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Abstract. The optimal length r(n) of a sequence in [1, n] containing no 3-
term arithmetic progression is determined for several new values of n and some

results relating to the subadditivity of r are obtained. We also prove a particular

case of a conjecture of Szekeres.

A subsequence S = (a1, a2, . . . , ak) of the sequence 〈n〉 = (1, 2, . . . , n) containing no
three terms ap, aq, and ar for which aq − ap = ar − aq (i.e., S contains no three term
arithmetic progression) is called an A sequence in 〈n〉. r(n) denotes the maximum
number of terms possible in an A sequence in 〈n〉, and any such sequence is said to be
optimal in 〈n〉. Throughout this paper any input variable x in r(x) is assumed to be a
positive integer.

The following properties of A sequences and the function r are evident.

(P1) If S = (a1, a2, . . . , ak) is an A sequence in 〈n〉, then (n+1−ak, n+1−ak−1, . . . , n−
a1) is an A sequence called the complement of S in 〈n〉. Also, for any integer j < a1, a
translate (a1 − j, a2 − j, . . . , ak − j) of S is an A sequence.

(P2) For any m and n, r(m+ n) ≤ r(m) + r(n). In brief, the function r is subadditive.

(P3) For any n, r(n) ≤ r(n + 1) ≤ 1 + r(n). Whenever r(n − 1) < r(n), we call n a
jump node for r.

(P4) If (a1, a2, . . . , ak−1, ak) is an A sequence in 〈n〉, then (a1, a2, . . . , ak−1, ak, 2n− 1+
a1, 2n − 1 + a2, . . . , 2n − 1 + ak−1, 2n − 1 + ak) is an A sequence in 〈3n − 1〉; whence
r(3n− 1) ≥ 2r(n).

(P5) If r(n− 1) < r(n), then any optimal A sequence in 〈n〉 contains both 1 and n.

(P6) If r(n− 1) < r(n) < r(n+ 1), then any optimal A sequence in 〈n+ 1〉 contains all
four of 1, 2, n, and n+ 1.

Observe that, by (P6), no three consecutive integers can all be jump nodes for r.
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The study of A sequences was initiated by Erdős and Turan in [1], and since the ap-
pearance of their paper there has been extensive research concerning the asymptotic
behavior of the function r and its correspondent that counts the sequences in 〈n〉 avoid-
ing k-term arithmetic progressions for k > 3. A substantial paper by Szemeredi [2] gives
many references on this topic. The exact value of r(n) is, however, known for only a
few n. In this regard, an error in [1] in computing r(20) has gone undetected and as a
consequence, subsequent computations of r(n) for certain n > 20 are based on flawed
arguments. For example, the evaluations of r(21) and r(41) (and perhaps r(22) and
r(23) also) in [1] are founded on incorrect reasoning. The values of r(n) for n ≤ 19
found in [1] are, however, all correct. We summarize these values by listing only the
jump nodes for r:

r(2) = 2, r(4) = 3, r(5) = 4, r(9) = 5, r(11) = 6, r(13) = 7, r(14) = 8.

The next jump node for r after 14 is 20 and not 21 as claimed in [1]. This is because
r(19) = 8, and (1, 2, 6, 7, 9, 14, 15, 18, 20) is an A sequence.

There is a sequence {Tk} of positive integers with three intriguing questions surrounding
it: (a) Is each Tk, k > 1, a jump node for r? (b) Is the optimal A sequence in 〈Tk〉 for
each k unique? (c) Is it true that r(Tk) = 2k for each k? The sequence {Tk} is defined
recursively as follows:

Tk = 3Tk−1 − 1 for k ≥ 1; T0 = 1.

Observe that Tk = 1

2
(3k + 1), and that by (P4)

r(Tk) ≥ 2k. (∗)

One can easily verify that the three questions raised above regarding this sequence are
correct for k = 0, 1, 2, and 3. Szekeres conjectured that question (c) has an affirmative
answer for any k. The proof of this conjecture for k = 4 given in [1] is erroneous as it is
based an incorrect value of r(20). In this paper we give a correct proof. We also prove
some inequalities analogous to (P2) and evaluate r(n) for 21 ≤ n ≤ 27 and for n = 41,
42, and 43.

If r(n) is known at a jump node n, then one can determine r(n + 1) by listing all the
optimal A sequences in 〈n〉 and then testing if any one amongst them still retains the
A property when n + 1 is appended to it. This procedure can be suitably modified to
test whether r(n+ 1) = c+ 1 given that r(n) ≤ c. For the convenience of such testing
we begin by listing a few A sequences.

(i) By (P4), (1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41) is an A sequence in 〈41〉.
Note that the seven terms immediately following the first term in this sequence are all
jump nodes.

the electronic journal of combinatorics 19 (2012), #P27 2



(ii) There are exactly four optimal A sequences in 〈9〉, namely, (1, 2, 4, 8, 9), (1, 2, 6, 7, 9),
(1, 2, 6, 8, 9), and (1, 3, 4, 8, 9). In contrast, there are twenty five such sequences in 〈8〉.

(iii) There are only two optimal A sequences in 〈20〉, namely, (1, 2, 6, 7, 9, 14, 15, 18, 20)
and (1, 3, 6, 7, 12, 14, 15, 19, 20).

The following theorem sharpens the inequality in (P2) in a particular case.

