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Abstract

Consider a random instance I of k-SAT with n variables and m clauses. Suppose
that θ, c > 0 are any fixed real numbers. Let k = k(n) ≥

(
1
2 + θ

)
log2 n. We prove

that

lim
n→∞

Pr(I is satifiable) =

{
1 m ≤

(
1− c√

n

)
2kn ln 2

0 m ≥
(
1 + c√

n

)
2kn ln 2.

Keywords: k-SAT, phase transition, the second moment method.

1 Introduction

Let Ck(V ) be the set of all possible 2knk k-clauses on V , where a k-clause is a disjunction
of k boolean variables or their negations and V is a set of n boolean variables. A random
instance I of k-SAT is formed by selecting uniformly, independently and with replacement
m clauses from Ck(V ) and taking their conjunction [1, 3].

A. Frieze and N.C. Wormald [3] proved the following result.
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Theorem A. Suppose k − log n→∞. Let m0 = − n ln 2
ln(1−2−k) and let εn > 0 be such that

nεn →∞. Then

lim
n→∞

Pr(I is satisfiable) =

{
1 m ≤ (1− εn)m0

0 m ≥ (1 + εn)m0.

Not long afterwards, A. Coja-Oghlan and A. Frieze [2] proved the following result.

Theorem B. Suppose k − log n→∞ but k − log n = o(lnn). Let m = 2k(n ln 2 + c) for
an absolute constant c. Then

lim
n→∞

Pr(I is satisfiable) = 1− e−e−c .

For a lot of random Constraint Satisfaction Problem (CSP for short) models, the
second moment method is harnessed to estimate the desired lower bounds on the satisfia-
bility threshold. Ultimately, we often need to bound sums which have common structure
of
∑n

ω=0

(
n
ω

)
p(n)ω(1−p(n))n−ωZ(ω, n)m. Take the random CSP model proposed in [3] for

example, specifically, the sum is (4). Let

G(τ) = 2−n
(
n

ω

)
g(τ)m, (1)

and the global maximum is Gmax = G(τmax).
In [3], Frieze and Wormald estimated (4) by locating the global maximum Gmax =

G(τmax), and then estimating the contribution of the terms close to τmax by Gmax.
In this paper, by using the properties of the Gamma Function Γ and the inequality

[4] 1
2(ω+1)

<
∑ω

i=1
1
i
− γ − lnω < 1

2ω
(where γ is Euler-Mascheroni Constant), we can

analyze the monotonicity of G very close to τmax. Thus, we can divide the infinitely small
neighbourhood of τmax into several smaller intervals, then estimate the contribution of
each interval, respectively, by using the monotonicity of G.

Theorem 1. Suppose that θ, c > 0 are any fixed real numbers. Let k ≥ (1
2
+ θ) log n

and let m0 = − n ln 2
ln(1−2−k) . Then

lim
n→∞

Pr(I is satisfiable) =

{
1 m ≤

(
1− c√

n

)
m0

0 m ≥
(
1 + c√

n

)
m0.

In this note log x means log2 x, and lnx means the natural logarithm.

2 Proof of Theorem 1

Let X = X(I) be the number of satisfying assignments for I and let τ = ω
n

. Then [3]

E[X] = 2n(1− 2−k)m, (2)

E[X2] = 2n
n∑

ω=0

(
n

ω

)(
1− 21−k + 2−kτ k

)m
. (3)
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Simple calculation yields

E[X2]

E[X]2
= 2−n

n∑
ω=0

(
n

ω

)
g(τ)m, (4)

where g(τ) = 1 + 1
2k

(
τ k − 1

2k

)(
1− 1

2k

)−2
.

The upper bound: By simple calculation

E[X] = 2n(1− 2−k)m ≤ 2n(1− 2−k)
−(1+ c√

n
) n ln 2

ln(1−2−k) = 2−c
√
n,

by the Markov Inequality Pr(I is satisfiable) ≤ E(X), limn→∞ Pr(I is satisfiable) = 0
when m ≥ (1 + c√

n
)m0.

