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Abstract

We introduce and study new refinements of inversion statistics for permutations,
such as k-step inversions, (the number of inversions with fixed position differences)
and non-inversion sums (the sum of the differences of positions of the non-inversions
of a permutation). We also provide a distribution function for non-inversion sums, a
distribution function for k-step inversions that relates to the Eulerian polynomials,
and special cases of distribution functions for other statistics we introduce, such as
(≤k)-step inversions and (k1, k2)-step inversions (that fix the value separation as
well as the position). We connect our refinements to other work, such as inversion
tops that are 0 modulo a fixed integer d, left boundary sums of paths, and marked
meshed patterns. Finally, we use non-inversion sums to show that for every number
n > 34, there is a permutation such that the dot product of that permutation and
the identity permutation (of the same length) is n.
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1 Introduction

The main object of study in this paper is the set of inversions in a permutation.1 An
inversion in a permutation π, of rank n, is a pair (a, b) satisfying 1 ≤ a < b ≤ n and
π(a) > π(b). All other pairs are called non-inversions. We are particularly interested in
permutation statistics related to inversions, such as the number of inversions of a certain
form. The study of permutation statistics was largely initiated by the seminal MacMa-
hon [6], but has seen explosive growth in recent decades. In Section 2 we introduce the
concept of the non-inversion sum of a permutation. This is the sum of the differences b−a
for all non-inversions (a, b) in the permutation. Before studying the distribution of this
statistic we connect these non-inversion sums to another known statistic on permutations:
the dot product with a fixed vector. In particular, the dot product of the permutation
(treated as a vector) with the identity permutation of the same length is equal to the
non-inversion sum of the permutation plus a function of the rank of the permutation; see
Theorem 2.5.

In Section 3, we define the distribution function for the non-inversion sum and prove
a recurrence relation for it in Theorem 3.8. We introduce the concept of a zone-crossing
vector, which appears in the recurrence relations. This is a vector whose kth coordinate
is the number of non-inversions (a, b) such that a ≤ k < b. We relate these vectors
to the non-inversion sums and show that there is a bijective correspondence between
permutations and their zone-crossing vectors. We also prove a theorem showing that the
distribution of the coordinates of these vectors is related to the q-analog of the binomial
coefficients; see Theorem 3.7.

In Section 4 we consider k-step inversions, which are inversions (a, b) such that b−a =
k, and show in Theorem 4.4 that the distribution of these types of inversions is related to
the Eulerian polynomials. We next consider (k1, k2)-step inversions, which are inversions
(a, b), such that b−a = k1 and π(b)−π(a) = k2, and prove a special case of the distribution
function; see Proposition 4.6. We also consider inversions (a, b) such that b − a ≤ k and
prove recurrence relations for their distributions in some special cases; see Proposition 4.8.

In Section 5, we consider some relationships between our work and the work of others.
In Section 5.1, we consider a k-step variant of a statistic that counts inversions whose
first coordinate (called the inversion top) is 0 modulo d. Inversion tops modd have been
studied by Kitaev and Remmel [4, 5] and by Jansson [3]. We provide formulas for special
cases of the distribution of k-step inversions whose first coordinate is 0 mod d.

In Section 5.2, we consider a k-step variant of the left boundary sums in Dukes and
Reifergerste [2]. Given a permutation π, the left boundary sum of π (denoted lbsum(π))
gives the area to the left of the Dyck path of π. Dukes and Reifergerste [2] show that
lbsum(π) is also the sum of the number of inversions and the number of certified non-
inversions, where a certified non-inversion is a non-inversion (a, b), with a position c, such
that a < c < b and πc ≥ πd whenever a < d < b. We consider a k-step variant of this
(denoted ipcnik(π)) that only counts k-step inversions and k-step certified non-inversions,
and provide special cases of the distribution functon. Finally we show how many of the

1We provide basic definitions at the end of this introduction.
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statistics we consider can be represented using marked mesh patterns defined by Úlfarsson
in [7]

The connection found in Theorem 2.5 is used in Theorem 2.2 to show that given any
integer k greater than 34 there exists a permutation π such that the dot product of π
with the identity permutation 12 · · · |π| equals k. We also present an algorithm that,
given k, produces the permutation π; see Section 2.1. The total number of permutations
which dotted with the identity permutation gives k, is given by the sequence A1352982 in
the Online Encyclopedia of Integer Sequences, and hence our theorem tells us that this
sequence is non-zero after k = 34.

Basic definitions

We define the set of positive integers to be P = {1, 2, 3, . . . }. A permutation is a bijective
function π : {1, . . . , n} → {1, . . . , n} for some n in P. The number n is called the rank
of the permutation. We often write πk for π(k), and write a permutation as a list of its
values π1π2 · · · πn. Let Sn be the set of permutations of rank n.

We define the identity permutation 1n as the permutation π, such that πk = k for
1 ≤ k ≤ n. We will write 1, omitting the subscript, if the rank is clear from the context.
Given a permutation π = π1π2 · · · πn, we define its reverse as πr = πnπn−1 · · · π1, its
complement as πc = (n + 1 − π1)(n + 1 − π2) · · · (n + 1 − πn), and its inverse πi as the
unique permutation such that π ◦ πi = 1.

2 Non-inversion sums and the dot product of permu-

tations

Definition 2.1. For a permutation π of rank n, the number

1 · π =
n∑
i=1

iπ(i)

is called the cosine of the permutation.

Note that if we treat permutations as vectors then

1 · π = |1| · |π| cos(θ) = (12 + 22 + · · ·+ n2) cos(θ) =
n(n+ 1)(2n+ 1)

6
cos(θ),

where θ is the angle between 1 and π. So 1 · π only depends on the cosine of the angle
between the identity and the permutation.

Most of this section will be leading to a proof of the following theorem:

Theorem 2.2. For a positive integer

k 6∈ {2, 3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 31, 32, 33, 34},

there exists a permutation π such that 1 · π = k.

2http://oeis.org/A135298
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The total number of permutations π, such that 1 · π = k, is given by the sequence
A1352983 in the Online Encyclopedia of Integer Sequences. Our theorem tells us that
this sequence is non-zero after k = 34. Furthermore, we will provide an algorithm in
Section 2.1 for constructing a permutation π, such that 1 · π = k for k as in the theorem.

To prove this theorem, we introduce the notion of the non-inversion sum. We build
this notion on that of a non-inversion. Given a permutation π of rank n, an inversion is a
pair (a, b), such that 1 ≤ a < b ≤ n and π(a) > π(b), and a non-inversion is a pair (a, b),
such that 1 ≤ a < b ≤ n and π(a) < π(b). Denote the set of inversions of π by INV(π),
and the set of non-inversions by NINV(π).

Definition 2.3. Let π be a permutation.

1. The number
invsum(π) =

∑
(a,b)∈INV(π)

(b− a) ,

is called the inversion sum of π.

2. The number
ninvsum(π) =

∑
(a,b)∈NINV(π)

(b− a) ,

is called the non-inversion sum of π.

Observe that the values added up in the sums are differences of positions (b−a) rather
than of values (π(b)− π(a)). The following result shows that had we defined the sums in
terms of differences of values we would have resulted in the same function.

Proposition 2.4. For any permutation π

ninvsum(πi) = ninvsum(π),

or equivalently ∑
(a,b)∈NINV(π)

(π(b)− π(a)) =
∑

(a,b)∈NINV(π)

(b− a) .

A similar statement holds for the inversion sum.

