq c-1$.

Let A_i for $c \leq i \leq s$ be such that the following hold.

- $A'_i \subseteq A_i$ for each i,
- $A_i \in \mathcal{H}_i^{k_i}$ for some k_i ,
- A_1, \ldots, A_s are all disjoint,
- $\sum_{i=c}^{s} k_i$ is as small as possible.

Such a choice of A_i exists because A'_c, \ldots, A'_s satisfy the conditions. We claim that $k_i = 0$ for each i, which implies the lemma.

Suppose on the contrary that $A_i \in \mathcal{H}_i^{k_i}$ for some i, where $k_i \geq 1$. Since $\sum_{i=c}^s k_i$ is as small as possible we know that $A_i \notin \mathcal{H}_i^{k_i-1}$, which implies that it is the centre of a giant sunflower \mathcal{S} in $\mathcal{H}_i^{k_i-1}$. Let $A_i^* \in \mathcal{H}_i^{k_i-1}$ be a petal of \mathcal{S} that is disjoint from all of A_1, \ldots, A_{i-1} and all of A_{i+1}, \ldots, A_s . This is possible because the union of these edges has size at most $r(s-1) \leq r(2r-4)$, and \mathcal{S} has at least r(2r-4)+1 petals. But then replacing A_i by A_i^* gives a new family satisfying the conditions, contradicting the fact that $\sum_{i=c}^s k_i$ was as small as possible. Thus $k_i = 0$ for each i, completing the proof. \square

In fact it follows from the proof of Lemma 2.5 that $A'_i = \hat{A}_i$ for each i.

Lemma 2.6. Each \mathcal{D}_j has at most $r^{r+1}(2r-4)^r r!$ vertices.

Proof. In particular there is no sunflower of size r(2r-4)+1 in \mathcal{D}_j , so by the Erdős-Rado theorem \mathcal{D}_j has at most $(r(2r-4))^r r!$ edges, and hence at most $r^{r+1}(2r-4)^r r!$ vertices.

Lemma 2.7. For each $B_j \in \mathcal{B}_{r+1}$ we have $\hat{B}_j = B_j$.

Proof. Suppose the contrary. Then for some k we have that B_j is a petal of a sunflower S_k in \mathcal{H}_j^k . We may assume without loss of generality that the centre C of S_k does not contain a vertex of colour 1. Let M be the \mathcal{M}_1 -edge in C_j . Then $\hat{M} \cap C = \emptyset$, contradicting the fact that \mathcal{D}_j is intersecting.

Lemma 2.7 implies that if an edge $A \in \mathcal{J}'$ intersects exactly one $B_j \in \mathcal{B}_{r+1}$ then $A \in \mathcal{D}_j$.

Lemma 2.8. $V(\mathcal{B}_{r+1})$ is a cover of \mathcal{J}' .

Proof. Suppose on the contrary that an edge $A \in \mathcal{J}'$ is disjoint from $V(\mathcal{B}_{r+1})$. Since each \mathcal{D}_j is intersecting and $B_j \in \mathcal{D}_j$, we know that $A \notin \mathcal{D}_j$ for any j, so $A \in \mathcal{J}_{r+1}$. But then since $V(\mathcal{B}_{r+1})$ is a cover of \mathcal{J}_{r+1} we find a contradiction.

For each j let $\mathcal{C}'_j = \{\hat{A} : A \in \mathcal{C}_j\}$, so $\mathcal{C}'_j \subseteq \mathcal{D}_j$ for each j. To restrict to our hypergraph in which \mathcal{C}'_j shares a vertex with \mathcal{D}_k if and only if j = k, for convenience we define an auxiliary directed graph G as follows. The vertex set of G is \mathcal{B}_{r+1} . We put an arc from B_k to B_j if and only if \mathcal{D}_k and \mathcal{C}'_j share a vertex.

Lemma 2.9. The graph G has an independent set \mathcal{B}'' of vertices that has size at least $|\mathcal{B}_{r+1}|/(2r^{r+3}(2r-4)^rr!+1)$. Thus for any $B_j, B_k \in \mathcal{B}''$, if C_j' shares a vertex with \mathcal{D}_k then j=k.

