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Abstract

A finite ranked poset is called a symmetric chain order if it can be written as
a disjoint union of rank-symmetric, saturated chains. If P is any symmetric chain
order, we prove that P"/Z, is also a symmetric chain order, where Z,, acts on P"
by cyclic permutation of the factors.

1 Introduction

Let (P, <) be a finite poset. A chain in P is a sequence of the form z; < zo < -+ < x,
where each z; € P. For x,y € P, we say y covers x (denoted x < y) if x < y and there
does not exist z € P such that x < z and 2z < y. A saturated chain in P is a chain
where each element is covered by the next. We say P is ranked if there exists a function
tk : P — Zs¢ such that x < y implies rk(y) = rk(z) + 1. The rank of P is defined as
tk(P) = max{rk(z) | z € P} +min{rk(x) | x € P}. A saturated chain {z; <zy<---<z,}
in a ranked poset P is said to be rank-symmetric if rk(x;) + rk(z, ) = rk(P).

We say that P has a symmetric chain decomposition if it can be written as a disjoint
union of saturated, rank-symmetric chains. A symmetric chain order is a finite ranked
poset for which there exists a symmetric chain decomposition.

A finite product of symmetric chain orders is a symmetric chain order. This result can
be proved by induction [1] or by explicit constructions (e.g. [3]). Naturally, this raises the
question of whether the quotient of a symmetric chain order under a given group action
has a symmetric chain decomposition. For example, if X is a set then Z, acts on the set
Map(Z,, X) ~ X". The elements of X" /7Z, are called n-bead necklaces with labels in X.
A symmetric chain decomposition of the poset of binary necklaces was first constructed
by K. Jordan [6], building on the work of Griggs-Killian-Savage [4]. There have been
recent independent proofs and generalizations of these results [2, 5]. The main result of
this paper is the following:

Theorem 1.1. If P is a symmetric chain order, then P"/Z, is a symmetric chain order.



We give a brief outline of the proof. First, we show that the poset of n-bead binary
necklaces is isomorphic to the poset of partition necklaces, i.e. n-bead necklaces labeled
by positive integers which sum to n. It turns out to be convenient to exclude the maximal
and minimal binary necklaces, which correspond to those partitions of n having n parts
and 0 parts, respectively. Let Q(n) denote the poset of partition necklaces with these two
elements removed. We decompose Q(n) into rank-symmetric sub-posets Q,, running over
partition necklaces o where 1 does not appear. This decomposition corresponds to the
“block-code” decomposition of binary necklaces defined in [4].

We can also extend this idea to non-binary necklaces. In fact, the poset of n-bead
(m~+1)-ary necklaces embeds into the poset of nm-bead binary necklaces, and the image
corresponds to the union of those Q, C Q(mn) such that every part of « is divisible by
m.

Next, we prove a “factorization property” for Q, C Q(n). If P and @ are finite ranked
posets, we say that P covers @ (or Q is covered by P) if there is a morphism of ranked
posets from P to () which is a bijection on the underlying sets. We denote this relation
as P —» (). Note that any ranked poset covered by a symmetric chain order is also a
symmetric chain order. If « is aperiodic, then Q, is covered by a product of symmetric
chains. If «v is periodic of period d, then Q, is covered by the poset of (n/d)-bead necklaces
labeled by Qg, for some aperiodic d-bead necklace 3.

Finally, if P is a symmetric chain order, then P"/Z, has a decomposition into posets
which are either products of chains, or posets of d-bead necklaces with labels in a product
of chains (where d < n), or posets of n-bead (m+1)-ary necklaces for some m > 1. In
each case, we apply induction to finish the proof.

2 Generalities on necklaces

We begin by recalling some basic facts about Z,-actions on sets. We will use additive
notation for the group operation of Z,. The subgroups of Z,, are of the form (d) where d
is a positive divisor of n, and Z, /{d) ~ Z4. If X is a set with Z,-action, let X(¥ denote
the set of (d)-fixed points in X. Equivalently:

X9 ={z e X |(d) C Staby, (z)}.
Note that X c X@ if ¢ is a divisor of d. Next, we define:
X = {2 € X | (d) = Staby, (x)}.