The lower bound: Since θ > 0 is an arbitrarily small constant, we require that θ < 1
4

in the following of this paper.
Let t =

(
1
2

+ θ
)

log n, which is the smallest clause length permitted. Let m1 =(
1− c√

n

)
2tn ln 2. Define a partition of the interval [0, 1]: τ1 =

(
1 + 1

nζ

)
/2, where ζ = 1−θ

2
;

τ2 = 1− ln t
t

; τ3 = 1− α
t
, where α ∈

(
0, ln(1+2θ)

)
is a constant; τ4 = 1− 1√

n
; τ5 = 1− 1

n1/2+2θ

and τ6 = 1− 1
n
.

We require that m ≤
(
1 − c√

n

)
m0 in the following of this paper unless otherwise

specified.

2.1. A rough estimate. First we will give a rough upper bound for the sum in (4),
which is easier to analyse.

Lemma 1. Let Φ(ω) = 2−n
(
n
ω

)
f(τ)m1 , where f(τ) = 1 + 1

2t

[
(1 + 2

2t
)τ t − 1

2t

]
. Then

E[X2]
E[X]2

≤ 1
2

+
(
1 + o(1)

)∑n
ω=n/2 Φ(ω).

To prove Lemma 1, first we will give the following two claims. Claim 1 is used to
prove Claim 2, and Claim 2 is used to prove Lemma 1.

Claim 1. For any positive real number x, (1 + x) ln(1 + x) < x+ x2/2.

Claim 2. Let ϕr(x) = x−1 ln(1+x1+r +2x2+r−x2). Then there exists a constant ε (i.e.,
independent of r), such that for any r ∈ [0, 1], ϕ

′
r(x) > 0, x ∈ (0, ε).

Proof. For any r ∈ [0, 1], define ur and vr on (0,+∞) as

ur(x) = xr−1 + 2xr − 1,

vr(x) = rxr−1 + 2(1 + r)xr − 1. (5)

With Claim 1 in mind, and note that ur > 0, then

(1 + x2ur) ln(1 + x2ur) < x2ur + x4u2r/2. (6)
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Simple calculation yields

ϕ
′

r =
ur + vr

1 + x2ur
− ln(1 + x2ur)

x2
. (7)

By (6) and (7),

ϕ
′

r >
vr − x2u2r/2

1 + x2ur
. (8)

For any x > 0, define ux(r) = ur(x) and vx(r) = vr(x) on [0, 1]. Then

ux
′
= (1 + 2x)xr−1 lnx,

vx
′
=
[
1 + 2x(1 + ln x) + r(1 + 2x) lnx

]
xr−1. (9)

Note that limx→0+ x(1 + lnx) = 0, there exists a constant ε ∈
(
0, 1

4

)
(i.e., independent

of r) such that vx
′
(0) > 0, x ∈ (0, ε). ux

′
< 0, x ∈ (0, ε). Then for any x ∈ (0, ε)

(i) For any r ∈
[
0, 1

2

]
,

ur(x) = ux(r) ≤ ux(0) = 1 +
1

x
,

vr(x) = vx(r) ≥ min
{
vx(0), vx

(1

2

)}
= 1. (10)

Note that x < ε < 1
4
, by (8) and (10),

ϕ
′

r >
1− x2

(
1 + 1

x

)2
/2

1 + x2ur
=

1− (1 + x)2/2

1 + x2ur
>

1−
(
1 + 1

4

)2
/2

1 + x2ur
> 0. (11)

(ii) Keep x < 1
4

in mind, then for any r ∈
(
1
2
, 1
]
,

ur(x) = ux(r) ≤ ux

(1

2

)
=

1√
x

+ 2
√
x− 1 <

1√
x
,

vr(x) = vx(r) ≥ min
{
vx

(1

2

)
, vx(1)