Proof. Since each \mathcal{M}_i is a matching, no vertex can be in more than r+1 edges of $\bigcup_j \mathcal{C}'_j = \bigcup_j \{B_j\} \cup \{\hat{M} : M \in \mathcal{M}_i \text{ for some } 1 \leq i \leq r\}$. By Lemma 2.6 each \mathcal{D}_k has fewer than $r^{r+1}(2r-4)^r r!$ vertices, and so can share a vertex with at most $r^{r+3}(2r-4)^r r!$ C_j 's. Thus the outdegree of G is at most $r^{r+3}(2r-4)^r r!$, which implies that it has an independent set of size at most $|V(G)|/(2r^{r+3}(2r-4)^r r!+1)$.

Let $\mathcal{J}'' = \{A \in \mathcal{J}' : A \cap B_j = \emptyset \text{ for all } B_j \in \mathcal{B}_{r+1} \setminus \mathcal{B}''\}$. Then \mathcal{B}'' is a matching in \mathcal{J}'' such that $V(\mathcal{B}'')$ covers \mathcal{J}'' , and to prove Theorem 1.2 it suffices to prove that $\tau(\mathcal{J}'') < (r-\alpha)|\mathcal{B}''|$ for some fixed positive α . One important consequence of the definition of \mathcal{B}'' is the fact that if $B_j, B_k \in \mathcal{B}''$ then $V(\mathcal{C}'_i) \cap V(\mathcal{C}'_k) = \emptyset$.

Lemma 2.10. Every edge of \mathcal{J}'' contains a cover of C'_j for some j.

Proof. Suppose not. Then since the C'_j are all vertex-disjoint, some edge A together with an edge A_j in C'_j for each j forms a matching of size $|\mathcal{B}''|+1$ in \mathcal{J}'' . Except for the set I of at most r indices j for which $A \cap V(C'_j) \neq \emptyset$, we may assume $A_j = B_j$. Then Lemma 2.5 applied to A together with $\{A_j : j \in I\}$ gives a matching in \mathcal{J}_{r+1} of size |I|+1, which by our construction of \mathcal{J}'' consists of edges that do not intersect any edge of \mathcal{B}_{r+1} except $\{B_j : j \in I\}$. But then together with $\{B_j : j \notin I\}$ this forms a matching in \mathcal{J}_{r+1} of size $|\mathcal{B}_{r+1}|+1$, a contradiction.

Lemma 2.10 tells us that for every edge $A \in \mathcal{J}''$ there exists j such that A contains a cover of \mathcal{C}'_j . Since every cover of \mathcal{C}'_j is a cover of \mathcal{C}_j , Lemma 2.3 tells us that this cover is of size at least 3. Thus j is unique for r=4 and r=5. Let $\mathcal{C}^*_j=\{A\in\mathcal{J}'':A$ contains a cover of $\mathcal{C}'_j\}$, so since \mathcal{C}'_j is intersecting we have $\mathcal{C}'_j\subseteq\mathcal{C}^*_j$. Then $\mathcal{J}''=\bigcup_j\mathcal{C}^*_j$, where the union is a disjoint union.

Lemma 2.11. Suppose that $A \cap A' = \emptyset$ for $A, A' \in \mathcal{C}_j^*$. Then there exists $k \neq j$ such that $A \cup A'$ contains a cover of \mathcal{C}_k' .

Proof. Suppose the contrary. Let I denote the set of at most 2(r-3)+1 indices such that $(A \cup A') \cap V(\mathcal{C}'_j) \neq \emptyset$. Then A and A' together with an edge of \mathcal{C}'_k for all $k \in I \setminus \{j\}$ forms a matching of size |I|+1, consisting of edges that are disjoint from each B_j with $j \notin I$. Then as in the proof of Lemma 2.10 this leads to a matching in \mathcal{J}_{r+1} that is larger than \mathcal{B}_{r+1} . This contradiction completes the proof.

$3 \quad r = 4$

We have now done essentially all the required work to prove Theorem 1.2 for r=4.

Lemma 3.1. Suppose r = 4. Then each C_i^* is intersecting.