Of course, we have:
X =| |xt4

dln

and the Z, action on X{# factors through Z4. In other words, we have a bijection:

X/Z, ~| | x/z,.

din
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Now consider the special case where X = Map(Z,,,Y") for some arbitrary set Y, where
Z,, acts on the first factor. In other words,

(af)(b) = f(a+b)
for any a,b € Z,, and f : Z, — Y. Now the previous paragraph implies that:

Map(Zn,Y) = | | Map(Zy, )t
dln

and
Map(Z,,Y) /L = | |Map(Z,, V)" /2.
dn

The elements of Map(Z,,Y)/Z, are called n-bead necklaces with labels in Y. An element
of Map(Z,,Y )% /7 is said to be periodic of period d. An element of Map(Z,,Y )" /Z,
is said to be aperiodic. Given a map g : Z, — Y, let [g] denote the corresponding
necklace in Map(Z,,Y)/Z,. A n-bead necklace with labels in Y can be visualized as a
sequence of n elements of Y placed evenly around a circle, where we discount the effect
of rotation by any multiple of 27” radians. Given (y1,...,y,) € Y™, let [y1,...,y,] denote
the corresponding n-bead necklace.

Our first observation is that an n-bead necklace of period d is uniquely determined
by any sequence of d consecutive elements around the circle. Moreover, as we rotate the
circle, these d elements will behave exactly like an aperiodic d-bead necklace.

Proposition 2.1. There is a natural bijection between n-bead necklaces of period d and
aperiodic d-bead necklaces.

Proof. Recall the following general fact: if G is a group, H is a normal subgroup of G,
and Y is an arbitrary set, then there is an isomorphism of G-sets:

Map(G, Y)Y ~ Map(G/H,Y)

[ (gH — f(g)).

Moreover, the action of G on each side factors through G/H. In particular, there is an

isomorphism of Z,-sets:
Map(Zy,,Y)' " = Map(Zy,Y)

where the Z,-action factors through Z,;. Looking at elements of period d, we get:
Map(Z,, Y)Y\ ~ Map(Zg, V)1

and so:
Map(Zp, YV [ Zg ~ Map(Zqg, V)1 ) Z4.
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Now suppose that Y is a disjoint union of non-empty subsets:
Y =| |
iel

where [ is a finite set. Equivalently, we have a surjective map 7w : Y — I, where Y; = 771(4)
for each ¢ € I. It follows that there is a surjective map:

s : Map(Z,,Y) — Map(Zy,, I)

m(f)=mo f.

Given a map ¢ : Z, — I, we define:
Mapy(Z,,,Y) =7 (9) ={f : Zn =Y | 7o f = g}.

In other words, f € Mapy(Z,,Y) if and only if f(a) € Yy for all @ € Z,. Since m, is
surjective, we have a decomposition:

Map(Z,,Y)= || Mapy(Z,.Y).

geMap(Zn,I)

Note that Map,(Z,,Y") is not necessarily stable under the action of Z,,. If a,b € Z,, and
f e Mapy(Z,,Y), then:

a(f)(b) = fla+b) € Yy(ary)

so we have a bijection:
Mapy(Zn,Y) ~ Map,y(Z,,Y)

induced by the action of a € Z,,. We define:
Mapig)(Zn,Y) = | ) Mapag(Za,Y).
a€ZLn

Note that Z, acts on Mapg(Zy,,Y).

Remark 2.2. We recall a basic observation which will make it easier to define maps on
sets of necklaces. Suppose S and T are sets equipped with equivalence relations ~ and
~, respectively. Let U be a subset of S which has a non-trivial intersection with each
equivalence class in S. Then U inherits the equivalence relation ~ and the natural map
from U/~ to S/~ is a bijection. Given a map f : U — T such that u; ~ uy = f(u1) =
f(ug) for all uy,us € U, we obtain a map (S/ ~) ~ (U/ ~) — (T/ =).