Proof. We will prove the statement by induction on the rank of the permutation. Let π be
an arbitrary permutation and let π(n) = k. If k = 1 then the result follows immediately
by the induction hypotheses. Otherwise let π(hj) = j for j = 1, . . . , k − 1. We depict in
Figure 1 graphs of π and πi, where the boxi,j represents the sets of pairs (a, πa) lying in
the designated regions of the graph on the left, or (a, πi

a) lying in the designated regions
of the graph on the right. For example, box2,j = {(a, πa) | hj < a, j < πa < k}.
Let τ be the permutation obtained from π by removing the last element k = π(n) and

3http://oeis.org/A135298
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Figure 1: The permutation π is shown on the left and πi is shown on the right.

reducing the letters of π that are larger than k by 1. Then, by the induction hypothesis,
ninvsum(τ) = ninvsum(τ i). But

ninvsum(π) = ninvsum(τ) +
k−1∑
j=1

1 + | box1,j |+ | box2,j |+ | box3,j |,

where for each j the sum of the box sizes is equal to one less than the separation n− hj,
and

ninvsum(πi) = ninvsum(τ i) +
k−1∑
j=1

1 + | box1,j |+ | box2,j |+ | box4,j |,

where for each j the sum of the box sizes box2,j and box4,j is equal to one less than the
separation k − j and the size of box1,j represents the number of former non-inversions
whose separation has just increased by one.
To see that

∑k−1
j=1 | box3,j | is equal to

∑k−1
j=1 | box4,j | note that the following are equivalent:

• (a, σ(a)) ∈ box4,π(b),

• (a, b) ∈ INV(π) with π(a) < k,

• (b, σ(b)) ∈ box3,π(a).

It is straightforward to see that ninvsum(πr) = invsum(π) = ninvsum(πc).
Note that for any permutation π of rank n, the sum of the inversion sum and the

non-inversion sum is the (n− 1)th tetrahedral number
(
n+1
3

)
:

invsum(π) + ninvsum(π) =
∑

1≤a<b≤n

(b− a) (1)

=
(n− 1)n(n+ 1)

6
=

(
n+ 1

3

)
,
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so two permutations have the same inversion sum if and only if they have the same
non-inversion sum.

We now show that the cosine of the permutation is closely related to the non-inversion
sum of the permutation.

Theorem 2.5. For any permutation π,

1 · π = 1 · 1c + ninvsum(π).

Proof. Let ϕ be a function mapping a permutation π of rank n to a vector, whose jth

coordinate is the number of times the jth position of π is at the end of a non-inversion
minus the number of times the jth position is at the beginning of a non-inversion, that is,

ϕ(π)j =
∑

(i,j)∈NINV(π)

1−
∑

(j,k)∈NINV(π)

1.

The jth coordinate of ϕ(π) is then the coefficient of j (treating j as a variable) in the
non-inversion sum formula, and hence the contribution of the jth position of π to the
non-inversion sum is j times this number. Thus ninvsum(π) = 1 · ϕ(π).

We next see that the jth coordinate of ϕ(π) is ϕ(π)j = πj − 1c
j. The first coordinate

is ϕ(π)1 = π1 − n = π1 − 1c
1, since in the formula for the non-inversion sum, π1 will be

subtracted once for every non-inversion, which is guaranteed by a value greater than π1.
For general j ≥ 1, if πj−πj+1 > 0, then ϕ(πj+1) can be obtained from ϕ(πj) by subtracting
the number of values between πj+1 and πj, as given each such value πk, either k < j, in
which case (k, j) was counted positively toward ϕ(πj) but (k, j+1) does not count toward
ϕ(πj+1), or j > j+1, in which case (j, k) did not count toward ϕ(πj), but (j+1, k) counts
negatively toward ϕ(πj+1). Thus we subtract πj − πj+1 − 1. If πj − πj+1 < 0, then to
obtain ϕ(πj) we add 1 for every value between πj+1 and πj, and we add 2 in order to
account for the non-inversion (j, j + 1). Thus we add πj+1 − πj − 1 + 2. Either way, we
obtain the formula:

ϕ(π)j+1 = ϕ(π)j + πj+1 − πj − 1.

By induction, let us assume that ϕ(π)j = πj − 1c
j. Thus

ϕ(π)j+1 = πj − 1c
j + πj+1 − πj − 1 = πj+1 − 1c

j − 1 = πj+1 − 1c
j+1.

In conclusion:

ninvsum(π) = 1 · ϕ(π) = 1 · (π − 1c) = 1 · π − 1 · 1c,

whence our desired result of this theorem immediately follows.

Note that for 1 ∈ Sn, 1 · 1c =
(
n+2
3

)
, so equation 1 implies that the equation in the

theorem is equivalent to

1 · π =

(
n+ 2

3

)
+

(
n+ 1

3

)
− invsum(π),
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which can be simplified to

1 · π =
n(n+ 1)(2n+ 1)

6
− invsum(π).

Corollary 2.6. Given two permutations π, ρ ∈ Sn,

ninvsum(π ◦ ρ) = π · ρi − 1 · 1c.

Proof. By a direct calculation,

ninvsum(π ◦ ρ) = 1 · (π ◦ ρ)− 1 · 1c = π · ρi − 1 · 1c.

Observe that since π ·ρ = ρ ·π, then ninvsum(π◦ρi) = ninvsum(ρ◦πi). Then taking ρ =
1, we get ninvsum(π) = ninvsum(πi). This serves as an alternative proof to Proposition 2.4.

Lemma 2.7. For n ≥ 6, (
n+ 1

3

)
+

(
n

3

)
≥
(
n+ 2

3

)
− 1.

Proof. A straightforward calculation shows that for n ≥ 7,
(
n+1
3

)
+
(
n
3

)
>
(
n+2
3

)
. For the

case where n = 6, note that
(
7
3

)
+
(
6
3

)
=
(
8
3

)
− 1.

Lemma 2.8. For each value 0 ≤ k ≤ 10, there exists a permutation π ∈ S4, such that
ninvsum(π) = k.

Proof. Here is a permutation for each value of k: 4321, 3421, 3412, 4213, 4123, 2413,
3214, 1423, 2143, 1243, 1234.

Lemma 2.9. For n ≥ 4 and each 0 ≤ k ≤
(
n+1
3

)
, there is a permutation π ∈ Sn, such

that ninvsum(π) = k.

Proof. We show this by induction on n, where the base case (n = 4) is given by Lemma 2.8.
Assuming this holds for n−1 (with n > 4), we consider permutations π ∈ Sn, with πn = 1.
The last entry does not contribute anything to the non-inversion sum of the first n − 1,
which by the induction hypothesis ranges through all the integers in the interval from
0 through

(
n
3

)
. Next, consider permutations π ∈ Sn, with π1 = 1. This first entry

is guaranteed to contribute
(
n
2

)
to the non-inversion sum, while the rest can be chosen

to contribute any integer ranging from 0 through
(
n
3

)
. Because

(
n+1
3

)
=
(
n
3

)
+
(
n
2

)
, and

because
(
n
3

)
>
(
n
2

)
for n > 3, we have that we can obtain every integer from 0 through(

n+1
3

)
.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 2.2. Given k ≥ 35, let n be the largest integer, such that
(
n+2
3

)
≤ k.

Note that n ≥ 5. Let m = k−
(
n+2
3

)
. For n ≥ 5, we have by Lemma 2.7,

(
n+2
3

)
+
(
n+1
3

)
≥(

n+3
3

)
− 1. Thus m ≤

(
n+1
3

)
, and hence by Lemma 2.9, there is a permutation π ∈ Sn,

with ninvsum π = m. Thus, by Theorem 2.5,

1 · π =

(
n+ 2

3

)
+ ninvsum(π) =

(
n+ 2

3

)
+m = k.

For the values of k less than 35, we first consider in the following chart for each n ≤ 5,
the maximum and minimum values 1 · π can obtain, where π ∈ Sn.

n
(
n+2
3

) (
n+2
3

)
+
(
n+1
3

)
1 1 1
2 4 5
3 10 14
4 20 30
5 35 55

By Lemma 2.9, we have permutations π such that the value 1 ·π can hit every value from
20 through 30. For the other values, we have the following chart

π 1 · π
1 1
21 4
12 5
321 10
312 11
132 13
123 14

Note that an integer k 6∈ {2, 3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 31, 32, 33, 34} is even if
and only if there is a permutation π such that 1 · π = k and the number of odd integers
in the odd positions of π is even.