Proof. Suppose on the contrary that $A \cap A' = \emptyset$ where $A, A' \in \mathcal{C}_j^*$. By Lemma 2.3, each of A and A' must have three vertices in $V(\mathcal{C}_j')$. By Lemma 2.11 we know $A \cup A'$ covers \mathcal{C}_k' for some $k \neq j$. Since every cover of \mathcal{C}_k' is a cover of \mathcal{C}_k , and $V(\mathcal{C}_j') \cap V(\mathcal{C}_k') = \emptyset$, we may assume that the vertices of colour 1 in A and A' form a cover of \mathcal{C}_k' . But then one of these vertices is not in B_k , so one of the edges, say A, contains 3 vertices of \mathcal{C}_j' and one vertex of \mathcal{C}_k' that is not in B_k . Thus $A \in \mathcal{H}_j$, which implies $A \in \mathcal{D}_j$. But then A cannot intersect \mathcal{C}_k' by Lemma 2.9.

We close this section with the r = 4 case of Theorem 1.2.

Theorem 3.2. Suppose r = 4. Then there exists $\epsilon > 0$ such that $\tau(\mathcal{J}) \leq (4 - \epsilon)\nu(\mathcal{J})$.

Proof. Since $\mathcal{J}'' = \bigcup_j \mathcal{C}_j^*$, by Lemma 3.1 we may apply Theorem 1.1 to conclude that each \mathcal{C}_j^* has a cover of size 3. Therefore $\tau(\mathcal{J}'') \leq 3|\mathcal{B}''|$, completing the proof.

4
$$r = 5$$

Our approach for the case r = 5 will be to start with the hypergraph \mathcal{J}'' and the matching \mathcal{B}'' as defined in Section 2, and restrict once more to a portion of \mathcal{J}'' in which all the hypergraphs \mathcal{C}_i^* are intersecting.

We begin by fixing $B_j \in \mathcal{B}''$, and considering how the edges in \mathcal{C}_j^* can intersect other sets \mathcal{C}_k' . In particular, we will need some technical information on pairs of disjoint edges in \mathcal{C}_i^* . We will make use of the following classical theorem of Bollobás [2].

Theorem 4.1. (Bollobás [2]) Suppose sets F_1, \ldots, F_m and F'_1, \ldots, F'_m satisfy $F_i \cap F'_h = \emptyset$ if and only if i = h. Then

$$\sum_{i=1}^{m} \binom{|F_i| + |F_i'|}{|F_i|}^{-1} \le 1.$$

We say that a set of vertices is *multicoloured* if no two of its elements come from the same partition class V_i . For $B_j \in \mathcal{B}''$, suppose (S, S') is a pair of disjoint multicoloured covers of \mathcal{C}'_j . Since every cover of \mathcal{C}'_j is a cover of \mathcal{C}_j , by Lemma 2.3 we know each of S and S' has size at least three. Let

$$\mathcal{A}(S,S') = \{(A,A'): A,A' \in \mathcal{C}_i^*, A \cap A' = \emptyset, A \cap V(\mathcal{C}_i') = S, A' \cap V(\mathcal{C}_i') = S'\}.$$

Our key lemma in this section is the following.

Lemma 4.2. Let $B_j \in \mathcal{B}''$, and suppose (S, S') is a fixed pair of disjoint multicoloured covers of C'_j . Let

$$U = \{B_k \in \mathcal{B}'' \setminus \{B_j\} : A \cup A' \ covers \ \mathcal{C}'_k \ for \ some \ (A, A') \in \mathcal{A}(S, S')\}.$$

Then there exist $B, B' \in \mathcal{B}'' \setminus \{B_j\}$ such that for all but at most 42 elements $B_k \in U$, if $A \cup A'$ covers \mathcal{C}'_k where $(A, A') \in \mathcal{A}(S, S')$ then $(A \cup A') \cap (B \cup B') \neq \emptyset$.

Proof. Note that since $|S|, |S'| \ge 3$, for any $(A, A') \in \mathcal{A}(S, S')$ we know that each of A and A' has at most two vertices outside $V(\mathcal{C}'_i)$.

Let U_0 be the set of B_k in U for which there is some $(A, A') \in \mathcal{A}(S, S')$ with $A \cup A'$ covering \mathcal{C}'_k , such that $A \cup A'$ has at least 3 vertices in \mathcal{C}'_k . Let $U_1 = U \setminus U_0$.