Remark 2.3. If a is a periodic n-bead necklace of period d with labels in I, then:

a=I[§,....0

n H o
P times

where 8 = (B4, ..., Ba) is a d-tuple of elements in I such that 3] is aperiodic.
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Lemma 2.4. Let 7:Y — [ be a surjective map where [ is finite.
(1) There is a natural decomposition:

Map(Zn,Y)/Zn = | | | | Mapo(Zy,Y) ) L
din \aeMap(Zn,I)} )Zy
(2) If a = [B,...,8] € Map(Zy,I)1% /74, where B = (Bi,...,B4), then there is a

bijection:
Mapo(Zn,Y )| L ~ (Y, X === X Yp,)d [Zn.

Proof. (1) Since

Map(Z,,Y)= || Mapy(Z,.Y)
geEMap(Zn,I)
and
Map(Zy, T) = | _|Map(Z,, )"
dn
we see that:
Map(Z,,,Y) =| | || Map,(Z,.Y)

dln \geMap(Z,,I1){d}

As noted above, in order to make this an equality of Z,-sets we need to take the coarser
decomposition:

Map(Z,,Y) =| | | ] Mapy(Z,,Y)

dln \ [gleMap(Zn, )14} /Zq

Now we simply take the quotient by Z, on both sides:

Map(Z,,Y)/Z =| | | ] Map)(Z,Y) /L,

dln \[gleMap(Zn, 1)1} /Z4

Note that we are simply organizing the n-bead Y-labeled necklaces by looking at the
periods of the underlying n-bead I-labeled necklaces.
(2) Let g € Map(Z,,, 1)1 and let a € Z,. By definition, ag = (a + x)g if and only if
x € (d). So:
Mapag(Zm Y) = Map(a—i—x)g(Zm Y)

if x € (d). On the other hand, if

h e Mapag (Zna Y) N Map(a+z)g (Zna Y)
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for some x € Z,, then mo h = ag = (a + x)g, which implies that x € (d). The upshot is
that we can actually write Map(Zy,Y") as a disjoint union over Zg:

Mapi(Zn,Y) = | | Mapag(Zn,Y).

a€Zq

Now consider the sequence of values g(a) for a € Z,. This sequence is of the form
(B,...,B), where 5 = (B4, ..., Bq4). Therefore:

Mapy(Zy,Y) =~ (Y, x -+ x Yp,)d

and so:
d—1

Mapyg(Zy,Y) ~ |_|(Yﬁj+1 X oo X Y, X Yg X o X Yg)d.
=0

s

Let us apply Remark 2.2 to the following sets:

d—1
S=| | (Vg x -+ x Vg, x Vg, x -+ x Vg )i and T = (Vs x - x V)4,

j=0

The equivalence relations on S and T are defined by group actions: Z, acts on S ~
Mapg(Zy,,Y) and Zz acts on T' by cyclic permutation of the factors. Let U be the
subset of S corresponding to the j = 0 component:

als

U:(Yﬁlx"'xyﬁd) :

Each element of S is equivalent to an element of U, and the restricted equivalence relation
on U is given by the action of the subgroup (d) which is exactly the same as the action
of Zxz by cyclic permutation of the factors. Therefore:

S)Zn ~UJ/{d) =~T/ZLn.
0

Remark 2.5. We can visualize the above result as follows: we choose a place to “cut”
an n-bead Y-labeled necklace in order to get an n-tuple of elements of Y. We can always
rotate the original necklace so that the underlying I-labeled necklace has a given position
with respect to the cut. Moreover, if the underlying I-labeled necklace has period d,
then we can break the n-tuple into segments of size d so that the corresponding I-labeled
d-bead necklaces are aperiodic. As we rotate the original necklace by multiples of 27”
radians, we will permute these segments among each other.
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3 Partition necklaces

Let n be a positive integer. Consider the set of ordered partitions of n into r positive
parts:

P(n,r) ={(a1,....a,) €ZLo | Y a; =n}
i=1
Define: 71
P(n) = | | P(n,r)
r=1

In other words, P(n) is the set of non-empty ordered partitions of n into positive parts,
where at least one part is greater than 1. Note that refinement of partitions defines a
partial order on P(n), and the rank of a partition is given by the number of parts.