}
= 4x. (12)

By (8) and (12),

ϕ
′

r >
4x− x2

(
1√
x

)2
/2

1 + x2ur
> 0. (13)

2.2. Proof of Lemma 1. For any ω ≤ n/2, g(τ) ≤ 1. By (4),

E[X2]

E[X]2
− 1

2
≤ 2−n

n∑
ω=n/2

(
n

ω

)
g(τ)m. (14)
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Keep Claim 2 in mind, and note that m ≤
(
1− c√

n

)
m0 <

(
1− c√

n

)
2kn ln 2, then

E[X2]

E[X]2
− 1

2
≤ 2−n

n∑
ω=n/2

(
n

ω

)
g(τ)

(
1− c√

n

)
2kn ln 2

,

where

g(τ)

(
1− c√

n

)
2kn ln 2

=
[
1 +

1

2k

(
τ k − 1

2k

)(
1 +

2

2k
+O

( 1

22k

))](1− c√
n

)
2kn ln 2

=
{

1 +
1

2k

[(
1 +

2

2k

)
τ k − 1

2k

]
+ o
( 1

2kn

)}(
1− c√

n

)
2kn ln 2

=
(
1 + o(1)

){
1 +

1

2k

[(
1 +

2

2k

)
τ k − 1

2k

]}(
1− c√

n

)
2kn ln 2

=
(
1 + o(1)

)
exp

{(
1− c√

n

)[
ϕ− log τ

( 1

2k

)]
n ln 2

}
≤
(
1 + o(1)

)
exp

{(
1− c√

n

)[
ϕ− log τ

( 1

2t

)]
n ln 2

}
=
(
1 + o(1)

)
f(τ)m1 ,

where o(1) is independent of τ (i.e., independent of ω). Then

E[X2]

E[X]2
− 1

2
≤
(
1 + o(1)

) n∑
ω=n/2

Φ(ω).

2.3. The monotonicity of Φ. Generally, the general term of the sum in (4), G(τ), as
defined in (1), has two local maxima, one approaches 1

2
, and the other approaches 1 (see

[3]). We can regard 1
2

and 1 as singularities of G, since the proportion of each term and
monotonicity of terms close to the two points change suddenly, also the sum in (4) is
mostly contributed by o(n) terms very close to the two points.

In this section, by studying the monotonicity of G, we show some asymptotic structure
of the function close to its singularities, and thus yields Theorem 1.

Lemma 2. Define Φc on [0, n] as

Φc(x) = 2−n
Γ(n+ 1)

Γ(x+ 1)Γ(n− x+ 1)
f
(x
n

)m1

, (15)

where Γ is Gamma Function. Then Φc(ω) = Φ(ω), ω = 1, 2, . . . , n and

Φ
′

c < 0, x ∈ (nτ1, nτ2);

Φ
′

c > 0, x ∈ (nτ3, nτ4);

Φ
′

c < 0, x ∈ (nτ5, nτ6). (16)
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Proof. Taking the logarithm of both sides of (15), and differentiating,

[ln Φc]
′
= −[ln Γ(x+ 1)]

′ − [ln Γ(n− x+ 1)]
′
+m1

[
ln f
(x
n

)]′
. (17)

We can rewrite (17) as

Φ
′
c

Φc

= A(x) +B(x), (18)

where

A(x) = −Γ
′
(x+ 1)

Γ(x+ 1)
+

Γ
′
(n− x+ 1)

Γ(n− x+ 1)
,

B(x) = m1

[
ln f
(x
n

)]′
.

