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Abstract

We prove that if G is an (n, d, λ)-graph (a d-regular graph on n vertices, all
of whose non-trivial eigenvalues are at most λ) and the following conditions are
satisfied:

1. d
λ ≥ (log n)1+ε for some constant ε > 0;

2. log d · log d
λ � log n,

then the number of Hamilton cycles in G is n!
(
d
n

)n
(1 + o(1))n.

1 Introduction

The goal of this paper is to estimate the number of Hamilton cycles in pseudo-random
graphs. Putting it informally, we prove here that a pseudo-random graph contains the
right asymptotically number of Hamilton cycles, when scaled appropriately.

Of course, the above sentence is not quite a mathematical statement, and several of
its ingredients should be explained and formalized. The goal of this section is to provide
a formal footing for this claim.

First of all, what is the right (asymptotically) number of Hamilton cycles? We will have
to define yet the formal notion of a pseudo-random graph to work with, but intuitively
a pseudo-random graph G on n vertices with m edges should be similar, in some well
defined quantitative aspects, to a truly random graph on the same number of vertices
with the same (expected) number of edges. If so, the right benchmark for the number of
Hamilton cycles should come from the standard models of random graphs.

There are quite a few available models of random graphs, of which the most widely
studied and relevant to our subject are the models G(n, p), G(n,m) and Gn,d. Since over
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the years the random graphs have become a part of the standard combinatorial lexicon, we
will be rather brief in defining these models. The modelG(n, p) of binomial random graphs
is obtained by taking n labeled vertices 1, . . . , n = [n], and for each pair 1 ≤ i < j ≤ n,
making (i, j) into an edge independently and with probability p = p(n). The probability
space G(n,m) is composed of all graphs G with vertex set [n] and exactly m edges,

where all such graphs are equiprobable: Pr[G] =
(((n2)

m

))−1
. The probability space Gn,d

(assuming that the product dn is even) is composed of all d-regular graphs with vertex
set [n] and the uniform probability measure. As customarily, we will use these notations
to denote both the corresponding probability space and a random graph drawn from it.
The random graphs G(n, p) and G(n,m) are quite similar to each other under proper
parametrization, which is to set m =

(
n
2

)
p, formal statements are available to quantify

this similarity. The random d-regular graph Gn,d is expected to resemble the binomial
random graph G(n, d/n) for large enough d = d(n), with a variety of concrete statements
obtained to support this paradigm. We will not dwell anymore on these concepts and
their relationships, instead referring the reader to the standard sources in the theory of
random graphs [3], [16].

As mentioned above, the typical number of Hamilton cycles in random graphs will
serve as a guiding line for the current research. Consider the probability spaces G(n, p)
and G(n,m). The number of Hamilton cycles in the complete graph Kn on n vertices is
(n − 1)!/2. Using the linearity of expectation, we obtain immediately that if X is the
random variable counting the number of Hamilton cycles, then the expectation of X in
the model G(n, p) is (n−1)!

2
pn, and in the model G(n,m) we have:

E[X] =
(n− 1)!

2

((n2)−n
m−n

)((n2)
m

) .

The above two expressions for the expectation are asymptotically equal under the choice
m =

(
n
2

)
p, assuming m is not too small. As the common intuition for random graphs

may suggest, we expect the random variable to be concentrated around its mean, perhaps
after some normalization (it is easy to see that the above expressions for the expectation
become exponentially large in n already for p inverse linear in n).

The reality appears to confirm this intuition – to a certain extent. Janson [14] investi-
gated the number of Hamilton cycles in the probability spaces G(n, p) and G(n,m), here
are his findings in a nutshell. As before we denote (with some ambiguity of notation)
by X the random variable counting the number of Hamilton cycles in the corresponding
probability space. In the model G(n,m), assuming that m� n3/2 and

(
n
2

)
−m� n, and

denoting p = m
/(

n
2

)
, one has:

E[X] =
(n− 1)!