2.1 Algorithm

We present an algorithm for finding a permutation π for a given k 6∈ {2, 3, 6, 7, 8, 9, 12, 15,
16, 17, 18, 19, 31, 32, 33, 34}, such that 1 · π = k. We first introduce three functions: η, r,
and ν.

For k < 35 and k 6∈ {2, 3, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 31, 32, 33, 34}, let η(k) be π
such that 1 ·π = k (this is guaranteed by Lemma 2.2 and is easy to make explicit because
of the bound on k).

Let k be such that we wish to find π with 1 · π = k. In the proof of Theorem 2.2, we
chose the length n of the to-be-constructed π, such that

(
n+2
3

)
≤ k. Since 6(

(
n+2
3

)
− k) =

the electronic journal of combinatorics 19 (2012), #P29 8



n3 + 3n2 + 2n− 6k, we can determine from k the desired n as the floor of the real cubic
root of n3 + 3n2 + 2n− 6k, which is the floor of

1

3

3

√
81k + 3

√
(27k)2 − 3 +

1

3

3

√
81k − 3

√
(27k)2 − 3− 1. (2)

Let r be a function mapping a positive integer k to such a value n.
Let ν : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} → S4, be given by 0 7→ 4321, 1 7→ 3421, 2 7→ 3412,

3 7→ 4213, 4 7→ 4123, 5 7→ 2413, 6 7→ 3214, 7 7→ 1423, 8 7→ 2143, 9 7→ 1243, 10 7→ 1234.
This is from the proof of Lemma 2.8.

Assuming the functions η, r, and ν, we present an algorithm Main(k), see Algorithm 1,
that calls another function ζ, defined below in Algorithm 2, that inputs m, a value for
the ninvsum, and n, the length of the permutation to create.

Algorithm 1 Main(k)

if k < 35 then
output η(k)

else
n← r(k).
m← k −

(
n+2
3

)
(Note that m ≤

(
n+1
3

)
.)

output ζ(m,n)
end if

Algorithm 2 ζ(m,n)

if n = 4 then
output ν(m)

else
if m ≤

(
n
3

)
then

output ζ(m,n− 1)	 1
else

output 1⊕ ζ(m−
(
n
2

)
, n− 1)

end if
end if

Here π ⊕ σ is the direct sum of the permutations π and σ and π 	 σ is the skew sum.
Because of Lemma 2.7 and the fact that n ≥ 5 for the first function call, we have that
m ≤

(
n+1
3

)
for that first call. The reasoning behind why the inductive hypothesis applies

to Lemma 2.9 guarantees that m ≤
(
n+1
3

)
for every function call after the first, even if

n = 4. Also, because of equation 2, it is clear that the running time of this algorithm is
proportional to k1/3.
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3 Zone-crossing vectors and the distribution of the

non-inversion sum

We are interested in the function

Nn(x) =
∑
π∈Sn

xninvsum(π)

which records the distribution of the non-inversion sum. Table 3 provides some empirical
data generated with the computer algebra system Sage4, where we factor the polynomials
as much as possible. In the context of Table 3, some of these polynomials factor into some
reasonably small factors and a very large factor.

Table 1: The distribution function of ninvsum, Nn(x).

n Small factors of Nn(x) Big factor of Nn(x)

1 1 1

2 x + 1 1

3 1 x4 + 2x3 + 2x + 1

4 x2 + 1 x8 + 3x7 + x5 + 2x4 + x3 + 3x + 1

5 x2 − x + 1
x18 + 5x17 + 7x16 + 8x15 + 8x14 + 6x13 + 2x12 + 6x11 + 10x10

+14x9 + 10x8 + 6x7 + 2x6 + 6x5 + 8x4 + 8x3 + 7x2 + 5x + 1

6 (x + 1)(x2 − x + 1)2

x30 + 6x29 + 11x28 + 13x27 + 13x26 + 6x25 − x24 + 6x23 + 21x22

+30x21 + 19x20 + 3x19 − 7x18 + 14x17 + 27x16 + 36x15 + 27x14

14x13 − 7x12 + 3x11 + 19x10 + 30x9 + 21x8 + 6x7 − x6 + 6x5

+13x4 + 13x3 + 11x2 + 6x + 1

7 (x2 − x + 1)

x54 + 7x53 + 16x52 + 23x51 + 36x50 + 39x49 + 38x48 + 45x47 + 62x46

+71x45 + 83x44 + 82x43 + 83x42 + 91x41 + 86x40 + 85x39 + 128x38

+149x37 + 144x36 + 129x35 + 132x34 + 101x33 + 137x32 + 166x31

+204x30 + 182x29 + 146x28 + 108x27 + 146x26 + 182x25 + 204x24

+166x23 + 137x22 + 101x21 + 132x20 + 129x19 + 144x18 + 149x17

+128x16 + 85x15 + 86x14 + 91x13 + 83x12 + 82x11 + 83x10 + 71x9

+62x8 + 45x7 + 38x6 + 39x5 + 36x4 + 23x3 + 16x2 + 7x + 1

8 (x4 + 1)(x2 − x + 1)

x78 + 8x77 + 22x76 + 36x75 + 60x74 + 71x73 + 66x72 + 67x71 + 84x70

+94x69 + 133x68 + 150x67 + 171x66 + 182x65 + 164x64 + 135x63

+196x62 + 249x61 + 280x60 + 278x59 + 290x58 + 218x57 + 243x56

+270x55 + 375x54 + 456x53 + 432x52 + 326x51 + 322x50 + 329x49

+442x48 + 481x47 + 533x46 + 464x45 + 413x44 + 362x43 + 437x42

+489x41 + 520x40 + 462x39 + 520x38 + 489x37 + 437x36 + 362x35

+413x34 + 464x33 + 533x32 + 481x31 + 442x30 + 329x29 + 322x28

+326x27 + 432x26 + 456x25 + 375x24 + 270x23 + 243x22 + 218x21

+290x20 + 278x19 + 280x18 + 249x17 + 196x16 + 135x15 + 164x14

+182x13 + 171x12 + 150x11 + 133x10 + 94x9 + 84x8 + 67x7 + 66x6

+71x5 + 60x4 + 36x3 + 22x2 + 8x + 1

One can observe that the degree of Nn(x) is always the (n− 1)th tetrahedral number(
n+1
3

)
. This is consistent with equation (1), where the maximum non-inversion sum

(
n+1
3

)
can be obtained using the identity permutation 1.

The primary aim of this section is to find a recursive definition of the distribution
function for the non-inversion sum, that is, to define Nn+1(x) in terms of Nn(x). Our
formulation of the distribution function will involve a new type of vector, the zone-crossing
vector, whose coordinates count the number of inversions or non-inversions (a, b) of a
permutation, with a given point between a and b.

4www.sagemath.org
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Definition 3.1. Given a permutation π of rank n, we define

1. its inversion zone-crossing vector, izcv(π) = (z1, z2, . . . , zn−1), where zk is the num-
ber of inversions (a, b) ∈ INV(π), where a ≤ k < b, and its augmented zone crossing
vector aizcv(π) = (0, z1, z2, . . . , zn−1, 0).

2. its non-inversion zone-crossing vector nzcv(π) = (z1, z2, . . . , zn−1), where zk is the
number of non-inversions (a, b) ∈ NINV(π), where a ≤ k < b, and its augmented
zone crossing vector anzcv(π) = (0, z1, z2, . . . , zn−1, 0).

Example 3.2. Consider the permutation π = 314562. Then izcv(π) = (2, 1, 2, 3, 4) and
nzcv(π) = (3, 7, 7, 5, 1).

The following proposition states that a zone crossing vector uniquely determines its
permutation.