For any real positive number x,

−Γ
′
(x)

Γ(x)
=

1

x
+ γ +

∞∑
i=1

( 1

i+ x
− 1

i

)
, (19)

where γ is Euler-Mascheroni Constant.
If x is an Integer ω = 0, 1, 2, . . ., then

−Γ
′
(ω + 1)

Γ(ω + 1)
= γ −

ω∑
i=1

1

i
, (20)

where [4]

− lnω − 1

2ω
< γ −

ω∑
i=1

1

i
< − lnω − 1

2(ω + 1)
. (21)

By (20) and (21),

ln
(1

τ
− 1
)

+R(ω) < A(ω) < ln
(1

τ
− 1
)

+R(ω + 1), (22)

where R(ω) = 1
2

(
1

n−ω+1
− 1

ω

)
, ω = 1, 2, · · · , n.

Simple calculation yields

B(x) =
(

ln 2 + o(1)
)
t
(x
n

)t−1
. (23)

Choose a constant ξ such that ζ < −
(
1
2

+ θ
)

log ξ < 1, then ξ ∈
(
1
2
, 1
)
. Define

τ−2 = 1− 2 ln t
t

.
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By (19), A(x) is decreasing in (0,∞), hence we can handle nτ1, nξ, nτ
−
2 , nτ2, nτ3, nτ4,

nτ5, nτ6 as integers in the following. Note that R(ω) < R(ω + 1), ω = 1, 2, . . . , n.
(i) If x ∈ (nτ1, nτ2), then
(a) If x ∈ (nτ1, nξ), by (22)

A(x) ≤ A(nτ1) ≤ ln
( 1

τ1
− 1
)

+R(nτ1 + 1) ≤ ln
( 1

τ1
− 1
)

+R(nξ + 1)

= ln
(1− n−ζ

1 + n−ζ

)
+O

( 1

n

)
≤ − 1

nζ
+O

( 1

n

)
= − 1

nζ
+ o(

1

nζ
),

B(x) ≤
(

ln 2 + o(1)
)
tξt =

(
ln 2 + o(1)

)
tn( 1

2
+θ) log ξ = o

( 1

nζ

)
. (24)

Then Φ
′
c < 0 by (18) and (24).

(b) If x ∈ [nξ, nτ−2 ], by (22)

A(x) ≤ A(nξ) ≤ ln
(1

ξ
− 1
)

+R(nξ + 1) = ln
(1

ξ
− 1
)

+ o(1),

B(x) ≤
(

ln 2 + o(1)
)
t(τ−2 )t =

(
ln 2 + o(1)

)
t
(

1− 2 ln t

t

)t
=
(

ln 2 + o(1)
)
t exp

{
t ln
(

1− 2 ln t

t

)}
≤
(

ln 2 + o(1)
)
t exp

{
− 2 ln t

}
=
(

ln 2 + o(1)
)1

t
= o(1). (25)

Note that ξ ∈
(
1
2
, 1
)
, then ln

(
1
ξ
− 1
)
< 0. Then Φ

′
c < 0 by (18) and (25).

(c) If x ∈ (nτ−2 , nτ2), by (22)

A(x) ≤ A(nτ−2 ) ≤ ln
( 1

τ−2
− 1
)

+R(nτ−2 + 1)

≤ ln
( 2 ln t

t

1− 2 ln t
t

)
+R(n) = −

(
1 + o(1)

)
ln t,

B(x) ≤
(

ln 2 + o(1)
)
tτ t2 =

(
ln 2 + o(1)

)
t
(

1− ln t

t

)t
=
(

ln 2 + o(1)
)
t exp

{
t ln
(

1− ln t

t

)}
≤
(

ln 2 + o(1)
)
t exp

{
− ln t

}
= ln 2 + o(1). (26)

Then Φ
′
c < 0 by (18) and (26). Φ

′
c < 0, x ∈ (nτ1, nτ2) follows from (a), (b) and (c).