2
pn exp

(
−1− p

p
+O

(
(1− p) n

3

m2

))
,

V ar[X] ∼ n3

2m2
(1− p)2E2[X] .
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and the standartized random variableX∗ = (X−E[X])/(V ar[X])1/2 converges in distribu-
tion to a standard normal distribution. In particular, for the regime n3/2 � m ≤ 0.99

(
n
2

)
,

the random variable X is indeed concentrated around its expectation. The situation
appears to change around m = Θ(n3/2), where the asymptotic distribution becomes log-
normal instead (meaning that logX becomes normally distributed asymptotically).

The picture in the probability space G(n, p) is more involved according to [14]. There
we have, assuming that p→ π < 1 and lim inf pn1/2 > 0:

E[X] =
(n− 1)!

2
pn ,

and

p1/2
(

logX − logE[X] +
1− p
p

)
d−→ N (0, 2(1− π)) .

It is instructive to observe that in the latter case, and assuming that p → 0, the
distribution of X is in fact concentrated way below its expectation, in particular implying
that X/E[X]

p−→ 0. This can be attributed to the heavy tail of a log-normal distribution.
Notice also that the number of Hamilton cycles is more concentrated in G(n,m) compared
to G(n, p); this is not surprising as G(n,m) is obtained from G(n, p) by conditioning on
the number of edges of G being exactly equal to m, resulting in reducing the variance.

Though the above conclusions for the two probability spaces G(n, p), G(n,m) differ
quite substantially, we can put them under one common roof by stating that (under some
conditions on the (expected) density of the random graph) one has: the number X of
Hamilton cycles in a random graph with density p satisfies with high probability:

X = n!pn(1 + o(1))n. (1)

For random graphs of density p � n−1/2 not much appears to be known about the
asymptotic behavior of the number of Hamilton cycles in corresponding random graphs.
(We can mention though the result of Cooper and Frieze [5], who proved that in the
random graph process typically at the very moment the minimum degree becomes two,
not only the graph is Hamiltonian but it has (log n)(1−o(1))n Hamilton cycles.) This,
together with the notable difference between the results for G(n,m) and G(n, p), and the
somewhat unexpected form of the result in the case of G(n, p), indicate that even for the
case of random graphs the question about counting the number of Hamilton cycles is far
from being trivial.

For the probability space of random regular graphs, it is the opposite case of sparse
graphs that is relatively well understood. Janson [15], following the previous work of
Robinson and Wormald [22], [23], described the asymptotic distribution of the number of
Hamilton cycles in a random d-regular graph Gn,d for a constant d ≥ 3. The expression
obtained is quite complicated, and we will not reproduce it here. No results seem to be
available in the literature for the case of growing degree d = d(n).

Now that we have covered briefly results about the number of Hamilton cycles in
random graphs, we switch to the pseudo-random case, and more generally, to deterministic
results. Frieze treated the case of dense pseudo-random graphs in [10]. He proved that if
G is a graph on n vertices, meeting the following two conditions:
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1. all degrees in G are in the range [d− εn, d+ εn];

2. for every pair of disjoint sets S, T ⊂ V (G), |S|, |T | ≥ εn, the number of edges
between S and T in G in the range

[(
d
n
− ε
)
|S||T |,

(
d
n

+ ε
)
|S||T |

]
,

then the number of Hamilton cycles in G is in the range
[(

d
n
− 2ε

)n
n!,
(
d
n

+ 2ε
)n
n!
]
, quite

in line with the general paradigm (1). The above assumptions on G are obviously shaped
after the binomial random graph G(n, d

n
); also, they tacitly assume that the typical degree

d = d(n) in G is linear in n and ε� d/n, as taking d = o(n) and ε constant renders both
the assumptions and the conclusion essentially meaningless. Frieze also obtained similar
results for the numbers of perfect matchings and of spanning trees in such a pseudo-
random graph in the same paper. Recently Cuckler and Kahn [6], [7] considered the case
of dense graphs. They proved that if G is a graph on n vertices with the minimum degree
δ(G) ≥ n