Proposition 3.3. If v = (v0, v1, . . . , vn−1, vn) = aizcv(π), then πk = n − (k − 1) − (vk −
vk−1), for 1 ≤ k ≤ n. (Therefore, if ρ is a permutation, such that aizcv(π) = aizcv(ρ),
then π = ρ.)

Proof. Let ρ be a permutation, and let v be its zone-crossing vector. Let π be constructed
according to the statement of the proposition. We show that π = ρ. First observe that
ρ1 = n − v1, since this is the number of positions to the right of the first position that
have a value greater than ρ1. Thus ρ1 = π1. For a general k ≥ 1, note that if ρk = 1, then
vk− vk−1 = n−k. Thus 1 = ρk = n− (k− 1)− (vk− vk−1), just as is the case with πk. To
consider different values of ρk, imagine incrementing its value by 1 as a result of swapping
ρk with the position with one larger value. If ρk is incremented by 1, then vk − vk−1 is
decremented by 1, for either the original value of ρk is swapped with a value to the right,
thus decrementing vk, or it is swapped with a value to the left, thus incrementing vk−1.
Thus all the values of ρk can be obtained by the formula above, and hence ρ = π.

Lemma 3.4. The sum of the coordinates of nzcv(π) equals ninvsum(π).

Proof. This follows from the fact that each non-inversion will contribute to as many zone-
crossing coordinates as is the separation distance of the non-inversion. For example, a
non-inversion from position 1 to position 3 has separation 2, which is the number of
zone-crossing coordinates it will contribute to.

Proposition 3.5. For any π ∈ Sn,

1. nzcv(π) + izcv(π) = (1 · n− 1, 2 · n− 2, . . . , n− 1 · 1),

2. nzcv(πc) = izcv(π),

3. nzcv(πr) = izcvr(π).
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Proof. 1. To prove nzcv(π)+ izcv(π) = (1 ·n−1, 2 ·n−2, . . . , n−1 ·1), we note that the
jth coordinate of nzcv(π) + izcv(π) counts the total number of pairs matching each
coordinate in the first j positions with each coordinate in the last n − j positions.
This is because each such pair is a zone crossing inversion or non-inversion and is
hence counted in either izcv(π) or nzcv(π). This yields the vector (1 · n− 1, 2 · n−
2, . . . , n− 1 · 1), giving us the desired formula.

2. To prove nzcv(πc) = izcv(π), note that the complement operation changes every
inversion to a non-inversion, and every non-inversion to an inversion.

3. To prove nzcv(πr) = izcvr(π), note that every inversion in π between positions j
and j + k is a non-inversion in πr from positions n − j − k + 1 to n − j + 1. This
yields nzcvr(πr) = izcv, and reversing the vectors on each side yields the desired
equation.

Lemma 3.6. Let π be a permutation of rank n with augmented zone-crossing vector
anzcv(π) = (a0, a1, a2, . . . , an−1, an). Let ρ be the permutation obtained by inserting n+ 1
into π in between position k and k+ 1 (in the case where k = 0, the resulting permutation
is 1	 π). Then for 0 ≤ k ≤ n,

anzcv(ρ) = (a0 + 0, a1 + 1, a2 + 2, . . . , (ak + k), ak, ak+1, . . . , an).

(Note that for k = 0, we have anzcv(ρ) = (0, 0, a1, a2, . . . , an−1, 0) and for k = n we have
anzcv(ρ) = (0, a1 + 1, a2 + 2, . . . , an−1 + n− 1, n, 0).)

Proof. For 0 ≤ j ≤ k the jth position of the zone-crossing vector (counting from 0 in the
augmented vector) is incremented by the number j of positions in the left zone, as each
forms a new non-inversion pair with the new position k + 1 in the right zone. The jth

position among the (k + 1)th position in the new zone-crossing vector counts the number
of non-inversions starting among the first j positions and ending among the n + 1 − j
positions. As the inserted position is now in the left zone and has the highest value, it does
not contribute to the zone-crossing count. Thus the jth position of the new zone-crossing
vector is the same as the (j − 1)th position of the old zone-crossing vector (we decrement
the position by one, as the position counts the size of the left zone, which decreases by
one when the inserted position is removed).

The preceding lemma can be used to give a recursive definition of the zone-crossing
vectors. We show how this is done when adding a value to permutations of rank 2
to obtain permutations of rank 3. The set of (augmented) non-inversion zone-crossing
vectors for permutations of rank 2 are (010) corresponding to the permutation 12 and
(000) corresponding to 21. Using Lemma 3.6, we determine the (augmented) non-inversion
zone crossing vectors for permutations of rank 3 in the following chart:

k = 0 k = 1 k = 2
(000) (0000) (0100) (0120)
(010) (0010) (0210) (0220)
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The first column gives the zone-crossing vectors for the permutations of rank 2. The first
row gives the position k to the right of which we place the highest value to obtain the new
permutation. The remaining entries correspond to the resulting zone-crossing vectors.
We underline the value ak in position k+ 1 of the zone-crossing vector. Notice that these
correspond to the positions k in the left column.

In summary, we see that these vectors do not range across all possibilities between
the lowest (0000) and the highest (0220), as we are missing (0110), (0020) and (0200).
We hope future work can yield a more direct characterization of the set of all possible
zone-crossing vectors. Such a characterization may reveal new patterns of a variety of
permutation statistics. A variation of such a characterization might, for example, cap-
ture sets of zone-crossing vectors correspond to permutations avoiding a certain classical
pattern of rank 3, such as the patten 231. Since the number of permutations of rank n
that avoid a given classical pattern of rank 3 is the nth Catalan number, such a set may
offer a new Catalan structure.

The proof of the following theorem will make use of partitions of integers. Given a
positive integer, n, we write λ a n to indicate that λ is a partition of n. We write `λ for
the length of the partition λ. For example, λ = 3 + 3 + 2 + 1 is a partition of 9 of length
4.

Theorem 3.7. The number of permutations of rank n such that the kth coordinate of the
zone-crossing vector equals ` is

k!(n− k)![q`]

[
n
k

]
q

.

In other words ∑
π∈Sn

qnzcv(π)k = k!(n− k)!

[
n
k

]
q

.

Proof. The number of partitions of ` into at most k parts, where each part has size at

most n−k, is given by [q`]

[
n
k

]
q

. Each part may correspond to one of the first k positions

of a permutation, and the size of the part would correspond to the number out of the n−k
last positions that the selected position is a non-inversion with. For each partition, we
may rearrange the first k positions and rearrange the last n−k positions without affecting
the kth coordinate of the zone-crossing vector. This gives us the remaining k!(n−k)!.

Theorem 3.8. For n ≥ 1, letting
(
1
2

)
= 0, we have

Nn+1(q) =
n∑
k=0

q(
k+1
2 )
∑
π∈Sn

qanzcvk(π)qninvsum(π)

= Nn(q) +
n−1∑
k=1

q(
k+1
2 )
∑
π∈Sn

qnzcvk(π)qninvsum(π) + q(
n+1
2 )Nn(q).
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Proof. We are interested in the result of extending a permutation π to a permutation ρ
by inserting n + 1 between the kth and (k + 1)th positions of π (like in Lemma 3.6). We
proceed by summing the functions restricted to permutations with n+ 1 in the (k + 1)th

positions for each k. When k = 0, the value n + 1 is inserted at the beginning of the
permutation and hence contributes nothing to the non-inversion sum. Thus we have the
term Nn(q). When k = n, the value n + 1 is in the last position, and hence adds (the
maximum)

(
n+1
2

)
to whatever non-inversion sum the permutation originally had. Thus

our last term will be q(
n+1
2 )Nn(q). For the other values of k (1 ≤ k ≤ n − 1), what the

insertion of the value n+ 1 contributes to the non-inversion sum depends on the original
permutation. By Lemma 3.6, the sum of the zone-crossing vector coordinates (equaling
the non-inversion sum) increases by

(
k+1
2

)
+ nzcvk, which is why we multiply qninvsum(π) by

q(
k+1
2 )+nzcvk(π).

