Sequences of Integers Avoiding 3-term Arithmetic Progressions

Arun Sharma Department of Mathematics University of California, Berkeley Berkeley, CA 94720 asharma@math.berkeley.edu

Submitted: Sep 29, 2011; Accepted: Jan 12, 2012; Published: Jan 21, 2012 Mathematics Subject Classifications: 05A15, 05C55

Abstract. The optimal length r(n) of a sequence in [1, n] containing no 3term arithmetic progression is determined for several new values of n and some results relating to the subadditivity of r are obtained. We also prove a particular case of a conjecture of Szekeres.

A subsequence $S = (a_1, a_2, \ldots, a_k)$ of the sequence $\langle n \rangle = (1, 2, \ldots, n)$ containing no three terms a_p , a_q , and a_r for which $a_q - a_p = a_r - a_q$ (i.e., S contains no three term arithmetic progression) is called an A sequence in $\langle n \rangle$. r(n) denotes the maximum number of terms possible in an A sequence in $\langle n \rangle$, and any such sequence is said to be *optimal* in $\langle n \rangle$. Throughout this paper any input variable x in r(x) is assumed to be a positive integer.

The following properties of A sequences and the function r are evident.

(P1) If $S = (a_1, a_2, \ldots, a_k)$ is an A sequence in $\langle n \rangle$, then $(n+1-a_k, n+1-a_{k-1}, \ldots, n-a_1)$ is an A sequence called the *complement* of S in $\langle n \rangle$. Also, for any integer $j < a_1$, a translate $(a_1 - j, a_2 - j, \ldots, a_k - j)$ of S is an A sequence.

(P2) For any m and n, $r(m+n) \leq r(m) + r(n)$. In brief, the function r is subadditive.

(P3) For any $n, r(n) \leq r(n+1) \leq 1 + r(n)$. Whenever r(n-1) < r(n), we call n a jump node for r.

(P4) If $(a_1, a_2, ..., a_{k-1}, a_k)$ is an A sequence in $\langle n \rangle$, then $(a_1, a_2, ..., a_{k-1}, a_k, 2n-1 + a_1, 2n-1 + a_2, ..., 2n-1 + a_{k-1}, 2n-1 + a_k)$ is an A sequence in $\langle 3n-1 \rangle$; whence $r(3n-1) \ge 2r(n)$.

(P5) If r(n-1) < r(n), then any optimal A sequence in $\langle n \rangle$ contains both 1 and n.

(P6) If r(n-1) < r(n) < r(n+1), then any optimal A sequence in (n+1) contains all four of 1, 2, n, and n+1.

Observe that, by (P6), no three consecutive integers can all be jump nodes for r.

The electronic journal of combinatorics $\mathbf{19}$ (2012), $\#\mathrm{P27}$

The study of A sequences was initiated by Erdős and Turan in [1], and since the appearance of their paper there has been extensive research concerning the asymptotic behavior of the function r and its correspondent that counts the sequences in $\langle n \rangle$ avoiding k-term arithmetic progressions for k > 3. A substantial paper by Szemeredi [2] gives many references on this topic. The exact value of r(n) is, however, known for only a few n. In this regard, an error in [1] in computing r(20) has gone undetected and as a consequence, subsequent computations of r(n) for certain n > 20 are based on flawed arguments. For example, the evaluations of r(21) and r(41) (and perhaps r(22) and r(23) also) in [1] are founded on incorrect reasoning. The values of r(n) for $n \leq 19$ found in [1] are, however, all correct. We summarize these values by listing only the jump nodes for r:

$$r(2) = 2, r(4) = 3, r(5) = 4, r(9) = 5, r(11) = 6, r(13) = 7, r(14) = 8.$$

The next jump node for r after 14 is 20 and not 21 as claimed in [1]. This is because r(19) = 8, and (1, 2, 6, 7, 9, 14, 15, 18, 20) is an A sequence.

