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Abstract

Let G be a simple graph and ∆(G) denote the maximum degree of G. A har-
monious colouring of G is a proper vertex colouring such that each pair of colours
appears together on at most one edge. The harmonious chromatic number h(G)
is the least number of colours in such a colouring. In this paper it is shown that
if T is a tree of order n and ∆(T ) > n

2 , then there exists a harmonious colour-
ing of T with ∆(T ) + 1 colours such that every colour is used at most twice. Thus
h(T ) = ∆(T )+1. Moreover, we prove that if T is a tree of order n and ∆(T ) 6 dn2 e,
then there exists a harmonious colouring of T with dn2 e+ 1 colours such that every
colour is used at most twice. Thus h(T ) 6 dn2 e+ 1.

1 Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple edges.
Let G be a graph. We denote the edge set and the vertex set of G by E(G) and V (G),
respectively. A vertex of degree 1 in G is called a pendant vertex. The number of vertices
of G is called the order of G. We denote the maximum degree of G by ∆(G) and for
simplicity by ∆. Also, for every v ∈ V (G) and X ⊆ V (G), d(v), NG(v) and NG(X)
denote the degree of v, the neighbor set of v and the set of vertices of G which have at
least one neighbor in X, respectively. For simplicity we use N(v) and N(X) instead of
NG(v) and NG(X), respectively. Also, we use NG[v] for NG(v)∪{v}. By a unicyclic graph,
we mean a connected graph with exactly one cycle. For a natural number k, a graph G

∗E-mail addresses: arian.aflaki@gmail.com, s akbari@sharif.edu, kjedwards@dundee.ac.uk
denizeskandani@gmail.com, mjamaali@sharif.edu, hajar ravanbod@yahoo.com.

the electronic journal of combinatorics 19 (2012), #P3 1



is called a k-regular graph if d(v) = k, for each v ∈ V (G). A projective plane of order q
consists of a set X of q2 + q + 1 elements called points, a family L of subsets called lines,
having the following properties:

(i) Every line has q + 1 points.
(ii) Every point lies on q + 1 lines.
(iii) Any two points lie on a unique line.
We denote the projective plane of order q by PG(q). It is well known that if q is a

prime power, then PG(q) exists.
Let G be a graph. A proper vertex colouring of G is a function c : V (G) −→ L,

such that if u, v ∈ V (G) are adjacent, then c(u) and c(v) are different. A proper vertex
k-colouring is a proper vertex colouring with |L| = k. A harmonious colouring of G is a
proper vertex colouring of G in which every pair of colours appears on at most one pair of
adjacent vertices. The harmonious chromatic number of G, h(G), is the minimum number
of colours needed for any harmonious colouring of G. The first paper on harmonious
colouring was written in 1982 by Frank et al. [4]. However, the usual definition of this
notion is due to Hopcroft and Krishnamoorthy [5]. The concept of harmonious colouring
of graphs has been studied extensively by several authors; see [2, 7] for surveys. If G has
m edges and G has a harmonious colouring with k colours, then clearly,

(
k
2

)
> m.

Let k(G) be the smallest integer satisfying the inequality. This number can be expressed
as a function of m, namely

k(G) =

⌈
1 +
√

8m+ 1

2

⌉
.

Paths are among the first graphs whose harmonious chromatic numbers have been estab-
lished. Let Pn denote the path of order n. The following fact has been proved [4].

If k(Pn) is odd or if k(Pn) is even and n−1 = k(k−1)/2−j, j = k/2−1, k/2, . . . , k−2,
where k = k(Pn), then h(Pn) = k(Pn). Otherwise, h(Pn) = k(Pn) + 1.

It was shown by Hopcroft and Krishnamoorthy that the problem of determining the
harmonious chromatic number of a graph is NP-hard. Also, it was shown that the problem
remains hard even when we restricted to trees, see [3]. The following result has been proved
in [1].

Let d be a fixed positive integer. There is a positive integer N such that if T is any
tree with m > N edges and maximum degree at most d, then h(T ) is either k(G) or
k(G) + 1.

In this paper we obtain the exact value of the harmonious chromatic number of a tree
when its maximum degree is at least the half of its order.

The harmonious edge colouring of a graph is a proper edge colouring in which every
pair of colours appears on at most one pair of adjacent edges. The harmonious edge chro-
matic number of G, h′(G), is the minimum number of colours needed for a harmonious
edge colouring of G. The line graph of G, L(G), is a graph that has a vertex for every
edge of G, and two vertices of L(G) are adjacent if and only if the corresponding two
edges in G are adjacent. Clearly, for every graph G, h′(G) = h(L(G)).
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2. Harmonious Colouring of Trees

In this section we wish to find a harmonious colouring for a tree with the property
that each colour is used at most twice. Also, we show that for every bipartite graph G of
order n, h(G) 6 n

2
+ ∆2 −∆, where ∆ is the maximum degree of G.

Theorem 1. Let T be a tree of order n and ∆ > n
2
. Then there exists a harmonious

colouring of T with ∆ + 1 colours such that every colour is used at most twice. Thus
h(T ) = ∆ + 1.