2
, then not only G is Hamiltonian as asserted by the very well known Dirac

theorem, but it contains in fact at least n!
(
1
2

+ o(1)
)n

Hamilton cycles; this estimate,
which is essentially optimal due to what has been stated already about the random graph
G(n, 1/2), improved a prior result by Sárközy, Selkow and Szemerédi [24]. Cuckler and
Kahn proved also that if G is a d-regular graph on n vertices with d ≥ n

2
(and without

any further assumptions on the edge distribution in G), then the number of Hamilton
cycles in G is n!

(
d
n

+ o(1)
)n

, again as predicted by (1).
Now it is about time to reveal the model of pseudo-random graphs we adopt for this

paper. As we briefly mentioned, a definition of pseudo-random graphs is supposed to cap-
ture quantitatively their similarity to truly random graphs of the same (expected) density.
Note that not every definition of pseudo-random graphs is suitable for our purposes; for
example, the classical definition of jumbled graphs due to Thomason [25] is no good for
us as it allows occasional vertex degrees to deviate substantially from the average degree,
including the possibility of the existence of isolated vertices, thus making any estimate of
the number of Hamilton cycles virtually impossible.

Here we will use the notion of (n, d, λ)-graphs to model pseudo-random graphs.

Definition 1 A graph G is an (n, d, λ)-graph if G has n vertices, is d-regular, and the
second largest (in absolute value) eigenvalue of its adjacency matrix is bounded from above
by λ.

This is one of the most studied notions of pseudo-random graphs. It is very convenient
for our purposes as it ensures that all degrees are equal and also allows for a very good grip
on the edge distribution in such a graph. We will provide more technical details about
(n, d, λ)-graphs in Section 3.1. The reader is referred to surveys [13], [20] for a thorough
discussion of (n, d, λ)-graphs, their examples and properties. Let us just mention here
that an (n, d, λ)-graph G with λ � d resembles quite closely a binomial random graph
G(n, d

n
) or a random d-regular graph Gn,d in many quantitative aspects.

Of course, before embarking on estimating the number of Hamilton cycles in (n, d, λ)-
graphs we should make sure that Hamilton cycles do exist in such graphs. Such a state-
ment is available indeed [19], we will state and discuss it in Section 3.2.

We can now formulate the main result of this paper.
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Theorem 1 For every ε > 0 and for sufficiently large n the following is true. Let G be
an (n, d, λ)-graph, satisfying the following conditions:

d

λ
≥ (log n)1+ε , (2)

log d · log
d

λ
� log n . (3)

Then the number of Hamilton cycles in G is asymptotically equal to n!
(
d
n

)n
(1 + o(1))n.

Let us discuss the above statement briefly. Condition (2) appears to be rather mild
and is only a notch above the best known sufficient condition for Hamiltonicity in (n, d, λ)-
graphs provided by [19]. As for condition (3), for the (rather typical) case λ ≤ d1−α for

some constant α > 0, (3) becomes log d� log1/2 n, which is equivalent to d = 2ω(log
1/2 n).

Thus, condition (3) admits graphs of subpolynomial degrees. Of course, the main thrust of
Theorem 1 is to ensure that under some rather mild assumptions the number of Hamilton
cycles in a graph G is what is predicted by (1). The error term (1 + o(1))n is extremely
convenient and robust as in particular it allows to sweep under the rug even very fast
growing functions of n, like for example 2

n
logn . Due to the standard estimates on n! (say,

the Stirling formula) the estimate of Theorem 1 reads as
(
d
e

)n
(1 + o(1))n.

The remainder of this paper is organized as follows. The next section introduces
definitions and notation used in later sections. In Section 3 we describe the set of tools
used in our main proof. Theorem 1 is proven then in Section 4. Section 5, the last section
of the paper, is devoted to concluding remarks.