Let Q(n) denote the set of necklaces associated to P(n):

n—1

An) = | |P(n.r)/2Z,

=1

In other words:
Q(n) :{[a1>"'7ar] GZ;Q/ZT ‘ 1 STS?’L—l,Zai:n}
i=1

where [a4, ..., a,| denotes the Z,-orbit of (ay,...,a,).

The elements of Q(n) are called partition necklaces. Note that Q(n) inherits the struc-
ture of a ranked poset from P(n).

Let N(n, 1) denote the set of n-bead binary necklaces with the necklaces [0, ..., 0] and
[1,...,1] removed.

Proposition 3.1. For any n > 1, there is an isomorphism of ranked posets:
n : N(n, 1) ~ Q(n).

Proof. Given a non-empty n-bead binary necklace g of rank r, let ¢,(8) be the necklace
whose entries are given by the number of steps between consecutive non-zero entries of (.
More precisely, 1, is given by:

[1,07,1,0%,...,1,0¢] = [+ 1,..., ¢, + 1]

Note that the right hand side is the necklace of a partition of n into r positive parts. The
inverse of 1, is given by:

[ar, ... a,) + [1,07711,0%71 0 1,071,

Moreover, changing a “zero” to a “one” in a binary necklace corresponds to a refinement
of the corresponding partition necklace, so the above bijection is compatible with the
partial orders and rank functions on each poset. O
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An ordered partition (ay, ...,a,) and the corresponding partition necklace [ay, ..., a,]
are said to be fundamentalif each a; > 2. Let F(n) denote the set of fundamental partition
necklaces in Q(n).

Now we apply Remark 2.2 to the case where S = P(n) and T is the subset of P(n) con-
sisting of fundamental partitions. Equip each set with the necklace equivalence relation,
so (S/~) = Q(n) and (T/~) = F(n). Define the subset:

U={(1",my, 1" ma, ..., 1" my) € P(n) | n; >0,m; >2forall 1l <i<k}

Since we have excluded (1, ..., 1) from P(n), we see that any element of P(n) is equivalent
to some element in U. Now define:

f:U—=T

(1™ mq, 1™ mag, .., 1™ my) — (Mg +nq, ... g + ng).

Since f is compatible with the respective equivalence relations, we obtain a map:
T : Q(n) — F(n)

n n Nk
(1™ my, 12 mg, . 1™ my] = [my 4 ny,me + ng,y ooy + ny.

Note that m, restricts to the identity on F(n). In particular, 7, is surjective. Therefore,
we get a decomposition of Q(n):

where Q, = m,'(«). This decomposition is the same as the decomposition for binary

necklaces defined in [4]. Indeed, the map m, o, is essentially the necklace version of the
“block-code” construction.

If m > 1, a fundamental partition necklace [ay,...,a,] € F(n) is said to be divisible
by m if each a; is divisible by m. Define the following sub-poset of Q(n):

Q(n,m) = {a € Q(n) | m,(a) is divisible by m} = I_l Q-
acF(n)

m|a

Let N(n,m) denote the set of n-bead (m+1)-ary necklaces with the necklaces [0, ..., 0]
and [m, ..., m] removed. We have the following generalization of Proposition 3.1.