There is a sequence $\{T_k\}$ of positive integers with three intriguing questions surrounding it: (a) Is each T_k , k > 1, a jump node for r? (b) Is the optimal A sequence in $\langle T_k \rangle$ for each k unique? (c) Is it true that $r(T_k) = 2^k$ for each k? The sequence $\{T_k\}$ is defined recursively as follows:

$$T_k = 3T_{k-1} - 1$$
 for $k \ge 1$; $T_0 = 1$.

Observe that $T_k = \frac{1}{2}(3^k + 1)$, and that by (P4)

$$r(T_k) \ge 2^k. \tag{(*)}$$

One can easily verify that the three questions raised above regarding this sequence are correct for k = 0, 1, 2, and 3. Szekeres conjectured that question (c) has an affirmative answer for any k. The proof of this conjecture for k = 4 given in [1] is erroneous as it is based an incorrect value of r(20). In this paper we give a correct proof. We also prove some inequalities analogous to (P2) and evaluate r(n) for $21 \le n \le 27$ and for n = 41, 42, and 43.

If r(n) is known at a jump node n, then one can determine r(n + 1) by listing all the optimal A sequences in $\langle n \rangle$ and then testing if any one amongst them still retains the A property when n + 1 is appended to it. This procedure can be suitably modified to test whether r(n + 1) = c + 1 given that $r(n) \leq c$. For the convenience of such testing we begin by listing a few A sequences.

(i) By (P4), (1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41) is an A sequence in $\langle 41 \rangle$. Note that the seven terms immediately following the first term in this sequence are all jump nodes.

The electronic journal of combinatorics $\mathbf{19}$ (2012), $\#\mathrm{P27}$

(*ii*) There are exactly four optimal A sequences in $\langle 9 \rangle$, namely, (1, 2, 4, 8, 9), (1, 2, 6, 7, 9), (1, 2, 6, 8, 9), and (1, 3, 4, 8, 9). In contrast, there are twenty five such sequences in $\langle 8 \rangle$.

(*iii*) There are only two optimal A sequences in $\langle 20 \rangle$, namely, (1, 2, 6, 7, 9, 14, 15, 18, 20) and (1, 3, 6, 7, 12, 14, 15, 19, 20).

The following theorem sharpens the inequality in (P2) in a particular case.

Theorem 1. If r(n-1) < r(n), then r(2n) < r(n) + r(n) and r(2n-1) < r(n) + r(n-1)

Proof. Let r(n) = k. Then, by the given hypothesis, r(n-1) = k - 1. Now suppose r(2n) = 2k and let $S = (a_1, a_2, \ldots, a_{2k})$ be an optimal A sequence in $\langle 2n \rangle$. Then the first k terms of S are an optimal A sequence in $\langle n \rangle$, and the last k terms are a translate of an optimal A sequence in $\langle n \rangle$. Thus, by (P5), $a_{k+1} = n + 1$ and $a_{2k} = 2n$. Now, as n + 1 and 2n both occur in S, therefore $2 \notin S$. Consequently, $a_2 > 2$, whence $(a_2 - 2, a_3 - 2, \ldots, a_k - 2, a_{k+1} - 2)$ is a k term A sequence in $\langle n - 1 \rangle$, contradicting that r(n-1) = k - 1.

To prove the second statement, assume $r(2n-1) \ge 2k-1$, and let $T = (a_1, a_2, \ldots, a_{2k-1})$ be an A sequence in $\langle 2n-1 \rangle$. We may assume that the first k terms of T are in $\langle n \rangle$ (for otherwise we will work with the complement of T in $\langle 2n \rangle$ which then will have this property). Hence (a_1, \ldots, a_k) is an optimal A sequence in $\langle n \rangle$, and so $a_1 = 1$ and $a_k = n$. But then $2n - 1 \notin T$, implying that T is also an A sequence in $\langle 2n - 2 \rangle$. This is impossible because $r(2n-2) \le r(n-1) + r(n-1) = 2k - 2$.

Theorem 2. r(21) = r(22) = r(23) = 9.

Proof. Suppose r(21) = 10. Then there exists an A sequence in $\langle 21 \rangle$ having nine terms in $\langle 20 \rangle$. This is impossible because neither of the two nine term A sequences in $\langle 20 \rangle$ retains the A property when 21 is appended to it. Hence r(21) = 9.