2 Definitions and notation

The number of Hamilton cycles in a graph G is denoted by h(G). In this paper, we
consider a single edge as a cycle too. A 2-factor in a graph G is a collection of vertex
disjoint cycles covering all vertices of G. For a 2-factor F in G, we denote by c(F ) the
number of cycles of length at least 3 in F . For a graph G and an integer s, we let f(G, s)
be the number of 2-factors in G with exactly s cycles; f(G) is the total number of 2-factors
in G. For a graph G and an integer 2 ≤ k ≤ |V (G)| we define

φ(G, k) = max{f(G[V0]) : V0 ⊆ V, |V0| = k} .

The other notation we use is fairly standard. In particular, given a graph G = (V,E)
and vertex subsets U,W ⊆ V , we denote by eG(U,W ) the number of edges of G with one
endpoint in U and another in W ; by eG(U) the number of edges of G spanned by U (thus,
eG(U) = 1

2
eG(U,U)), and by NG(U) the external neighborhood of U in G; whenever the

identity of the graph G is clear from the context, we will omit placing it in the index of
the above notations. All logarithms are natural.

As our result is asymptotic in nature, we routinely assume that the underlying param-
eter n (normally standing for the number of vertices in a graph G under consideration)
is large enough for our purposes.
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3 Tools

3.1 (n, d, λ)-graphs and the expander mixing lemma

As we have already declared our model of pseudo-random graphs is (n, d, λ)-graphs. The
most basic property of an (n, d, λ)-graph is given by the following very well known state-
ment, bridging between graph eigenvalues and edge distribution and sometimes called the
Expander Mixing Lemma (see, e.g. Corollary 9.2.5 of [2] or Theorem 2.11 of [20]). Let G
be an (n, d, λ)-graph. Then for any two vertex subsets S, T ⊆ V (G)∣∣∣∣e(S, T )− d

n
|S| |T |

∣∣∣∣ ≤ λ
√
|S| |T | . (4)

This formula shows obviously the quantitative similarity of the edge distribution in an
(n, d, λ)-graph G to that of a binomial random graph G(n, p) with the edge probability
p = d/n. Indeed, in G(n, d/n) we expect d

n
|S||T | edges between S and T , and estimate

(4) shows that this is basically what happens in an (n, d, λ)-graph, assuming the sets S, T
are large enough, and the so called eigenvalue ratio d/λ is relatively large as well. The
error term in (4) is governed by λ; the smaller λ is, the better the edge distribution fits
the expected random pattern. Speaking in more concrete terms, one can derive from (4)
that small sets in an (n, d, λ)-graph expand outside substantially:

|N(X)| ≥ (d− 2λ)2

3λ2
|X|

for |X| ≤ λ2n
d2

(see, e.g., Proposition 2.3 of [19]), while there is always an edge between
two large enough sets: for every pair of disjoint sets X, Y with |X|, |Y | > λn

d
, one has

e(X, Y ) > 0; indeed, in such a case by (4): e(X, Y ) ≥ d
n
|X| |Y | − λ

√
|X| |Y | > d

n
·

λn
d
|X| |Y | − λ|X| |Y | = 0.

3.2 Hamiltonicity in (n, d, λ)-graphs

The paper [19] provides a sufficient condition for Hamiltonicity in (n, d, λ)-graphs in terms
of the eigenvalue ratio. It is proven in [19] that if n is large enough and

d

λ
≥ 1000 log n log log log n

(log log n)2
,

then an (n, d, λ)-graph G is Hamiltonian. (A related result is [12], where a sufficient
condition for Hamiltonicity of a general graph G is stated in terms of expansion and a
connectivity-type condition.)

The argument of [19] utilizes the ingenious rotation-extension technique of Pósa [21],
very frequently used in papers on Hamiltonicity of random and pseudo-random graphs.
Since we will not apply it directly in this paper, we will skip its detailed description,
instead referring to it in general terms.
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For the purposes of this paper, we need a certain, quite straightforward, modification
of the argument of [19]. This modification will allow us to control the number of rotations
performed when constructing a Hamilton cycle.