4 The distribution of k-, (k1, k2)-, and (≤ k)-step in-

versions

4.1 The distribution of k-step inversions

Definition 4.1. A k-step inversion of a permutation π is an inversion (a, b) ∈ INV(π),
where b − a = k. Similarly a k-step non-inversion is a non-inversion (a, b) ∈ NINV(π),
such that b− a = k.

Let invk(π) be the number of k-step inversions in π, and let ninvk(π) be the number
of k-step non-inversions in π. Then inv(π) =

∑n−1
k=1 invk(π), and similarly for ninvk(π).

Define
Hn,k(x) =

∑
π∈Sn

xinvk(π)

so I(n, k, i)
def
= [xi]Hn,k(x) is the number of permutations in Sn with the number of k-step

inversions equaling the number i. It is known that Hn,1(x) is the nth Eulerian polynomial,
which we denote An(x)5, since a 1-step inversion is a descent.

In finding Hn,k(x) for arbitrary k, we will divide up the permutations into k smaller
permutations which can be interleaved to form the original. We call these smaller permu-
tations runs, and define them precisely as follows.

Definition 4.2. Given a permutation π of rank n and 1 ≤ k ≤ n, the ith k-step run of π
is the permutation ρ of rank j = b(n− i)/kc+ 1, where ρj = πk(j−1)+i.

Let λi = b(n− i)/kc+ 1 be the length of the ith k-step permutation. One can observe
that if n ≥ k, then there are rem(n/k) many j, such that λj = bn/kc+1, and k−rem(n/k)

many j, such that λj = bn/kc. Furthermore,
∑k

i=1 λi = n. The intuition for this can
be seen in the following example, where the runs partition the original permutation, and
hence the λi partition n.

5The coefficient [xk−1]An(x) is T (n, k) in the sequence http://oeis.org/A008292
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Example 4.3. Consider the case n = 11, k = 4. Since n ≥ k, the total number of 4-step
runs is four. Of those, three are of length 3 (λ1, λ2, λ3 = 3).

1 2 3 4 5 6 7 8 9 10 11

The remaining one is of length 2 (λ4 = 2).

1 2 3 4 5 6 7 8 9 10 11

Note that k-step inversions only occur within the same k-step run, and that a k-step inver-
sion in the original permutation corresponds to a 1-step inversion (a descent) in a run. We
will see in the proof of the next theorem how this leads to H11,4 = I(11, 4, 0)A3

3(x)A1
2(x),

where I(11, 4, 0) will count the ways of distributing the 11 values among the 4 runs, and
the As will correspond to the permutations of the s values within a run.

Theorem 4.4. For 1 ≤ k ≤ n let s = bn/kc+ 1 and t = rem(n/k). Then

Hn,k(x) = I(n, k, 0)Ats(x)Ak−ts−1(x),

where A`(x) = H`,1(x) is the `th Eulerian polynomial, and

I(n, k, 0) =
k−1∏
j=1

(
n−

∑j−1
i=0 λi

λj

)
,

where the λ0
def
= 0 and for 1 ≤ j ≤ k − 1, λj is the length of the jth k-step run.

Proof. Let us first find I(n, k, 0). Given a permutation π with no k-step inversions, the
order within each run must be increasing. Thus the entire variation of such permutations
is with how the n values are distributed among the runs. If j − 1 runs have been filled,
we must choose λj more out of the remaining n−

∑j−1
i=0 λi. Thus we have

I(n, k, 0) =
k−1∏
j=1

(
n−

∑j−1
i=0 λi

λj

)
.

Furthermore, the number of k-step inversions is invariant over how we distribute n among
the runs. Thus I(n, k, 0) is a factor of the distribution function. What the number of
k-step inversions depends on is how the numbers are arranged within each run. Note
again that k-step inversions only occur within the same k-step run, and that a k-step
inversion in the original permutation corresponds to a 1-step inversion (a descent) in a
run. In this way, the runs do not interact. Thus

I(n, k, i) =
∑

∑k
j=1 pj=i; 1≤pj<λj

I(n, k, i)
k∏
j=1

[xpj ]Aλj(x).
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Since there are t = rem(n/k) many j, such that λj = s = bn/kc + 1, and k − rem(n/k)
many j, such that λj = bn/kc, we have that

Hn,k(x) = I(n, k, 0)Ats(x)Ak−ts−1(x).

If we had used ninvk instead of invk in the definition of the distribution function Hn,k(x)
then we would have obtained the same formula as in the theorem above. Also, had we
used the difference of values, rather than positions, in the definitions of invk and ninvk,
we would also have arrived at the same formula, since the values-definition for π would
have corresponded to the positions-definition for πi. Table 2 includes experimental runs
for the distribution function Hn,k for n = 1, . . . , 9, and select k for high values of n.

Table 2: The distribution function of ninvk, Hn,k(x).

n k Hn,k(x)

1 1 1

2
1 x + 1
2 2

3
1 x2 + 4x + 1
2 3(x + 1)
3 6

4

1 (x + 1)(x2 + 10x + 1)

2 6(x + 1)2

3 12(x + 1)
4 24

5

1 x4 + 26x3 + 66x2 + 26x + 1

2 10(x + 1)(x2 + 4x + 1)

3 30(x + 1)2

4 60(x + 1)
5 120

6

1 (x + 1)(x4 + 56x3 + 246x2 + 56x + 1)

2 20(x2 + 4x + 1)2

3 90(x + 1)3

4 180(x + 1)2

5 360(x + 1)
6 720

7

1 x6 + 120x5 + 1191x4 + 2416x3 + 1191x2 + 120x + 1

2 35(x + 1)(x2 + 4x + 1)(x2 + 10x + 1)

3 210(x + 1)2(x2 + 4x + 1)

4 630(x + 1)3

5 1260(x + 1)2

6 2520(x + 1)
7 5040

8

1 (x + 1)(x6 + 246x5 + 4047x4 + 11572x3 + 4047x2 + 246x + 1)

2 70(x + 1)2(x2 + 10x + 1)2

3 560(x + 1)(x2 + 4x + 1)2

4 2520(x + 1)4

5 5040(x + 1)3

6 10080(x + 1)2

7 20160(x + 1)
8 40320

9

1 x8 + 502x7 + 14608x6 + 88234x5 + 156190x4 + 88234x3 + 14608x2 + 502x + 1

2 126(x + 1)(x2 + 10x + 1)(x4 + 26x3 + 66x2 + 26x + 1)

3 1680(x2 + 4x + 1)3

4 7560(x + 1)3(x2 + 4x + 1)

.

.

.

.

.

.

4.2 (k1, k2)-step inversions and non-inversions

Definition 4.5. Given a permutation π, a (k1, k2)-step inversion is a pair (a, b), such
that 1 ≤ a < b ≤ n, satisfying b − a = k1 and π(b) − π(a) = k2. Similarly, a (k1, k2)-
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step non-inversion is a pair (a, b), such that 1 ≤ a < b ≤ n, satisfying b − a = k1 and
π(a)− π(b) = k2.

Let inv(k1,k2)(π) be the number of (k1, k2)-step inversions in π. Then

inv(π) =
∑

1≤k1,k2≤n−1

inv(k1,k2)(π).

Define
Hn,(k1,k2)(x) =

∑
π∈Sn

xinv(k1,k2)(π).

Proposition 4.6. Let n/2 < k1, k2 < n. Then the degree of Hn,(k1,k2)(x) is ` = min(n−
k1, n− k2), and its leading coefficient equals

(n− 2`)!`!

(
n− k1
`

)(
n− k2
`

)
.