Lemma 3.2. For any n,m > 1, there is an isomorphism of ranked posets:

Ynm : N(n,m) ~ Q(mn, m).
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Proof. Given an n-bead (m+1)-ary necklace, we construct an mn-bead binary necklace
via the substitution: j — 170™7, and then we apply the map ,,,, from Proposition 3.1.
This composition is clearly a morphism of ranked posets. Here is an explicit formula for

Ynm:
[b1, 0%, by, 0%, ... b, 0] = 17 mey +1) — by + 1., 1% m(e, +1) — by + 1]

where each b; > 1 and ¢; > 0. The sum of the terms in the partition necklace is:

T

Z(bi—l—{—m(cmtl)—bi—i—l):m(r—i—iq):mn

=1

as desired. Let us check that m,,, 0¥, () is divisible by m for all « € N(n, m). Consider
the element:

a = [b,0% by, 0%, ..., b, 07].
If ¢; > 0 or b; < m, then the terms 1%~ and m(c; + 1) — b; + 1 in ¢, , (o) merge together
under 7,,, to give m(c; + 1). On the other hand, whenever b; = m and ¢; = 0, we will
get a 1™ term in ¥y, ,(a). Applying 7., will result in adding m to the next occurrence
of m(c; + 1), where ¢; > 1. In other words:

Tmn(Unm(Q)) = [mey, ..., meg]

where m,(c1 +1,...,¢.+ 1) = [eq, ..., e, and this result is indeed divisible by m.
By reversing the above process, we get a formula for the inverse of v,, ,,. An arbitrary
element of Q(mn,m) is of the form:

ni n2 n
[1 7m171 7m27"‘71k7mk]

where each m; > 2, each m; + n; is divisible by m, and Zle(mi + n;) = mn. The
corresponding mn-bead binary necklace is:

(1t gt et e,
Now we need to apply the substitution 170™~7 ~ j. Since m; + n; is divisible by m, we

can apply this to each block (1771, 0™i1) separately. Furthermore, we should break each

block into segments of size m and apply the substitution to each segment. Therefore,
(1t 0mi=1) looks like:

<1m’ 1m’ o 1m7 1”7 Omfn? Omiili(m*ﬂ')).
——

q; times

where ¢; is the quotient of the division of n; +1 by m and r; is the remainder. Note that
m;—1—(m—r;)=m; —1—m+ (n; + 1 —mg;) = m; +n; — mgqg; —m, which is divisible
by m. Therefore, the inverse of 1, ,, is given by the following formula:

n n n t t
(1™, my, 172 ma, . 1™ my] — [m® oy, 070 L m g, 07F]
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where:
n; +1 =mgq; + r; such that 0 < r; <m
and

m; +n;
ti —

Note that the number of beads in the above necklace is:

k k
m; + n; 1 mn
i+ 1 —¢—1)=— i i) = —— =
; (q +1+ - q ) p- ;(m +n;) —=n
as desired. O
Lemma 3.3. Let a = [ay,...,a,] € F(n). If « is aperiodic, then:

Q[al] X - X Q[ar] —» Qa.

If a is periodic of period d and o = 3, ..., 3], then:

o
q times

Ot /Zx > Q.

Proof. If m > 2, note that Qp,, is a chain with m — 1 vertices. We will apply Lemma 2.4
to the following set:
Q= || Q.
m=2

Note that our indexing set is I = {2,...,n}. Let « = [ay,...,a,] € F(n). Since a; +
-+ + a, = n, we know that each a; < n, which implies that « is labeled by elements of
I. If « is aperiodic, it follows from part (2) of Lemma 2.4 that we have a rank-preserving
bijection:

Mapa(Zr, Q)/ZT >~ Q[al] X X Q[[m.
On the other hand, if o« = [,..., 8] € Map(Z,,1)1% /Z4, where B = (B, ..., 34), then we
have rank-preserving bijections:

Mapa(Zr; Q)/ZT = (9[61] X X Q[ﬁd])ﬁ/zg = QEB]/Z

d

where the second bijection exists due to the fact that [5] is aperiodic. It remains to
check that the poset relations are preserved. Indeed, any covering relation among two
necklaces labeled by Qg X - - - x Qg,) will correspond to a covering relation within a chain
Q(g,) for some 4, which will also be a covering relation among the corresponding Q-labeled

necklaces. O

Remark 3.4. The above Lemma provides an explanation of why it is easier to find a
symmetric chain decomposition of n-bead binary necklaces if n in prime [4]. Indeed, in
this case all non-trivial necklaces are aperiodic, so each Q, is covered by a product of
symmetric chains and we can apply the Greene-Kleitman rule.
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4 Proof of the theorem

Theorem 4.1. If P is a symmetric chain order, then P"/Z, is a symmetric chain order.

Proof. The statement is trivial for n = 1. Assume that the theorem is true for any
n’ < n. Let C1,...,C, denote the chains in a symmetric chain decomposition of P. We

may assume that:
P=||c.
i=1

If welet I ={1,2,...,r} and apply part (1) of Lemma 2.4 to P, we obtain:

Map(Zn, P)/Zn = | | | ] Mape(Zyn,P) | Zn,

din \aeMap(Zn,1){?} /Z,

Now we apply part (2) of Lemma 2.4. If a = [aq, ..., a,] is an aperiodic n-bead necklace
with labels in I, then:
Coy X -+ xCy —» Mapo(Zy,P).

Since Cy, X+ - -xC,, is a symmetric chain order, it follows that Map,(Z,,, P) is a symmetric
chain order. Also note that C,, x --- x C,, is a centered subposet of Map(Z,,P)/Z,.
On the other hand, if &« = [, ..., ] is a periodic n-bead necklace with labels in I, where

5 = (617 s a/Bd)a then:
(Ca, X -+ x Cg,) 4 | Zun — Mapa(Zn,P)/ L.

Again, note that this poset is a centered subposet of Map(Z,,P)/Z, since it is a cyclic
quotient of a centered subposet of P".
If d > 1, then 5 <n and (Cg, X --- x Cg,) is a symmetric chain order, so

(Cp, X -+ x Cy,)4 | Zn

is a symmetric chain order by induction.
If d =1, then:
C" /2Ly — Mapy(Zy,P) )Ly

where C'is a chain with m—+1 vertices, for some m > 1. It suffices to consider the centered
subposet N(n,m). By Lemma 3.2, we have:

N(n,m) ~ Q(mn,m).

If Q, € Q(mn,m), then o = [may, ..., mas], where a; + - -+ + a5 = n. In particular, note
that s < n. By Lemma 3.3, there are two possibilities for Q,. If « is aperiodic, Q, is a
product of chains, so it is a symmetric chain order. If « is periodic of period d, then:

Q[U,lﬁ’]/Zi —» Qa
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where [(] is a d-bead aperiodic necklace. In particular, Qg is itself a product of chains
(hence a symmetric chain order). We know that § = (mecy, ..., mcq), where ¢;+---+cq =
d?". There are three possible cases:

(i) If d > 1, then § < n. Since Qg is a symmetric chain order, by induction we
conclude that .

Uy /2

is a symmetric chain order.

(ii) If d = 1 and s < n then Qg is a single chain, so Qfﬁ]/Zs is a symmetric chain
order by induction.

(iii) If d = 1 and s = n, then § = (m) and a = [m, ..., m]. In this case:

Q1 /Ly > Qo

Since Qpy,) is a chain with m — 1 vertices, we see that we have returned to the case of
the Z,-quotient of the n-fold power of a single chain. However, note that the we have
managed to decrease the length of the chain by two, i.e. from m + 1 vertices to m — 1
vertices. Now we can again apply Lemma 3.2 and Lemma 3.3 to the centered subposet
N(n,m — 2), etc.