(ii) If x ∈ (nτ3, nτ4), by (22)

A(x) ≥ A(nτ4) ≥ ln
( 1

τ4
− 1
)
≥ − lnn

2
,

B(x) ≥
(

ln 2 + o(1)
)
tτ t3 =

[(1

2
+ θ
)
e−α + o(1)

]
lnn. (27)
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Note that α < ln(1 + 2θ), hence (1
2

+ θ)e−α − 1
2
> 0, then Φ

′
c > 0 follows from (18)

and (27).
(iii) If x ∈ (nτ5, nτ6), by (22)

A(x) ≤ A(nτ5) ≤ ln
( 1

τ5
− 1
)

+R(n) = −
(1

2
+ 2θ + o(1)

)
lnn,

B(x) ≤
(

ln 2 + o(1)
)
t =

(1

2
+ θ + o(1)

)
lnn. (28)

Hence Φ
′
c < 0 by (18) and (28).

In order to simplify the proof of the following several Lemmas, we introduce the
following three claims.

Claim 3.
(
n
ω

)
= o(Ψ(τ)n) provided that nτ(1 − τ) → ∞ as n → ∞, where Ψ(τ) =

1/(τ τ (1− τ)1−τ ).

Proof. By using Stirling’s formula, and note that nτ(1−τ)→∞ is equivalent to nτ →∞
and n(1− τ)→∞, then(

n

nτ

)
=
(
1 + o(1)

) 1√
2πnτ(1− τ)

nn

(nτ)nτ (n− nτ)n−nτ
= o(Ψ(τ)n). (29)

Claim 4. f(τ1)
m1 = 1 + o(1).

Proof. Note that 1
23t

= o( 1
m1

) and ln(1 + x) < x, x ∈ (0,+∞), then

f(τ1) = 1 +
1

2t

[(
1 +

2

2t

)
τ t1 −

1

2t

]
= 1 +

1

22t

[
exp

{
t ln
(

1 +
1

nζ

)}
− 1
]

+
2

23t

(
1 +

1

nζ

)t
≤ 1 +

1

22t

[
exp

{ t

nζ

}
− 1
]

+ o(
1

m1

)

= 1 +O
( t

22tnζ

)
+ o
( 1

m1

)
= 1 +O

( t

2tn1+θ/2

)
+ o
( 1

m1

)
= 1 + o

( 1

m1

)
. (30)

Note that f(τ1) > 1, by (30), f(τ1)
m1 = 1 + o(1).

Claim 4 solves the crucial puzzle of estimating the sum in (4) close to 1
2

successfully.
As the claim shows, τ1 is a turning point, by it, we divide the neighborhood of 1

2
into two

parts, and then estimate the two parts separately (see Claim 5, Lemmas 3 and 6).
If k ≤ 1

2
log n (k → ∞ as n → ∞), then the sum in (4) diverges and the second

moment method failed to obtain nontrivial result. The reasons are as follows:
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Arbitrarily fix two positive numbers h2 > h1. Let τ = 1
2

+ h
2
√
n
, h ∈ (h1, h2). Then

g(τ) = 1 +
1

2k

(
τ k − 1

2k

)(
1− 1

2k

)−2
≥ 1 +

1

4k

((
1 +

h√
n

)k
− 1

)
= 1 +

1

4k

(
exp

{
k ln

(
1 +

h√
n

)}
− 1

)
≥ 1 +

1

4k

(
exp

{ hk

2
√
n

}
− 1

)
≥ 1 +

hk

2

1

4k
√
n
≥ 1 +

h1k

2

1

2kn
. (31)

Hence g(τ)m diverges in the interval
(
1
2

+ h1
2
√
n
, 1
2

+ h2
2
√
n

)
uniformly as n→∞. On the

other hand, by the de Moivre-Laplace theorem

lim
n→∞

2−n
n( 1

2
+

h2
2
√
n
)∑

ω=n( 1
2
+

h1
2
√
n
)

(
n

ω

)
=

1√
2π

∫ h2

h1

e−
x2

2 dx. (32)

Hence the sum in (4) diverges.