Theorem 1. If r(n−1) < r(n), then r(2n) < r(n)+r(n) and r(2n−1) < r(n)+r(n−1)

Proof. Let r(n) = k. Then, by the given hypothesis, r(n− 1) = k − 1. Now suppose
r(2n) = 2k and let S = (a1, a2, . . . , a2k) be an optimal A sequence in 〈2n〉. Then the
first k terms of S are an optimal A sequence in 〈n〉, and the last k terms are a translate
of an optimal A sequence in 〈n〉. Thus, by (P5), ak+1 = n + 1 and a2k = 2n. Now,
as n + 1 and 2n both occur in S, therefore 2 /∈ S. Consequently, a2 > 2, whence
(a2 − 2, a3 − 2, . . . , ak − 2, ak+1 − 2) is a k term A sequence in 〈n − 1〉, contradicting
that r(n− 1) = k − 1.

To prove the second statement, assume r(2n−1) ≥ 2k−1, and let T = (a1, a2, . . . , a2k−1)
be an A sequence in 〈2n − 1〉. We may assume that the first k terms of T are in 〈n〉
(for otherwise we will work with the complement of T in 〈2n〉 which then will have
this property). Hence (a1, . . . , ak) is an optimal A sequence in 〈n〉, and so a1 = 1 and
ak = n. But then 2n− 1 /∈ T , implying that T is also an A sequence in 〈2n− 2〉. This
is impossible because r(2n− 2) ≤ r(n− 1) + r(n− 1) = 2k − 2. ♦

Theorem 2. r(21) = r(22) = r(23) = 9.

Proof. Suppose r(21) = 10. Then there exists an A sequence in 〈21〉 having nine terms
in 〈20〉. This is impossible because neither of the two nine term A sequences in 〈20〉
retains the A property when 21 is appended to it. Hence r(21) = 9.

If r(22) = 10, then (after complementing if necessary) there is an optimal A sequence in
〈22〉 having at least five terms in [11]. However, on testing all the A sequences in 〈11〉 of
length five and six, we find that not only none of them extends to an A sequence with
ten terms in 〈22〉 or but also none so extends to 〈23〉. This proves that r(22) = 9 and
it also leads us to conclude that r(23) = 9 (for if n = 23 were a jump node, an optimal
A sequence on 〈23〉 would contain both 1 and 23 and exclude 12). ♦

Since arguments similar to those given in the preceding theorem also hold with slight
modifications in the next three theorems, we will skip many details.

Theorem 3. r(24) = r(25) = 10 and r(26) = r(27) = 11.

Proof. As r(23) = 9 and (1, 2, 6, 7, 9, 14, 18, 20, 23, 24) is an A sequence, hence r(24) =
10. The proof that r(25) < 11 can now be completed by examining all A sequences
in 〈12〉 having six terms. Next, since (1, 3, 4, 8, 9, 11, 16, 20, 22, 25, 26) is an A sequence,
hence r(26) = 11. The proof that r(27) < 12 can be completed by examining A
sequences with at least six terms in 〈13〉. ♦
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Theorem 4. 15 ≤ r(40) ≤ 16.

Proof. The sixteen term A sequence in [41] listed in (i) shows that r(40) ≥ 15. On
the other hand, by Theorem 1, r(40) ≤ 17. Now, if r(40) = 17, then there is an optimal
A sequence in 〈40〉 having nine terms in 〈20〉. However, neither of the two nine term A
sequences in 〈20〉 extends to an A sequence with seventeen terms in 〈40〉. This proves
that r(40) ≤ 16. ♦

The next theorem, in part, shows that Szekeres’ conjecture holds for k = 4.

Theorem 5. r(41) = r(42) = r(43) = 16.

Proof. As r(40) ≤ 16, so r(41) ≤ 17. Also, as we already know a sixteen term A
sequence in 〈41〉, therefore r(41) ≥ 16. Now if there exists a seveteen term A sequence S
in 〈41〉, then it must exclude 21. Thus we may assume (by replacing S by its complement
in 〈41〉 if necessary) that S has nine terms in 〈20〉. However, one easily checks that
neither of the two nine term A sequences in 〈20〉 extends to a seventeen term A sequence
in 〈41〉. Hence r(41) = 16. The proof that each of r(42) and r(43) is less than seventeen
can be similarly completed by examining all A sequences with nine terms in 〈21〉. ♦

Lemma. If there exists a nonnegative integer c and a positive integer m such that the
inequality r(2n+ c) ≤ n holds for n = m, then it also holds for n = m+ 4.

Proof. Since r(8) = 4, therefore r(2m + 8 + c) ≤ r(2m + c) + r(8) ≤ m + 4, which
proves the lemma. ♦

The following theorem follows from the preceding lemma and induction on n.

Theorem 6. If there exists a nonnegative integer c and a positive integer m such that
the inequality r(2n + c) ≤ n holds for n = m, m + 1, m + 2, and m + 3, then it holds
for all n ≥ m.

As the hypotheses of Theorem 6 are satisfied for m = 8 and c = 3, we obtain the
following improvement of Theorem 1 in [1].

Corollary. For n ≥ 8, r(2n+ 3) ≤ n.

The three question listed earlier as (a), (b), and (c) (including Szekeres’ conjecture for
k ≥ 5) remain open at the moment.
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