Eventually, after we go through this argument enough times, we will eventually reach

the case of:
C" ),

where C' is a chain with one or two vertices. If |C| = 1, there is nothing to show. So
we are left with the case where C' is a chain with two vertices, i.e. the poset of binary
necklaces. It suffices to look at the centered subposet N(n,1). By Proposition 3.1,

N(n,1) ~ Q(n).

Again, we consider the subposets Q,. As usual, if « is aperiodic then Q, is covered by a
product of symmetric chains. If & = [§, ..., (] is periodic of period d then

g/ Ln = Qa

where [f] is an aperiodic d-bead necklace and Qg is a product of chains. If d > 1, then
2 <mso

/L3
is a symmetric chain order by induction. Finally, if « is periodic of period d = 1 then «
is an n-bead partition necklace of period 1 whose entries sum to n, so o = [1,1,...,1],
but this element was explicitly excluded from the set Q(n). O

Example 4.2. Suppose P is a disjoint union of 3 symmetric chains C;, Cy, and C5. Let
I ={1,2,3}. Then the poset
Map(Z47 [)/Z4

has three necklaces of period 1, three necklaces of period 2, and 18 aperiodic necklaces.
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Period 1: [1,1,1,1] [2,2,2,2] [3,3,3,3]

Period 2: [1,2,1,2] [1,3,1,3] [2.3.2,3]

Aperiodic: [1,1,1,2] [1,1,1,3] [2,2,2,3] [1,2,2,2] [1,3,3,3] [2,3,3,3)
1,1,2,2] [1,1,3,3 [22.3,3 [1,21,3 [21,23 [31,32]
1,1,2,3 [1.1,3,2] [221,3] [223,1 [3.3.1.2] [3.3.2.1

Y ? ) ) Y P Y ) Y Y

Therefore Map(Zy,P)/Z4 can be decomposed as a disjoint union of three types of
centered subposets:

3
| |ci/z,
=1

|| (€ixcy)y/z,

1<i<j<3
|_| Cil X CiQ X Oig X Oi4~

[i1,42,13,14]
aperiodic

In the third case we have a product of chains, which has a symmetric chain decomposition
by the Greene-Kleitman rule. Similarly, C; x C; also has a symmetric chain decomposition
and the number of chains is equal to min(|C;/, |C}|). The components in the second case
will be of the form C' x C" or C?/Zy for some chains C' and C’. In each case, we are
reduced to the case of cyclic quotients of powers of a single chain.

Example 4.3. Let C = {0 < 1 < 2 < 3 < 4} be a chain with 5 vertices. We will
construct a symmetric chain decomposition of the poset of 6-bead 5-ary necklaces:

Map(Zg, C)/Zﬁ
By removing the necklaces [0,0,0,0,0,0] and [4, 4,4, 4,4, 4], we get the centered subposet:
N(6,4) ~ Q(24,4).

We can ignore any aperiodic « since the corresponding Q, will covered by a product of
chains. So we need to list all the periodic fundamental partition necklaces o whose entries
add up to 24 and are all divisible by 4. They are:

[24]  [12,12]  [8,8,8]  [4,8,4,8]  [4,4,4,4,4,4].

Now Q41 is a chain, and three of the others are covered by a poset of the form pe /Zq
where P is a chain or a product of chains and d is a proper divisor of 6:

9[212]/22 —» Qo129 Q[gg}/Z?, — Qgsg] (9[4] X Q[S])2/Z2 —» Q8438
The final poset still involves Zg but it involves a chain which has 5 — 2 = 3 vertices:

QF4] [ L —» OQpa,4,4,4,4,4)-
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Note that Qﬁq /Z¢ is the poset of 6-bead ternary necklaces. Removing the extremal ele-
ments, we get the poset:
N(6,2) ~ 9(12,2)

whose periodic fundamental partition necklaces are:
[12] 6, 6] [4,4,4] 2,4,2,4] 2,2,2,2,2,2].
As before, the first four posets can be dealt with inductively, and the final poset:

Q222,222 = QFQ}/ZG
has exactly one element.
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