Suppose that $|U_0| \geq 3$. For each $B_k \in U_0$ pick $(A_k, A'_k) \in \mathcal{A}(S, S')$ with $|(A_k \cup A'_k) \cap V(\mathcal{C}'_k)| \geq 3$. Then one of A_k , A'_k must have 2 vertices in \mathcal{C}'_k and the other must have at least 1. Without loss of generality, we may assume that there are at least two sets A_k , say A_1, A_2 , such that A_k has 2 vertices in \mathcal{C}'_k . In particular, for $i = 1, 2, A_i$ is contained in $S \cup V(\mathcal{C}'_i)$. Now consider A'_3 : if it has no vertex in \mathcal{C}'_i then A'_3 and A_i are disjoint and

contradict Lemma 2.11. On the other hand, A'_3 has at most one vertex outside $B_j \cup V(C'_3)$. So we must have $|U_0| \leq 2$.

Now we consider U_1 . For each $B_k \in U_1$ and $(A_k, A'_k) \in \mathcal{A}(S, S')$ that covers \mathcal{C}'_k , by Lemma 2.3 we know that the vertices y_k and y'_k are of the same colour, where $A_k \cap V(\mathcal{C}'_k) = \{y_k\}$ and $A'_k \cap V(\mathcal{C}'_k) = \{y'_k\}$.

Case 1. Suppose that there exist $B_k \in U_1$ and associated (A_k, A'_k) such that for some $B_l \in \mathcal{B}'' \setminus \{B_j, B_k\}$, the vertices x_k and x'_k exist and are both in \mathcal{C}'_l , where $\{x_k\} = A_k \setminus (V(\mathcal{C}'_k) \cup V(\mathcal{C}'_j))$ and $\{x'_k\} = A'_k \setminus (V(\mathcal{C}'_k) \cup V(\mathcal{C}'_j))$. We claim that $B = B_k$ and $B' = B_l$ satisfy the lemma in this case. To verify this, we first observe that by Lemma 2.3, one of A_k and A'_k (say A_k) does not contain a vertex of B_k . If $x_k \in A_k$ is not a vertex of B_l , then since its other three vertices are in \mathcal{C}'_j , and the \mathcal{C}'_h are all vertex-disjoint, we find $A_k \in \mathcal{D}_j$. But this contradicts Lemma 2.9. Therefore $x_k \in A_k \cap B_l$, so $\{x_k, x'_k\} \cap B_l \neq \emptyset$. We know $\{y_k, y'_k\} \cap B_k \neq \emptyset$ since $\{y_k, y'_k\}$ covers \mathcal{C}'_k . Then to prove our claim we show that for every $B_t \in U_1$ and every associated (A_t, A'_t) , if the colour of $\{y_t, y'_t\}$ is the same as the colour of $\{y_k, y'_k\}$ then $\{x_k, x'_k\} \subset A_t \cup A'_t$, and if the colour of $\{y_t, y'_t\}$ is not the same as the colour of $\{y_k, y'_k\}$ then either $\{y_k, y'_k\} \subset A_t \cup A'_t$ or $\{x_k, x'_k\} \cap B_l \subset A_t \cup A'_t$.

Let $B_t \neq B_k$ in U_1 be given, and first assume that the colour of $\{y_t, y_t'\}$ (say 2) is the same as the colour of $\{y_k, y_k'\}$. Then A_k and A_t' are both in \mathcal{C}_j^* . If they are not disjoint then A_t' must contain x_k . Suppose they are disjoint. Then by Lemma 2.11 the vertex x_t' where $A_t' = S' \cup \{y_t'\} \cup \{x_t'\}$ must exist and $\{x_k, x_t'\}$ must cover \mathcal{C}_l' , and hence x_k and x_t' are the same colour (say 1). (Note that $\{y_k, x_t'\}$ cannot cover \mathcal{C}_k' because they are different colours, contradicting Lemma 2.3.) But then since $A_k' = S' \cup \{y_k'\} \cup \{x_k'\}$ and y_k' has colour 2, we see that x_k' has colour 1. Therefore $x_k' = x_t'$, since otherwise there is an edge of \mathcal{C}_l' containing $x_k' \in \mathcal{V}(\mathcal{C}_l')$ that is not covered by $\{x_k, x_t'\}$. Thus $x_k' \in A_t'$. Now the same argument applies to the pair A_k' and A_t . Therefore since $A_t \cap A_t' = \emptyset$ we find that $\{x_k, x_k'\} \subset A_t \cup A_t'$.