Proof. Since k1 > n/2, there are n − k1 location pairs that a k1-step inversion could be,
since there are n − k1 many k-step runs of length two, with the remainder of the runs
of length 1. Similarly, since k2 > n/2, there are at most n − k2-inversions with a value
separation of k2, as the top value has to be greater than k2. Thus ` = min(n− k1, n− k2)
is the maximum number of (k1, k2)-step inversions, and the degree of Hn,(k1,k2)(x) is `.

For the leading coefficient, we select
(
n−k1
`

)
positions pairs to place top values among(

n−k2
`

)
. Then there are `! ways to arrange the values among the position pairs, and there

are (n− 2`)! ways to arrange the remaining values among the remaining positions. Note
that no new (k1, k2)-step inversions can occur with the (n − 2`)! values and positions,
since either all the available position pairs have been filled (when ` = n − k1) or all the
available top values have been used (when ` = n− k2).

This proof will be adapted in Section 5.1, for a similar result involving k-step inversions
with inversion tops divisible by d. For future work, we would like a complete description
of the polynomials Hn,(k1,k2)(x) as we had for Hn,k(x), the distribution of k-step inversions.
Table 3 contains some experimental runs for Hn,(k1,k2)(x).

4.3 The distribution of (≤ k)-step inversions

Definition 4.7. Let
inv≤k(π) =

∑
k′≤k

invk′(π).

Then, since n− 1 is the maximum separation, and a separation of one corresponds to
a descent, we get

inv(π) = inv≤n−1(π) and des(π) = inv≤1(π),
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Table 3: The distribution function of inv(k1,k2), Hn,(k1,k2)(x).

n k1 k2 = 1 k2 = 2 k2 = 3 k2 = 4

1 1 1

2 1 x + 1 2
2 2 2

3 1 x2 + 2x + 3 2(x + 2) 6
2 2(x + 2) x + 5 6
3 6 6 6

4 1 x3 + 3x2 + 9x + 11 2(x2 + 4x + 7) 6(x + 3) 24

2 2(x2 + 4x + 7) 2(x2 + 2x + 9) 4(x + 5) 24
3 6(x + 3) 4(x + 5) 2(x + 11) 24
4 24 24 24 24

5 1 x4 + 4x3 + 18x2 + 44x + 53 2(x3 + 6x2 + 21x + 32) 6(x2 + 6x + 13) 24(x + 4)

2 2(x3 + 6x2 + 21x + 32) (x + 3)(x2 + 4x + 25) 4(x2 + 7x + 22) 6(3x + 17)

3 6(x2 + 6x + 13) 4(x2 + 7x + 22) 2(x2 + 10x + 49) 12(x + 9)
4 24(x + 4) 6(3x + 17) 12(x + 9) 6(x + 19)
5 120 120 120 120

for any permutation of rank n. Define

Jn,≤k(x) =
∑
π∈Sn

xinv≤k(π).

For the purpose of the next proposition we recall the falling factorial

(k)j = k(k − 1) · · · (k − (j − 1)),

and define a differential operator

∇k =
k∑
j=0

j + 1

(k)j

dj

dxj
.

Proposition 4.8. 1. If the maximum step-size is 1, we have

Jn,1(x) = An(x),

where An(x) is the nth Eulerian polynomial.

2. If the maximum step-size is n− 2, we have

Jn,≤n−2(x) = Jn−1,≤n−3(x) ·

(
d

dx

(
x

n−2∑
j=0

xj

)
+ xn−2∇n−2(x

n−2)

)
.

3. If the maximum step-size is n− 1, we have

Jn,≤n−1(x) = Jn−1,≤n−2(x) ·
n−1∑
j=0

xj = [n]x!.

Proof. (1) This follows from the fact that a 1-step inversion is a descent.
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(3) As noted above inv≤n−1(π) = inv(π) and therefore

Jn,≤n−1(x) =
∑
π∈Sn

xinv(π)

= (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1)

= [n]x!.

We also give an alternative proof: Let k = n − 1. For each value m for the last
position of a permutation σ, we have that inv≤k(σ) = n − m + inv≤k(τ), where
τ is the permutation obtained by flattening the restriction of σ the domain to
{1, . . . , n−1}. Thus for each value m, we multiply Jn−1,≤k−1(x) by xn−m to account
for all permutations that end in m. We then add these products together for all
values of m so as to account for all permutations.

(2) Let k = n− 2. Here we imagine the effect of the first and the last positions on the
inversion count of the middle positions. For each pair (mf ,m`) of values that the
first and last positions can assume, the contribution to the counts in Jn,≤k(x) will
be the same as their contribution of the counts in Jn,≤k+1(x) as long as mf < m`.
Otherwise (if mf > m`), the contribution to Jn,≤k(x) is one less than it would be
for Jn,≤k+1(x), since the first and last positions form an inversion not counted in the
former, but counted in the latter.

By part (3) of this proposition, the last two factors of Jn,≤k+1(x) are (1+x2+· · ·+xk)
and (1 + x2 + · · ·+ xk + kk+1), which when multiplied together give us

1 + 2x+ · · ·+ (k − 1)xk−2 + kxk−1 + (k + 1)xk (3)

+ (k + 1)xk+1 + · · ·+ 3x2k−1 + 2x2k + x2k+1

The coefficient of each xj in (3) corresponds to the number of pairs (mf ,m`) that
contribute j to the inversion count of the middle positions. The number of inversions
a pair (mf ,m`) contributes is (mf − 1) from the first position plus (n −m`) from
the last position minus possibly one for over counting in the case that mf > m`. So
the contribution of the pair to Jn,≤k+1(x) would be n+mf −m` − 1 if mf < m` or
n + mf −m` − 2 if mf > m`. Note that if mf < m`, then this number is at most
n − 2 = k. Otherwise (if mf > m`) this number is at least n − 1 = k + 1. Thus,
up to j = k, all pairs (mf ,m`) are such that mf < m`, and hence the exact same
pairs can be used in the count for determining Jn,≤k. Starting with j = k + 1, all
pairs (mf ,m`), are such that mf > m`, and there is an inversion counted toward
Jn,≤k+1(x) that is not counted toward Jn,k(x), and hence these pairs will contribute
to the case where j = k when constructing the formula for Jn,≤k(x). A similar
argument shows that this generalizes, so that when t ≥ 1, we have xk+t in (3)
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replaced by xk+t−1. Thus we obtain,

Jn,≤k(x) = Jn−1,≤k−1(x) · (1 + 2x+ · · ·+ (k − 1)xk−2 + kxk−1

+ 2(k + 1)xk + kxk+1 + · · ·+ 2x2k−1 + x2k).

= Jn−1,≤k−1(x) ·

(
k∑
j=0

(j + 1)
(
xj + x2k−j

))

= Jn−1,≤k−1(x) ·

(
k∑
j=0

(j + 1)xj +
k∑
j=0

(j + 1)x2k−j

)

= Jn−1,≤k−1(x) ·

(
k∑
j=0

(j + 1)xj + xk
k∑
j=0

(j + 1)xk−j

)

= Jn−1,≤k−1(x) ·

(
d

dx

(
x

k∑
j=0

xj

)
+ xk∇k(x

k)

)
.