Lemma 3.1 For every ε > 0 there exist C = C(ε) > 0 and n0 = n0(ε) > 0 such that for
every integer n ≥ n0 the following is true. Let

d

λ
≥ (log n)1+ε . (5)

Let G be an (n, d, λ)-graph. Then G is connected. Let further P0 be a path in G. Then
there is a path P ∗ in G connecting vertices a and b so that:

1. V (P ∗) = V (P0);

2. |E(P0)4 E(P ∗)| ≤ C logn

log d
λ

;

3. (a, b) ∈ E(G), or G contains an edge between {a, b} and V (G)− V (P ∗).

The main quantitative conclusion of the above lemma is its second consequence above,
allowing to bound the number of rotations needed to get from P0 to P ∗. Once we obtain
the path P ∗ as in the lemma, we can close it to a cycle – which is either Hamiltonian, or
can be used to find a path longer than P ∗ due to connectivity by adjoining a vertex outside
V (P ∗); the other alternative is to directly extend P ∗ to a longer path by appending a new
vertex to one of its endpoints a, b. Of course this shows that an (n, d, λ)-graph satisfying

(5) is Hamiltonian, but our main point here is different – we say that after O
(

logn

log d
λ

)
rotations/edge changes starting from any given path we are at least one step closer to
Hamiltonicity.

For the sake of our alert readers we now indicate briefly how the proof presented in
[19] can be adjusted to give Lemma 3.1. The focus of our attention is Section 3 of that
paper. The arguments of Section 3.1 do not require any modification; the definition of ρ
from that subsection stays the same. In Section 3.2 we take k = 2. This implies α = Θ(1).

We get sets C1, C2 of sizes |C1|, |C2| = Θ
(
n
ρ

)
= Θ

(
n

logn

log d
λ

)
. Then in Proposition 3.2 we

find C ′1 ⊆ C1 with int(C ′1) = Θ
(
n
ρ

)
such that every vertex v ∈ C ′1 has Ω

(
d
ρ

)
neighbors

in int(C ′1). This argument would use the estimate: d
λ
· log d

λ
� log n. We argue similarly

to find a set C ′2 ⊆ C2. In Proposition 3.5 we get to a set Ti with |Ti| ≥ λn
d

in O
(

logn

log d
λ

)
rotations. The reason is that in every induced subgraph G0 of G of minimum degree

Ω
(
d
ρ

)
every small set expands itself outside by the factor of Ω

(
d2

ρ2λ2

)
. Therefore we need

O

 log
(
λn
d

)
log
(

d2

ρ2λ2

)
 = O

 log n

log
(
d
ρλ

)
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rotations. In order to get to Ti in O
(

logn

log d
λ

)
rotations we need to require: log

(
d
ρλ

)
=

Ω
(
log d

λ

)
, which is equivalent to: d

ρλ
≥
(
d
λ

)δ
for some δ > 0. Recalling that ρ = Θ

(
logn

log d
λ

)
,

we see that this condition is satisfied if d
λ
≥ (log n)1+ε – which is exactly assumption (2)

of Theorem 1.

3.3 Permanent estimates

There is a well known and frequently used connection between cycles and cycle factors
in graphs and matrix permanents. This connection has been utilized in several papers
on Hamiltonicity, see, e.g., [11], [17], [18]. Permanent estimates play a crucial role in our
arguments too.

We need both upper and lower bounds for permanents. The upper bound, conjectured
by Minc and proved by Bregman [4], together with an elementary convexity argument
(see, e.g., Corollary 3 at p. 64 of [2]), gives:

Lemma 3.2 Let A by an n × n matrix of 0 − 1 with t ones altogether. Then per(A) ≤∏n
i=1(ri!)

1/ri, where ri are integers satisfying
∑n

i=1 ri = t and as equal as possible.

