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Abstract. The optimal length r(n) of a sequence in [1,n]| containing no 3-
term arithmetic progression is determined for several new values of n and some
results relating to the subadditivity of r are obtained. We also prove a particular
case of a conjecture of Szekeres.

A subsequence S = (aj,as9,...,ax) of the sequence (n) = (1,2,...,n) containing no
three terms a,, a4, and a, for which a; — a, = a, — a4 (i.e., S contains no three term
arithmetic progression) is called an A sequence in (n). r(n) denotes the maximum
number of terms possible in an A sequence in (n), and any such sequence is said to be
optimal in (n). Throughout this paper any input variable z in r(z) is assumed to be a
positive integer.

The following properties of A sequences and the function r are evident.

(P1) If S = (a3, aq,...,a;) is an A sequence in (n), then (n+1—ag,n+1—ag_1,...,n—
ay) is an A sequence called the complement of S in (n). Also, for any integer j < ap, a
translate (ay — j,a2 — j,...,ax — j) of S is an A sequence.

(P2) For any m and n, r(m +n) < r(m) +r(n). In brief, the function r is subadditive.

(P3) For any n, r(n) < r(n+1) <1+ r(n). Whenever r(n — 1) < r(n), we call n a
Jump node for r.

(P4) If (a1,as9,...,ar—1,ak) is an A sequence in (n), then (ay,as,...,ar-1,a5,2n—1+
a,2n —1+ag,...,2n — 1+ ag—1,2n — 1 + ay) is an A sequence in (3n — 1); whence
r(3n —1) > 2r(n).

(P5) If r(n — 1) < r(n), then any optimal A sequence in (n) contains both 1 and n.

(P6) If r(n—1) < r(n) < r(n+1), then any optimal A sequence in (n + 1) contains all
four of 1, 2, n, and n + 1.

Observe that, by (P6), no three consecutive integers can all be jump nodes for r.
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The study of A sequences was initiated by Erdés and Turan in [1], and since the ap-
pearance of their paper there has been extensive research concerning the asymptotic
behavior of the function r and its correspondent that counts the sequences in (n) avoid-
ing k-term arithmetic progressions for k > 3. A substantial paper by Szemeredi [2] gives
many references on this topic. The exact value of r(n) is, however, known for only a
few n. In this regard, an error in [1] in computing (20) has gone undetected and as a
consequence, subsequent computations of 7(n) for certain n > 20 are based on flawed
arguments. For example, the evaluations of r(21) and r(41) (and perhaps r(22) and
r(23) also) in [1] are founded on incorrect reasoning. The values of r(n) for n < 19
found in [1] are, however, all correct. We summarize these values by listing only the
jump nodes for r:

r(2)=2,7r(4)=3,r(5)=4,r9) =5, r(11) =6, r(13) =7, r(14) = 8.

The next jump node for r after 14 is 20 and not 21 as claimed in [1]. This is because
r(19) = 8, and (1,2,6,7,9,14,15,18,20) is an A sequence.

There is a sequence {T}} of positive integers with three intriguing questions surrounding
it: (a) Is each Ty, k > 1, a jump node for r7? (b) Is the optimal A sequence in (T}) for
each k unique? (c) Is it true that 7(Ty) = 2% for each k? The sequence {T}} is defined
recursively as follows:

Ty =3Ty_1—1 fork>1; Ty = 1.

Observe that Tj, = 1(3* + 1), and that by (P4)

r(Ty) > 2. (%)

One can easily verify that the three questions raised above regarding this sequence are
correct for k = 0, 1, 2, and 3. Szekeres conjectured that question (c) has an affirmative
answer for any k. The proof of this conjecture for k = 4 given in [1] is erroneous as it is
based an incorrect value of 7(20). In this paper we give a correct proof. We also prove
some inequalities analogous to (P2) and evaluate r(n) for 21 < n < 27 and for n = 41,
42, and 43.

If r(n) is known at a jump node n, then one can determine r(n + 1) by listing all the
optimal A sequences in (n) and then testing if any one amongst them still retains the
A property when n + 1 is appended to it. This procedure can be suitably modified to
test whether r(n + 1) = ¢+ 1 given that r(n) < ¢. For the convenience of such testing
we begin by listing a few A sequences.

(1) By (P4), (1,2,4,5,10,11,13,14, 28,29, 31, 32,37, 38,40,41) is an A sequence in (41).
Note that the seven terms immediately following the first term in this sequence are all
jump nodes.
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(7i) There are exactly four optimal A sequences in (9), namely, (1,2,4,8,9), (1,2,6,7,9),
(1,2,6,8,9), and (1,3,4,8,9). In contrast, there are twenty five such sequences in (8).

(7i7) There are only two optimal A sequences in (20), namely, (1,2,6,7,9,14,15,18,20)
and (1,3,6,7,12, 14,15, 19, 20).