If the colour of $\{y_t, y_t'\}$ (say 2) is not the same as the colour of $\{y_k, y_k'\}$ (say 1) then both elements of $\{x_k, x_k'\}$ also have colour 2. If $\mathcal{C}_t' \neq \mathcal{C}_t'$ then consider A_k and A_t' . If they are disjoint then, since $A_k \cap V(\mathcal{C}_t') = \emptyset$, by Lemma 2.11 they must cover \mathcal{C}_k' . Thus $y_k' \in A_t'$. If they are not disjoint then $y_k \in A_t'$. The same argument applies to A_k' and A_t , then since $A_t \cap A_t' = \emptyset$ we conclude $\{y_k, y_k'\} \subset A_t \cup A_t'$. If $\mathcal{C}_t' = \mathcal{C}_t'$, recall that one of x_k and x_k' is the vertex of colour 2 in B_l . But then since $\{y_t, y_t'\}$ covers \mathcal{C}_l' it must contain the vertex of colour 2 in B_l . Therefore $\{x_k, x_k'\} \cap B_l \subset \{y_t, y_t'\} \subset A_t \cup A_t'$. This finishes the proof for Case 1.

Case 2. Suppose that for each $B_k \in U_1$ and associated (A_k, A'_k) , the vertices x_k and x'_k (if they exist) do not lie in a common \mathcal{C}'_l . To finish the proof we will show that $|U_1| \leq 40$. Suppose not, then there is a subset U_2 of U_1 of size at least 21 in which all $\{y_k, y'_k\}$ are the same colour. For each x_k that exists and lies in a cover of size two of the \mathcal{C}'_l it is in, set z_k to be the other vertex of the cover. Note that z_k is unique by Lemma 2.3. Define z'_k similarly for each x'_k . Define $F_k = (A_k \setminus S) \cup \{z_k\}$ and $F'_k = (A'_k \setminus S') \cup \{z'_k\}$ for each k (if z_k or z'_k do not exist then simply set $F_k = (A_k \setminus S)$, $F'_k = (A'_k \setminus S')$). We claim that these pairs of sets satisfy the conditions for Theorem 4.1. Since x_k and x'_k do not lie in a common B_l , we have that $F_k \cap F'_k = \emptyset$ for each k. Suppose that $F_k \cap F'_l = \emptyset$. Then

 A_k and A'_l are disjoint edges in \mathcal{C}'_j that do not cover any \mathcal{C}'_t , contradicting Lemma 2.11. Therefore by Theorem 4.1 we find that $|U_2| \leq {6 \choose 3} = 20$. This contradiction completes the proof.

We define an auxiliary directed graph G on the vertex set \mathcal{B}'' as follows. Consider a vertex B_j and a pair (S, S') of disjoint multicoloured covers of \mathcal{C}'_j of size at least three (and at most four), and let U be the set defined in Lemma 4.2 for this choice of B_j and (S, S'). If $|U| \leq 42$ then we put an arc (B_j, B_k) for each $B_k \in U$. If $|U| \geq 43$ then, for B, B' guaranteed by Lemma 4.2, we put arcs (B_j, B) and (B_j, B') , and an arc (B_j, B_k) for each $B_k \in U$ that fails to satisfy the conclusion of Lemma 4.2. We do this for each B_j and each pair (S, S') of disjoint multicoloured covers of \mathcal{C}'_j .

Lemma 4.3. The directed graph G has outdegree less than $44(5)^{16}$, and hence has an independent set \mathcal{B}^{\dagger} of size at least $|\mathcal{B}''|/100(5)^{16}$.

Proof. Since $|V(C_j')| \leq |V(C_j)| < r^2$, the number of distinct choices of (S, S') in C_j' is less than $(|V(C_j')|^4)^2 < {r^2 \choose 4}^2 < r^{16} = 5^{16}$. Thus the outdegree of G is less than $49(5)^{16}$. Therefore G has an independent set of size at least $|V(G)|/(98(5)^{16}+1) < |\mathcal{B''}|/100(5)^{16}$.