The lower bound, conjectured by van der Waerden and proved by Egorychev [8] and
by Falikman [9] is as follows:

Lemma 3.3 Let A be an n× n doubly stochastic matrix. Then per(A) ≥ n!
nn

.

4 Proof of Theorem 1

As we have indicated already we base our proof (both lower and upper bounds) on a
connection between 2-factors and Hamilton cycles in graphs and permanents of graph
matrices. Let A be the adjacency matrix of G. Then A is an n-by-n matrix of 0-1 with
exactly d ones in each row and column, implying in particular that the matrix 1

d
A is

doubly stochastic.
Consider the permanent of A. Each generalized diagonal contributing to the perma-

nent corresponds naturally to a 2-factor (obtained by taking the edges corresponding to
the entries of this generalized diagonal); moreover, each 2-factor F is counted exactly
2c(F ) times (as there are two ways to orient each of c(F ) non-trivial cycles from F ). We
thus get:

per(A) =
∑

F - 2-factor in G

2c(F ) . (6)

Now, the upper bound of Theorem 1 follows immediately from the above estimate and
Bregman’s theorem (Lemma 3.2):

h(G) ≤ f(G) ≤
∑

F - 2-factor in G

2c(F ) = per(A) ≤ (d!)
n
d .
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Plugging in the estimate d! ≤ d(d/e)d, we get

h(G) ≤
(
d

e

)n
· d

n
d =

(
d

e

)n
(1 + o(1))n ,

proving the upper bound. (Observe that the proof shows that the obtained upper bound
is valid in fact for any d-regular graph G.)

The lower bound is much more challenging. Before delving into the details and calcu-
lations of the proof, we outline the main steps of our argument.

1. We first use (6) and the Egorychev-Falikman theorem to estimate from below the
number of 2-factors in G, weighted by their numbers of cycles.

2. Then we prove that the contribution of 2-factors with many cycles to this number
is rather insignificant; here we will use estimate (4) on the edge distribution of
(n, d, λ)-graphs and Bregman’s theorem.

3. Then we prove that each 2-factor with relatively few cycles can be converted into a
Hamilton cycle using relatively few rotations; here Lemma 3.1 is applied.

4. We conclude that since we have
(
d
e

)n
(1− o(1))n 2-factors with relatively few cycles,

each being relatively close to a Hamilton cycle, the number of Hamilton cycles should
be large as well, bringing us to the desired bound.

We now start filling in the details of the proof. From (6) we get:

per(A) =
∑

F - 2-factor in G

2c(F ) ≤
n/2∑
s=1

f(G, s) · 2s .

Applying the van der Waerden Conjecture (Lemma 3.3) to the doubly stochastic matrix
1
d
A, we obtain:

n/2∑
s=1

f(G, s) · 2s ≥ per(A) ≥ n!

(
d

n

)n
≥
(
d

e

)n
. (7)

Set

s∗ =
20n

log2 d
.

We will show that the contribution of 2-factors with many cycles to the last sum is
negligible: ∑

s>s∗

f(G, s) · 2s = o

((
d

e

)n)
. (8)

Let s > s∗. Our goal is to estimate the term f(G, s) · 2s from above. Define

s1 =
4s

log d
.
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If a 2-factor F has s cycles then (by taking its shortest cycles) we see that F has s1 cycles
of total length t ≤ s1

s
n = 4n

log d
.

Fix t ≤ 4n
log d

. If (k1, . . . , ks1) is a vector of cycle lengths satisfying
∑s1

i=1 ki = t, the

number of 2-factors whose s1 shortest cycles are of lengths (k1, . . . , ks1) is at most:(
n

s1

)
·

s1∏
i=1

dki−1

ki
· φ(G, n− t) ≤

(
n

s1

)
dt−s1φ(G, n− t) (9)

(for the expression in the left hand side above, first choose one vertex from each cycle,
then for each of the cycles construct a path of length ki−1 from the corresponding chosen
vertex; once the s1 cycles are laid out, complete their union to a 2-factor spanned by the
remaining n− t vertices).