Table 4 includes experimental runs for the distribution function Jn,≤k(x) for n =

1, . . . , 7. The degree of Jn+1,≤k(x) is given by k(2n−k+1)
2

since the maximum of inv≤k

Table 4: The distribution function of inv≤k, Jn,≤k(x).

n k Jn,≤k(x)

1 1 1

2 1 x + 1

3
1 x2 + 4x + 1

2 (x + 1)(x2 + x + 1)

4
1 (x + 1)(x2 + 10x + 1)

2 (x + 1)(x4 + 2x3 + 6x2 + 2x + 1)

3 (x + 1)(x2 + x + 1)(x3 + x2 + x + 1)

5

1 x4 + 26x3 + 66x2 + 26x + 1

2 (x + 1)3(x4 + x3 + 11x2 + x + 1)

3 (x + 1)(x2 + x + 1)(x6 + 2x5 + 3x4 + 8x3 + 3x2 + 2x + 1)

4 (x + 1)(x2 + x + 1)(x3 + x2 + x + 1)(x4 + x3 + x2 + x + 1)

6

1 (x + 1)(x4 + 56x3 + 246x2 + 56x + 1)

2 (x + 1)(x8 + 4x7 + 25x6 + 88x5 + 124x4 + 88x3 + 25x2 + 4x + 1)

3 (x + 1)2(x10 + 3x9 + 7x8 + 22x7 + 31x6 + 52x5 + 31x4 + 22x3 + 7x2 + 3x + 1)

4 (x + 1)(x2 + x + 1)(x3 + x2 + x + 1)(x8 + 2x7 + 3x6 + 4x5 + 10x4 + 4x3 + 3x2 + 2x + 1)

5 (x + 1)(x2 + x + 1)(x3 + x2 + x + 1)(x4 + x3 + x2 + x + 1)(x5 + x4 + x3 + x2 + x + 1)

7

1 x6 + 120x5 + 1191x4 + 2416x3 + 1191x2 + 120x + 1

2 (x + 1)(x10 + 5x9 + 39x8 + 218x7 + 562x6 + 870x5 + 562x4 + 218x3 + 39x2 + 5x + 1)

3
(x + 1)(x2 + x + 1)(x12 + 4x11 + 10x10 + 38x9 + 79x8

+166x7 + 244x6 + 166x5 + 79x4 + 38x3 + 10x2 + 4x + 1)

4
(x + 1)4(x2 + x + 1)

(x12 + x11 + 4x10 + 4x9 + 21x8 + 43x6 + 21x4 + 4x3 + 4x2 + x + 1)

5
(x + 1)(x2 + x + 1)(x3 + x2 + x + 1)(x4 + x3 + x2 + x + 1)

(x10 + 2x9 + 3x8 + 4x7 + 5x6 + 12x5 + 5x4 + 4x3 + 3x2 + 2x + 1)

6
(x + 1)(x2 + x + 1)(x3 + x2 + x + 1)(x4 + x3 + x2 + x + 1)

(x5 + x4 + x3 + x2 + x + 1)(x6 + x5 + x4 + x3 + x2 + x + 1)

the electronic journal of combinatorics 19 (2012), #P29 20



is achieved by the reverse of the identity, and the number of j-step inversions in this
permutation is n + 1 − j. Summing this number from 1 to k gives the claimed degree.
We would like a more complete description of the distribution function of Jn,≤k(x), but
we leave it for future work.

5 Future work and connections with other work

5.1 k-step inversion tops that are zero modulo d

Recall that given an inversion (a, b) in a permutation, the letter a is called an inversion top.
Kitaev and Remmel [4, 5] considered inversions where the inversion top is zero modulo d
for a particular integer d. We adapt this definition to our setting by defining modinvd,k(π)
to be the number of k-step inversions with an inversion top that is zero modulo d. Let

Ln,d,k(x) =
∑
π∈Sn

xmodinvd,k(π)

be the corresponding distribution function.

Proposition 5.1. The leading coefficient of Ln,2,n−1(x) is⌊n
2

⌋2
(n− 2)!.

Thus
Ln,2,n−1(x)

(n− 2)!
=
⌊n

2

⌋2
x+ n(n− 1)−

⌊n
2

⌋2
.

Proof. The formula for the leading coefficient is proved as follows: In order to have one
(n− 1)-step inversion with an even inversion top, a permutation must start with an even
number and end in some smaller number. Thus we get the formula

(n− 2)!

bn
2
c∑

j=1

(2j − 1).

Simplification yields the claimed formula.

We now generalize this proposition.

Proposition 5.2. Let n/2 < k < n and 1 < d ≤ n. The degree of Ln,d,k(x) is ` =
min(n− k, bn

d
c) and its leading coefficient equals

(n− 2`)!`!

(
n− k
`

) ∑
1≤i1<i2<···<i`≤bnd c

∏̀
j=1

(dij − 2j + 1).
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Proof. Since k > n/2, there are n−k locations that an inversion top could be, since there
are n− k many k-step runs of length two, with the remaining k many k-step runs being
of length 1. There are bn

d
c possible values for inversion tops. Thus ` = min(n− k, bn

d
c) is

the maximum number of inversions possible with inversion tops modulo d. Hence ` is the
degree of Ln,d,k(x).

The sum selects the values of the inversion tops, the jth smallest inversion top being
dij. The jth factor of the product represents the remaining possible values that could be
the bottom of the inversion with top dij. The positions of these inversions are chosen
among the n − k possible locations pairs, which is why we multiply by the binomial
coefficient. The sum had arranged the tops in increasing order, and hence the coefficient
of `! counts the ways of rearranging the tops among their ` positions. The coefficient of
(n−2`)! counts the ways of assigning the remaining values to the remaining positions.

Table 5 contains some empirical data for the case d = 2.

Table 5: The distribution function of modinv2,k, Ln,2,k(x).

n k Ln,2,k(x)

1 1 1

2
1 y + 1
2 2

3
1 2(y + 2)
2 y + 5
3 6

4

1 4(y2 + 4y + 1)
2 2(y + 1)(y + 5)
3 8(y + 2)
4 24

5

1 12(y2 + 6y + 3)
2 6(y + 1)(y + 9)

3 2(y2 + 22y + 37)
4 24(y + 4)
5 120

6

1 36(y + 1)(y2 + 8y + 1)

2 4(4y3 + 55y2 + 94y + 27)

3 6(y + 1)(y2 + 22y + 37)
4 4(y + 5)(13y + 17)
5 72(3y + 7)
6 720

7

1 144(y3 + 12y2 + 18y + 4)

2 2(37y3 + 615y2 + 1359y + 509)

3 4(7y3 + 204y2 + 651y + 398)

4 6(y3 + 75y2 + 387y + 377)

5 12(13y2 + 154y + 253)
6 360(3y + 11)
7 5040

We would like a more complete description of the polynomial Ln,2,k(x), but we leave
it for future work.

5.2 Paths

Dukes and Reifergerste [2] showed that the left boundary sum of π, written lbsum(π), is
the number of inversions in π added to the number certified non-inversions. A certified
non-inversion is an occurrence of the pattern 132 which is neither part of a 1432 nor a
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1342 pattern. The mesh patterns defined by Brändén and Claesson [1] can be used to give
an alternative definition: A certified non-inversions is an occurrence of the mesh pattern

.

In Dukes and Reifergerste [2], the left boundary vector of a permutation π of rank n
has as its jth coordinate the largest i < j, such that πi > πj. The left boundary sum of a
permutation π, denoted lbsum(π), is defined as the sum of the left boundary coordinates.

Variations of this may be as follows.

1. Define the (≥k)-left boundary vector of a permutation π to be such that its jth

coordinate is the largest i ≤ j − k, such that πi > πj. Define lbsum≥k(π) to be the
the sum of this vector.

2. Define the (≤k)-left boundary vector of a permutation π to be such that its jth

coordinate is i−max(0, j− k) + 1, where i is the largest, such that max(0, j− k) ≤
i < j and either πi > πj or i = max(0, j − k). Define lbsum≤k(π) to be the sum of
this vector.

3. Define the (=k)-left boundary vector to be such that coordinate j is 1 if aj−k > aj,
and 0 otherwise. Define lbsum=k(π) to be the sum of this vector.

Proposition 5.3. 1. Given a permutation π, lbsum≥k(π) is the number of (≥k)-step
inversions, plus the number of non-inversions forming the end-points of an occur-
rence of the pattern 132, but with at least k steps from the 3 to the 2. (Such a non-
inversion consists of the endpoints of certified non-inversion within a permutation
obtained by removing the k − 1 positions to the left of the top of the non-inversion,
and isomorphically adjusting the values to fit in the new range.)