Let $\mathcal{J}^{\dagger} = \{A \in \mathcal{J}'' : A \cap B_j = \emptyset \text{ for all } B_j \in \mathcal{B}'' \setminus \mathcal{B}^{\dagger} \}$. Then \mathcal{B}^{\dagger} is a matching in \mathcal{J}^{\dagger} such that $V(\mathcal{B}^{\dagger})$ covers \mathcal{J}^{\dagger} , and to prove Theorem 1.2 for r = 5 it suffices to prove that $\tau(\mathcal{J}^{\dagger}) < (r - \alpha)|\mathcal{B}^{\dagger}|$ for some fixed positive α .

Lemma 4.4. Each $C_i^* \cap \mathcal{J}^{\dagger}$ is intersecting.

Proof. Suppose on the contrary that A and $A' \in \mathcal{C}_j^*$ are edges of \mathcal{J}^{\dagger} that do not intersect. We know by Lemma 2.11 that $A \cup A'$ covers some \mathcal{C}_k' , $k \neq j$. Since then $(A \cup A') \cap V(\mathcal{C}_k') \neq \emptyset$, it must be true that $B_k \in \mathcal{B}^{\dagger}$. Let $S = A \cap V(\mathcal{C}_j')$ and $S' = A' \cap V(\mathcal{C}_j')$. Since $B_j, B_k \in \mathcal{B}^{\dagger}$, there cannot be an arc (B_j, B_k) in G. The construction of G implies then that for this choice of B_j and (S, S'), the set U satisfies $|U| \geq 47$ and that B and B' exist satisfying the conclusion of Lemma 4.2. Since \mathcal{B}^{\dagger} is an independent set in G and $B_j \in \mathcal{B}^{\dagger}$ we know that $B, B' \notin \mathcal{B}^{\dagger}$. But then by Lemma 4.2 one of A and A' intersects B or B', and hence it is not an edge of \mathcal{J}^{\dagger} by definition. This contradiction completes the proof.

The r = 5 case of Theorem 1.2 follows.

Theorem 4.5. Suppose r = 5. Then there exists a fixed $\epsilon > 0$ such that $\tau(\mathcal{H}) \leq (5 - \epsilon)\nu(\mathcal{H})$.

Proof. Since $\mathcal{J}^{\dagger} = \bigcup_{j} \mathcal{C}_{j}^{*} \cap \mathcal{J}^{\dagger}$, by Theorem 1.1 we conclude that each $\mathcal{C}_{j}^{*} \cap \mathcal{J}^{\dagger}$ has a cover of size 4. Therefore $\tau(\mathcal{J}^{\dagger}) \leq 4|\mathcal{B}^{\dagger}|$, completing the proof.

We end with the remark that for each of r=4 and r=5, an explicit lower bound for ϵ could be computed by following the steps of our proof. However, as this value is probably very far from the truth we make no attempt to do this here.

References

- [1] R. Aharoni, Ryser's Conjecture for tripartite 3-graphs, Combinatorica 21 (2001), 1–4.
- [2] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16, (1965) 447–452.
- [3] P. Erdős and R. Rado, Intersection theorems for systems of sets, *J. London Math. Soc.* 35 (1960), 85–90.
- [4] Z. Füredi, Matchings and covers in hypergraphs, Graphs Comb. 4 (1988), 115–206.
- [5] P. Haxell, A note on a conjecture of Ryser, Period. Math. Hungar. 30 (1995), 73–79.
- [6] L. Lovász, A kombinatorika minimax tételeiről (On minimax theorems in combinatorics), *Matematikai Lapok* 26 (1975), 209–264.
- [7] T. Mansour, C. Song, and R. Yuster, A comment on Ryser's conjecture for intersecting hypergraphs, *Graphs Comb.* 25 (2009), 101–109.
- [8] E. Szemerédi and Zs. Tuza, Upper bound for transversals of tripartite hypergraphs, *Periodica Math. Hung.* 13 (1982), 321–323.
- [9] Zs. Tuza, Ryser's conjecture on transversals of r-partite hypergraphs, Ars Combinatoria 16(B) (1983), 201–209.
- [10] Zs. Tuza, On the order of vertex sets meeting all edges of a 3-partite hypergraph, Ars Combinatoria 24(A) 59–63, 1987.