Now we estimate φ(G, n − t). Let V0 be a subset of V (G) of cardinality |V0| = t.
Denote by A1 the adjacency matrix of the subgraph G[V − V0]. As we argued before, the
number of 2-factors in this graph is at most per(A1). In order to estimate per(A1), notice
that

eG(V0) ≤
t2

2

d

n
+ λt

by estimate (4). It thus follows that

eG(V0, V − V0) = dt− 2eG(V0) ≥ dt− dt2

n
− 2λt .

We derive:

2eG(V − V0) = d(n− t)− e(V0, V − V0) ≤ d(n− t)− dt+
dt2

n
+ 2λt .

It thus follows that the average degree in the induced subgraph G[V − V0] is

2eG(V − V0)
n− t

≤ d− dt

n− t
+

dt2

n(n− t)
+

2λt

n− t

= d

(
1− t

n

)
+

2λt

n− t
=: d1 .

Then by Lemma 3.2

per(A1) ≤ (dd1e!)
n−t
bd1c ≤

((
d1
e

)d1
· d1

) n−t
bd1c

≤
(
d1
e

)n−t
·
(
d1
e

)n( d1
bd1c
−1

)
· d

n
bd1c
1

≤
(
d1
e

)n−t
· d

2n
d1
1 · d

2n
d1
1 ≤

(
d1
e

)n−t
· e

5n log d
d .
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Substituting the expression for d1 in the estimate above we get:

per(A1) ≤

(
d
(
1− t

n

)
+ 2λt

n−t

e

)n−t

· e
5n log d

d

≤ dn−t

en−t
·
(

1− t

n

)n−t
·
(

1 +
4λt

d(n− t)

)n−t
· e

5n log d
d

≤ dn−t

en
· exp

{
t2

n
+

4λt

d
+

5n log d

d

}
.

The above is an upper bound on φ(G, n− t). Plugging it into (9) and estimating the
number of solutions of k1 + . . .+ ks1 = t in positive integers by

(
t+s1
s1

)
, we have:

f(G, s) · 2s ≤
∑
t≤ 4n

log d

(
n

s1

)(
t+ s1
s1

)(
d

e

)n
· 2s · exp

{
t2

n
+

4λt

d
+

5n log d

d

}
· d−s1

≤
(
d

e

)n ∑
t≤ 4n

log d

(
en

s1

)s1 (5t

s1

)s1
· 2s · exp

{
t2

n
+

4λt

d
+

5n log d

d

}
· d−s1 .

The t-th summand in the sum above is at most(
15nt

ds21

)s1
·2

s1 log d
4 ·exp

{
t2

n
+

4λt

d
+

5n log d

d

}
≤
(

nt

d3/4s21

)s1
exp

{
t2

n
+

4λt

d
+

5n log d

d

}
.

Since s1 = 4s
log d
≥ 4s∗

log d
= 80n

log3 d
, we have:

(
d3/4s21
nt

)s1
≥ d0.7s1 ≥ e

50n
log2 d . For the terms in the

exponent exp{. . .} above, we have the following estimates:

t ≤ 4n

log d
⇒ t2

n
≤ 16n

log2 d
,

λt

d
≤ 4n

log d
· 1

(log n)1+ε
= o

(
n

log2 d

)
,

5n log d

d
= o

(
n

log2 d

)
,

and thus exp{. . .} ≤ e
17n

log2 d . It follows that

f(G, s) · 2s ≤
(
d

e

)n∑
t

e
− 50n

log2 d
+ 17n

log2 d =

(
d

e

)n
· o
(

1

n

)
.