If r(22) = 10, then (after complementing if necessary) there is an optimal A sequence in $\langle 22 \rangle$ having at least five terms in [11]. However, on testing all the A sequences in $\langle 11 \rangle$ of length five and six, we find that not only none of them extends to an A sequence with ten terms in $\langle 22 \rangle$ or but also none so extends to $\langle 23 \rangle$. This proves that r(22) = 9 and it also leads us to conclude that r(23) = 9 (for if n = 23 were a jump node, an optimal A sequence on $\langle 23 \rangle$ would contain both 1 and 23 and exclude 12).

Since arguments similar to those given in the preceding theorem also hold with slight modifications in the next three theorems, we will skip many details.

Theorem 3. r(24) = r(25) = 10 and r(26) = r(27) = 11.

Proof. As r(23) = 9 and (1, 2, 6, 7, 9, 14, 18, 20, 23, 24) is an A sequence, hence r(24) = 10. The proof that r(25) < 11 can now be completed by examining all A sequences in $\langle 12 \rangle$ having six terms. Next, since (1, 3, 4, 8, 9, 11, 16, 20, 22, 25, 26) is an A sequence, hence r(26) = 11. The proof that r(27) < 12 can be completed by examining A sequences with at least six terms in $\langle 13 \rangle$.

Theorem 4. $15 \le r(40) \le 16$.

Proof. The sixteen term A sequence in [41] listed in (i) shows that $r(40) \ge 15$. On the other hand, by Theorem 1, $r(40) \le 17$. Now, if r(40) = 17, then there is an optimal A sequence in $\langle 40 \rangle$ having nine terms in $\langle 20 \rangle$. However, neither of the two nine term A sequences in $\langle 20 \rangle$ extends to an A sequence with seventeen terms in $\langle 40 \rangle$. This proves that $r(40) \le 16$. \Diamond

The next theorem, in part, shows that Szekeres' conjecture holds for k = 4.

Theorem 5. r(41) = r(42) = r(43) = 16.

Proof. As $r(40) \leq 16$, so $r(41) \leq 17$. Also, as we already know a sixteen term A sequence in $\langle 41 \rangle$, therefore $r(41) \geq 16$. Now if there exists a seveteen term A sequence S in $\langle 41 \rangle$, then it must exclude 21. Thus we may assume (by replacing S by its complement in $\langle 41 \rangle$ if necessary) that S has nine terms in $\langle 20 \rangle$. However, one easily checks that neither of the two nine term A sequences in $\langle 20 \rangle$ extends to a seventeen term A sequence in $\langle 41 \rangle$. Hence r(41) = 16. The proof that each of r(42) and r(43) is less than seventeen can be similarly completed by examining all A sequences with nine terms in $\langle 21 \rangle$.

Lemma. If there exists a nonnegative integer c and a positive integer m such that the inequality $r(2n+c) \leq n$ holds for n = m, then it also holds for n = m + 4.

Proof. Since r(8) = 4, therefore $r(2m + 8 + c) \le r(2m + c) + r(8) \le m + 4$, which proves the lemma. \diamondsuit

The following theorem follows from the preceding lemma and induction on n.

Theorem 6. If there exists a nonnegative integer c and a positive integer m such that the inequality $r(2n+c) \leq n$ holds for n = m, m+1, m+2, and m+3, then it holds for all $n \geq m$.

As the hypotheses of Theorem 6 are satisfied for m = 8 and c = 3, we obtain the following improvement of Theorem 1 in [1].

Corollary. For $n \ge 8$, $r(2n+3) \le n$.

The three question listed earlier as (a), (b), and (c) (including Szekeres' conjecture for $k \ge 5$) remain open at the moment.

References

[1] P. Erdös and P. Turan, On some sequences of integers, J. London Math. Soc. 11 (1936) 261-264.

[2] E. Szemeredi, On sets of integers containing no k elements in arithmetic progression, Acta Mathematica XXVII (1975) 199-245.

The electronic journal of combinatorics $\mathbf{19}$ (2012), $\#\mathrm{P27}$