Claim 5. Φ(nτ1) = o
(
1
n

)
.

Proof. Note that 3ζ > 1 follows from θ < 1
4
, then

ln
[
2−nΨ(τ1)

n
]

= −n
2

[(
1 +

1

nζ

)
ln
(

1 +
1

nζ

)
+
(

1− 1

nζ

)
ln
(

1− 1

nζ

)]
= −n

2

[(
1 +

1

nζ

)( 1

nζ
− 1

2n2ζ

)
+
(

1− 1

nζ

)(
− 1

nζ
− 1

2n2ζ

)]
+ o(1)

= −n
θ

2
+ o(1).

By Claims 3 and 4, Φ(nτ1) = o
(
2−nΨ(τ1)

n
)

= o
(

exp
{
− nθ

2

})
= o
(
1
n

)
.

Lemma 3.
∑nτ2

ω=nτ1
Φ(ω) = o(1).

Proof. By Lemma 2 and Claim 5,

nτ2∑
ω=nτ1

Φ(ω) ≤
nτ2∑

ω=nτ1

Φ(nτ1) ≤ nΦ(nτ1) = o(1).

Lemma 4.
∑nτ4

ω=nτ3
Φ(ω) = o(1).
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Proof. Note that ln Ψ(τ4) =
(
1
2

+ o(1)
)

lnn√
n

, then

Ψ(τ4)
n = 2( 1

2
+o(1))

√
n logn. (33)

τ t4 = exp
{
t ln
(
1− 1√

n

)}
≤ exp

{
− t√

n

}
= 1− t√

n
+ o
(

1√
n

)
, then

f(τ4) ≤ 1 +
1

2t

[(
1 +

2

2t

)(
1− t√

n
+ o
( 1√

n

))
− 1

2t

]
= 1 +

1

2t

(
1− t√

n
+ o
( 1√

n

))
. (34)

Then

f(τ4)
m1 ≤

[
1 +

1

2t

(
1− t√

n
+ o
( 1√

n

))]m1

= exp
{
m1 ln

[
1 +

1

2t

(
1− t√

n
+ o
( 1√

n

))]}
≤ exp

{m1

2t

(
1− t√

n
+ o
( 1√

n

))}
= exp

{(
1− t√

n
− c√

n
+ o
( 1√

n

))
n ln 2

}
≤ exp

{(
1− t√

n

)
n ln 2

}
= 2n−t

√
n. (35)

By Lemma 2 and Claim 3, (33) and (35),

nτ4∑
ω=nτ3

Φ(ω) ≤ nΦ(nτ4) ≤ n2−nΨ(τ4)
nf(τ4)

m1 ≤ n2−(θ+o(1))
√
n logn = o(1).

Lemma 5.
∑n−1

ω=nτ5
Φ(ω) = o(1).

Proof. Note that Φ(nτ5) = o( 1
n
) (see (47)), by Lemma 2

n−1∑
ω=nτ5

Φ(ω) ≤
n−1∑
ω=nτ5

Φ(nτ5) ≤ nΦ(nτ5) = o(1). (36)

2.4. Bounds of the sum in (4) in other intervals. To bound the sum in (4), except for
the two infinitely small neighbourhoods of 1

2
and 1, traditional methods, such as Stirling’s

formula, the monotonicity of
(
n
ω

)
, etc., are enough to deal with it.

Lemma 6.
∑nτ1

ω=n/2 Φ(ω) ≤ 1
2

+ o(1).
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Proof. Keep Claim 4 in mind, then

nτ1∑
ω=n/2

Φ(ω) = 2−n
nτ1∑

ω=n/2

(
n

ω

)
f(τ)m1 ≤ 2−n

nτ1∑
ω=n/2

(
n

ω

)
f(τ1)

m1

=
(
1 + o(1)

)
2−n

nτ1∑
ω=n/2

(
n

ω

)
≤ 1

2
+ o(1).