The following theorem sharpens the inequality in (P2) in a particular case.
Theorem 1. Ifr(n—1) < r(n), then r(2n) < r(n)+r(n) and r(2n—1) < r(n)+r(n—1)

Proof. Let r(n) = k. Then, by the given hypothesis, 7(n — 1) = k — 1. Now suppose
r(2n) = 2k and let S = (a1, az,...,a2;) be an optimal A sequence in (2n). Then the
first k& terms of S are an optimal A sequence in (n), and the last k terms are a translate
of an optimal A sequence in (n). Thus, by (P5), ax+1 = n + 1 and agr, = 2n. Now,
as n + 1 and 2n both occur in S, therefore 2 ¢ S. Consequently, a; > 2, whence
(ag — 2,a3 — 2,...,ax — 2,ar+1 — 2) is a k term A sequence in (n — 1), contradicting
that r(n — 1) = k — 1.

To prove the second statement, assume r(2n—1) > 2k—1, and let T' = (ay, as, ..., a2k-1)
be an A sequence in (2n — 1). We may assume that the first & terms of 7" are in (n)
(for otherwise we will work with the complement of 7' in (2n) which then will have
this property). Hence (ai,...,ax) is an optimal A sequence in (n), and so a; = 1 and
ar = n. But then 2n — 1 ¢ T, implying that T is also an A sequence in (2n — 2). This
is impossible because r(2n —2) <r(n—1)+r(n—1)=2k-2.

Theorem 2. r(21) =r(22) =7r(23) = 9.

Proof. Suppose r(21) = 10. Then there exists an A sequence in (21) having nine terms
in (20). This is impossible because neither of the two nine term A sequences in (20)
retains the A property when 21 is appended to it. Hence r(21) = 9.

If (22) = 10, then (after complementing if necessary) there is an optimal A sequence in
(22) having at least five terms in [11]. However, on testing all the A sequences in (11) of
length five and six, we find that not only none of them extends to an A sequence with
ten terms in (22) or but also none so extends to (23). This proves that r(22) = 9 and
it also leads us to conclude that r(23) = 9 (for if n = 23 were a jump node, an optimal
A sequence on (23) would contain both 1 and 23 and exclude 12). <

Since arguments similar to those given in the preceding theorem also hold with slight
modifications in the next three theorems, we will skip many details.

Theorem 3. r(24) =r(25) = 10 and r(26) = r(27) = 11.

Proof. Asr(23) =9 and (1,2,6,7,9,14,18,20,23,24) is an A sequence, hence r(24) =
10. The proof that r(25) < 11 can now be completed by examining all A sequences
in (12) having six terms. Next, since (1,3,4,8,9,11, 16, 20, 22,25, 26) is an A sequence,
hence 7(26) = 11. The proof that r(27) < 12 can be completed by examining A
sequences with at least six terms in (13). <
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Theorem 4. 15 < r(40) < 16.

Proof. The sixteen term A sequence in [41] listed in (¢) shows that r(40) > 15. On
the other hand, by Theorem 1, 7(40) < 17. Now, if r(40) = 17, then there is an optimal
A sequence in (40) having nine terms in (20). However, neither of the two nine term A

sequences in (20) extends to an A sequence with seventeen terms in (40). This proves
that r(40) < 16. ¢

The next theorem, in part, shows that Szekeres’ conjecture holds for k = 4.
Theorem 5. r(41) = r(42) = r(43) = 16.

Proof. As r(40) < 16, so r(41) < 17. Also, as we already know a sixteen term A
sequence in (41), therefore r(41) > 16. Now if there exists a seveteen term A sequence S
in (41), then it must exclude 21. Thus we may assume (by replacing S by its complement
in (41) if necessary) that S has nine terms in (20). However, one easily checks that
neither of the two nine term A sequences in (20) extends to a seventeen term A sequence
in (41). Hence r(41) = 16. The proof that each of (42) and r(43) is less than seventeen
can be similarly completed by examining all A sequences with nine terms in (21). <

Lemma. If there exists a nonnegative integer ¢ and a positive integer m such that the
inequality r(2n + ¢) < n holds for n = m, then it also holds for n = m + 4.

Proof. Since r(8) = 4, therefore r(2m + 8 + ¢) < r(2m + ¢) + r(8) < m + 4, which
proves the lemma. <

The following theorem follows from the preceding lemma and induction on n.

Theorem 6. If there exists a nonnegative integer ¢ and a positive integer m such that
the inequality r(2n + ¢) < n holds for n = m, m + 1, m + 2, and m + 3, then it holds
for all n > m.

As the hypotheses of Theorem 6 are satisfied for m = 8 and ¢ = 3, we obtain the
following improvement of Theorem 1 in [1].

Corollary. For n > 8, r(2n+3) <n.

The three question listed earlier as (a), (b), and (c) (including Szekeres’ conjecture for
k > 5) remain open at the moment.
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