Hence
∑

s>s∗ f(G, s) · 2s = o ((d/e)n), establishing (8). We obtain from (7):

∑
s≤s∗

f(G, s) ≥ 1− o(1)

2s∗

(
d

e

)n
. (10)
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Let now F be a 2-factor in G with s ≤ s∗ cycles. We can turn in into a Hamilton cycle
in G be deleting and inserting some (few) edges as follows. Let C be an arbitrary cycle
in G. By connectivity one of the vertices of C, say, v has a neighbor outside C – unless
of course C is already Hamiltonian. Open C up be deleting an edge of C incident to v
(no need to do so if C is just an edge), we get a path P . Since there is an edge e ∈ E(G)
between an endpoint of P and some other cycle C ′ in F we append this edge to P , go
through it to C ′, open it up be deleting an edge of C ′ incident to e to get a longer path P ′

and repeat the argument. If at some point there are no edges between the endpoints of
the current path P ′′ and other cycles from F , then we can rotate P ′′ using Lemma 3.1 to
close it to a cycle or to extend it outside. In all cases according to Lemma 3.1 we invest

O
(

logn

log d
λ

)
edge replacements to reduce the number of cycles by at least 1, and thus after

O
(
s · logn

log d
λ

)
replacements we get to a Hamilton cycle.

Looking at it from the other side, observe that a given Hamilton cycle H in G is at
distance at most k from at most

(
n
k

)
d2k 2-factors in G (first choose k edges of H to be

deleted, thus obtaining a collection of at most k paths; these paths should be then tailored
into a 2-factor, and the number of choices here is at most d per each of the at most 2k
endpoints of the paths). Hence∑

s≤s∗
f(G, s) ≤ h(G)

(
n

k

)
d2k

for k = O
(
s∗ · logn

log d
λ

)
. We obtain from (10):

h(G) ≥
∑

s≤s∗ f(G, s)(
n
k

)
d2k

≥
(
d

e

)n
· 1− o(1)

2s∗
(
n
k

)
d2k

.

Since k = O
(
s∗ · logn

log d
λ

)
= O

(
n

log2 d
· logn

log d
λ

)
= o(n), we have

(
n
k

)
= 2o(n). Also,

d2k ≤ d
Cs∗ logn

log d
λ = e

Cn
log d

20 logn

log d
λ = eo(n) ,

where the last estimate is due to our assumption (3). It thus follows that

h(G) ≥
(
d

e

)
e−o(n) = n!

(
d

n

)n
(1− o(1))n ,

completing the proof of the lower bound of Theorem 1.

5 Concluding remarks

We have proven that an (n, d, λ)-graphG, a quite popular model of pseudo-random graphs,
contains n!(d/n)n(1 + o(1))n Hamilton cycles, as to be expected based on the intuition
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borrowed from random graphs; this is under additional assumptions (2) and (3) on the
degree d and the spectral ratio d/λ. It would be nice to relax the second assumption to
make the result applicable to d-regular graphs on n vertices with the degree d = d(n) as
low as polylogarithmic in n. Another attractive avenue to explore is to try and obtain
similar estimates for other models of pseudo-random graphs, perhaps less rigid/restrictive
than the model of (n, d, λ)-graphs.

Finally, let us note that our bound on the number of Hamilton cycles in an (n, d, λ)-
graph can be used to bound the number of perfect matchings (this connection has been
exploited in, e.g., [10], [7]). Let m(G) denote the number of perfect matchings in G. Let
now G be an (n, d, λ)-graph with n even. Observe that each Hamilton cycle in G is a union
of two perfect matchings. This implies h(G) ≤

(
m(G)

2

)
, and thus a lower bound on h(G)

supplied a lower bound on m(G). For the upper bound, we can use for example a result
of Alon and Friedland [1], who proved in particular that the number of perfect matchings
in any d-regular graph G on n vertices is at most (d!)

n
2d . These two bounds combined

together show that the number of perfect matchings in an (n, d, λ)-graph G satisfying the

conditions of Theorem 1 (with n even, of course) is asymptotic to
(
d
e

)n
2 (1 + o(1))n.
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[17] F. Knox, D. Kühn and D. Osthus, Approximate Hamilton decompositions of random
graphs, Random Structures and Algorithms, to appear.
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