2. Given a permutation π, lbsum≤k(π) is the number of (≤k)-step inversions plus the
number of certified (≤k)-step non-inversions (a certified non-inversions whose end-
points are at most k apart).

3. Given a permutation π, lbsum=k(π) is the number of k-step inversions of π.

Proof. The proof of these are adapted from [2].

1. Let (a1, . . . , an) be the (≥k)-left boundary vector. Then aj = d is the maximum
value no less than k away from j, such that πd > πj. Then every i ≤ d is such
that either πi > πj or there is a position c (we can always choose d), such that
i < c ≤ j − k and πc > πj. Since d is maximal, every (≥k)-step inversion with
bottom j will be counted among such i, and no (<k)-step inversion will qualify,
since d is already k-steps away. Furthermore, any (≥k)-step non-inversion (i, j)
with i < d, such that there is a c (we can always pick d), such that i < c ≤ j − k
and πc > πj. Because d is maximal, any non-inversion (i, j) that has a c, such that
i < c ≤ j − k and πc > πj, is a non-inversion, where i < d.
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2. The proof here is almost identical to the previous case, except we restrict d to ranging
from max(0, j − k) to j − 1, and we only consider i ≤ d, such that i ≥ j − k. This
allows us to focus on (≤k)-step inversions and certified (≤k)-step non-inversions, and
is accounted for by the fact that the aj is really d−max(0, j− k) + 1. Furthermore,
since we are technically counting certified non-inversions, which are triples rather
than pairs, we select for the middle point the position of maximum value. If we did
not place this restriction, we could over-count, with many possibilities for a middle,
given one pair of endpoints.

3. The coordinates of the (=k)-left boundary vector with the value 1 are precisely the
positions of the permutation that form the top of a k-step non-inversion. Since
a position can be the top of at most one k-step non-inversion, the sum of the
coordinates of the vector is equal to the number of k-step non-inversions.

We consider yet a forth way to generalize lbsum(π). For our purposes we define a
certified k-step non-inversion to be a certified non-inversion with endpoints forming a
k-step non-inversion. The generalization we focus on from here is as follows. For a
permutation π, let ipcnik(π) be the number of k-step inversions in π added to the number
of certified k-step non-inversions. Let

Kn,k(x) =
∑
π∈Sn

xipcnik(π)

be the corresponding distribution function.
From the empirical data in Table 6 it seems that the constant term in Kn,k(x) is always

equal to k!. This is proven below.

Proposition 5.4. The constant term in Kn,k is k!. Furthermore, the permutations π ∈
Sn, such that ipcnik(π) = 0, are precisely the permutations that have the form σ(k+1)(k+
2) · · ·n, where σ ∈ Sk.

Proof. It is clear that any permutation of the form σ(k + 1)(k + 2) · · ·n, where σ is a
permutation from Sk has ipcnik zero. Conversely, suppose that ipcnik(π) = 0 and that π is
of the form σλ where σ consists of the first k letters of π and λ consists of the remaining
letters. Then the letters of λ must be in increasing order; otherwise we let `1 > `2 be
the first two adjacent letters in λ that are not in increasing order. Then if π`2−k < π`2 ,
there is an `, such that the triple (`2 − k, `, `2) is a certified k-step non-inversion, and
if π`2−k > π`2 , the pair (`2 − k, `2) is an inversion. Now to finish the proof we need to
show that σ consists of the letters 1, . . . , k. First observe that the first letter of λ is larger
than any letter in σ. Since λ is increasing, the remaining letters in λ are also larger than
1, . . . , k. This finishes the proof.

Corollary 5.5. The number of permutations π ∈ Sn with ipcnin−1(π) = 1 is (n− 1)(n−
1)!. Thus

Kn,n−1(x)

(n− 1)!
= (n− 1)x+ 1.
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Table 6: The distribution function of ipcnik, Kn,k(x).

n k Kn,k(x)

1 1 1

2 1 x + 1
2 2

3 1 x2 + 4x + 1
2 2(2x + 1)
3 6

4 1 (x + 1)(x2 + 10x + 1)
2 2(x + 1)(5x + 1)
3 6(3x + 1)
4 24

5 1 x4 + 26x3 + 66x2 + 26x + 1

2 2(13x3 + 35x2 + 11x + 1)

3 6(11x2 + 8x + 1)
4 24(4x + 1)
5 120

6 1 (x + 1)(x4 + 56x3 + 246x2 + 56x + 1)

2 2(38x4 + 183x3 + 121x2 + 17x + 1)

3 6(x + 1)(46x2 + 13x + 1)

4 24(19x2 + 10x + 1)
5 120(5x + 1)
6 720

7 1 x6 + 120x5 + 1191x4 + 2416x3119x2 + 120x + 1

2 2(116x5 + 969x4 + 1100x3 + 310x2 + 24x + 1)

3 6(202x4 + 459x3 + 157x2 + 21x + 1)

4 24(103x3 + 89x2 + 17x + 1)

5 120(29x2 + 12x + 1)
6 720(6x + 1)
7 5040

8 1 (x + 1)(x6 + 246x5 + 4047x4 + 11572x3 + 4047x2 + 246x + 1)

2 2(382x6 + 5124x5 + 9517x4 + 4420x3 + 684x2 + 32x + 1)

3 6(986x5 + 3454x4 + 1925x3 + 325x2 + 29x + 1)

4 24(x + 1)(614x3 + 201x2 + 24x + 1)

5 120(190x3 + 125x2 + 20x + 1)

6 720(41x2 + 14x + 1)
7 5040(7x + 1)
8 40320

Proof. As a consequence of Proposition 5.4, given π ∈ Sn, ipcnin−1(π) = 0 if and only if
πn = n. Note that ipcnik(π) = 1 otherwise. There are (n− 1)(n− 1)! permutation π, such
that πn 6= n.

Proposition 5.6. The number of permutations π ∈ Sn, with ipcnin−2(π) = 2 is

(n− 2)!(n2 − 3n+ 1).

Thus
Kn,n−2(x)

(n− 2)!
= (n2 − 3n+ 1)x2 + 2(n− 1)x+ 1.

Proof. In order to construct a permutation with ipcnin−2 equal to 2 we need to choose four
numbers to occupy the first two positions and the last two positions. The permutation
constructed in this way will always have ipcnin−2 equal to 2 unless any of the following
hold:

• n is in position 1 and n− 1 is in position n,

• n is in position n− 1, or
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• n is in position n.

This shows that the number we are looking for is

(n− 4)!

(
n(n− 1)(n− 2)(n− 3)(n− 4)− (n− 2)(n− 3)− 2(n− 1)(n− 2)(n− 3)

)
.

When this is simplified, it gives the formula in the proposition.

5.3 Marked mesh patterns

Marked mesh patterns were defined by Úlfarsson in [7, Definition 24]. In this subsection
we show how these patterns relate to the concepts introduced above. Figure 2 shows how
k-step, (≤k)-step and (k1, k2)-step inversions can be identified with patterns.

=k−1 ≤k−1 =k1−1

=k2−1

Figure 2: k-step, (≤k)-step and (k1, k2)-step inversions in terms of patterns.

Using the representation of k-step inversions allows us to write the number of inversions
and the inversion sum of a permutation as a linear combination of patterns; see Figure 3.

inv =
∑
k≥1

 =k−1
 , invsum =

∑
k≥1

k ·

 =k−1


Figure 3: Writing the inv and invsum as a linear combination of patterns.

It is only slightly harder to realize that the coordinates of the zone-crossing vectors are
given by patterns, for example, the kth coordinate of the inversion zone-crossing vector of
a permutation π is the number of occurrences of the pattern

zk =

k−1≥

≤n−k−1

,

in π. A k-step inversion with an inversion top that is zero modulo d is an occurrence of

=k−1

=n−d`
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for some ` ≥ 1.
Finally, a certified k-step non-inversion is an occurrence of the pattern

=k−2
.
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