Lemma 7.
∑nτ3

ω=nτ2
Φ(ω) = o(1).

Proof. limτ→1− Ψ(τ) = 1, hence Ψ(τ2) = 2o(1). By Claim 3,(
n

ω

)
≤
(
n

nτ2

)
≤ Ψ(τ2)

n = 2o(1)n. (37)

Choose a constant ε > 0 such that e−α < 1− ε, then

f(τ3) = 1 +
1

2t

[(
1 +

2

2t

)
τ t3 −

1

2t

]
= 1 +

(
e−α + o(1)

) 1

2t
≤ 1 +

1− ε
2t

. (38)

Then

f(τ)m1 ≤ f(τ3)
m1 ≤

{
1 +

1− ε
2t

}2tn ln 2

= exp
{

2tn ln 2 ln
(

1 +
1− ε

2t

)}
≤ exp

{
(1− ε

)
n ln 2}

= 2(1−ε)n. (39)

By (37) and (39),

nτ3∑
ω=nτ2

Φ(ω) ≤ n2−n2o(1)n2(1−ε)n = n2−(ε+o(1))n = o(1). (40)

Lemma 8.
∑nτ5

ω=nτ4
Φ(ω) = o(1).

Proof. For any τ ∈ [τ4, τ5], there exists a unique β ∈ [0, 2θ] such that τ = 1− 1
n1/2+β . Then

ln Ψ(τ) =
(
1
2

+ β + o(1)
)

lnn
n1/2+β , hence

Ψ(τ)n = 2( 1
2
+β+o(1)) logn

nβ

√
n. (41)

τ t =
(

1− 1

n1/2+β

)t
= exp

{
t ln
(

1− 1

n1/2+β

)}
≤ exp

{
− t

n1/2+β

}
= 1− t

n1/2+β
+ o
( 1√

n

)
. (42)
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Then

f(τ) ≤ 1 +
1

2t

[(
1 +

2

2t

)(
1− t

n1/2+β
+ o
( 1√

n

))
− 1

2t

]
= 1 +

1

2t

[
1− t

n1/2+β
+ o
( 1√

n

)]
. (43)

Then

2−nf(τ)m1 ≤ 2−n
[
1 +

1

2t

(
1− t

n1/2+β
+ o
( 1√

n

))]m1

= 2−n exp
{
m1 ln

[
1 +

1

2t

(
1− t

n1/2+β
+ o
( 1√

n

))]}
≤ 2−n exp

{m1

2t

(
1− t

n1/2+β
+ o
( 1√

n

))}
= 2−(c+

t

nβ
+o(1))

√
n. (44)

Define Λ on [0, 2θ] as

Λ(β)
√
n = log[2−nΨ(τ)nf(τ)m1 ]. (45)

By (41) and (44),

Λ(β) ≤ −c+ (β − θ + o(1))
log n

nβ
+ o(1) ≤ −c+ o(1). (46)

By (29),
(
n
ω

)
= o(Ψ(τ))n is uniformly for all nτ4 ≤ ω ≤ nτ5. By (45) and (46),

Φ(ω) ≤ 2−(c+o(1))
√
n. (47)

Hence

nτ5∑
ω=nτ4

Φ(ω) ≤ n2−(c+o(1))
√
n = o(1). (48)

Lemma 9. Φ(n) = o(1).

Proof.

Φ(n) = 2−nf(1)m1 = 2−n
(

1 +
1

2t
+

1

22t

)m1

= 2−n exp
{
m1 ln

(
1 +

1

2t
+

1

22t

)}
≤ 2−n exp

{
m1

( 1

2t
+

1

22t

)}
= 2−n exp

{
(1− c√

n
)(1 +

1

2t
)n ln 2

}
= 2−(c+o(1))

√
n = o(1).

The proof of the lower bound now follows from lemmas 1, 3, 4, 5, 6, 7, 8 and 9.
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