Proof. Let v be a vertex of maximum degree and N(v) = {v1, . . . , v∆}. Assume that
G1, . . . , G∆ are connected components of T \ v such that vi ∈ V (Gi), for i = 1, . . . ,∆.
With no loss of generality assume that |V (G1)| > · · · > |V (Gk)| > 2 and |V (Gi)| = 1,
for i = k + 1, . . . ,∆. We want to define a harmonious colouring c of T . First, define
c(vi) = i, for i = 1, . . . ,∆ and c(v) = ∆ + 1. Let ni = |V (Gi)|, for i = 1, . . . , k.
Colour the vertices of G1 \ v1, by the colours 2, . . . , n1 such that each colour is used
once. Colour the vertices of G2 \ v2 by the colours n1 + 1, . . . , n1 + n2 − 1 such that
each colour is used once. Repeat this procedure and colour the vertices of Gk \ vk by the
colours n − (∆ + 1) − nk + 3, . . . , n − (∆ + 1) + 1 such that each colour is used once.
It is straightforward to check that this colouring is a harmonious colouring of G. Hence
h(T ) 6 ∆ + 1. Clearly, in each harmonious colouring of G the neighbors of each vertex
should get different colours. So h(T ) = ∆ + 1 and the proof is complete. 2

Lemma 2. Let T be a tree with bipartition (A,B), where |A| = |B| = n/2. Then T has a
harmonious colouring with at most n/2 + 1 colours, such that each colour occurs at most
once in each part of the bipartition.

Proof. Let r = n/2. We use induction on r. If r = 1, then T = K2 and the result is
obvious. So suppose that r > 1. Note that each of A and B has n− 1 incident edges and
n/2 vertices, and so has average degree strictly less than 2. Hence we can assume that
there are leaves a ∈ A and b ∈ B. Delete a and b to form a tree T ′ with bipartition A′, B′

where |A′| = |B′| = r− 1. By the inductive hypothesis, there is a harmonious colouring c
of T ′ with colours 1, . . . , r such that each colour occurs at most once on A′ and at most
once on B′. Let u ∈ B, v ∈ A be the neighbours in T of a, b respectively. If c(u) 6= c(v),
then we obtain the desired colouring of T by colouring a and b with a new colour r + 1.
If c(u) = c(v) = i, then let j, k be the colours from 1, . . . , r not used on A,B respectively.
Recolour u with colour r + 1, and set c(a) = j, c(b) = k. It is clear that this gives the
desired colouring of T . 2

Theorem 3. Let T be a tree with n vertices and with bipartition (A,B), where |A| 6 |B|.
Suppose that T has maximum degree at most dn/2e. Then T has a harmonious colouring
with at most dn/2e+1 colours, such that each colour occurs at most twice, and each vertex
of A has a distinct colour.
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Proof. If |A| = |B|, then the result follows immediately from Lemma 2. Otherwise,
let x = |B| − |A|, and let t be the number of leaves of B. Then the number of edges
incident with B is at least t+ 2(|B| − t) = 2|B| − t, and so n− 1 > 2|B| − t. Then since
n = |A|+ |B| = 2|B| − x, we have 2|B| − x− 1 > 2|B| − t, so that t > x. Hence we can
find a set X of leaves in B with |X| = x. Delete the set X of leaves to form a tree T ′.
Then T ′ has bipartition (A,B \X) where |A| = |B \X|.

Hence by Lemma 2, T ′ has a harmonious colouring with a set S of at most |A| + 1
colours so that each colour occurs at most once on A and at most once on B \X. Note
that n = 2|A|+x, so that dn/2e+1 = dx/2e+ |A|+1. Thus we require to find a colouring
of T using at most dx/2e extra colours.

First, if two uncoloured leaves in X have distinct neighbours (which therefore have
distinct colours), then colour these two leaves with a new colour. We can repeat this as
long as there are two uncoloured leaves in X with distinct neighbours. If all vertices in X
are coloured by the process, then we have the required colouring. Otherwise, we are left
with a set Y of uncoloured leaves, which are all neighbours of the same vertex v ∈ A. Let
y = |Y |. Since each new colour has been used for two vertices, and x − y is even, then
we have now used at most |A|+ 1 + (x− y)/2 = |A|+ 1 + dx/2e − dy/2e colours. Hence
there are at least dy/2e colours still unused. Let j be the colour which does not occure
on B \X in the colouring of T ′. If j 6= c(v), then there is a vertex u in B \X which has
colour c(v). In that case, recolour u with a new colour i, and colour two elements y1, y2 of
Y with colours i, j respectively (or if y = 1, then colour the single vertex with colour i).
If every vertex is now coloured, then the proof is complete, otherwise let Z be the set of
remaining uncoloured leaves, and let z = |Z|. Note that if j 6= c(v), then Z = Y \{y1, y2},
otherwise Z = Y . In either case, we have a set N of dz/2e colours still unused.

The number of colours which occur adjacent to c(v) is d(v) − z, hence the number
of colours (apart from c(v) itself) not used adjacent to c(v) is at least dn/2e − d(v) + z.
Since d(v) 6 dn/2e, this is at least z. Hence, in addition to those in N we can find a
set S of bz/2c colours (with c(v) 6∈ S) which do not occur adjacent to c(v). The colours
in S may occur (possibly twice) on B; recolour one vertex of each such colour using at
most bz/2c colours from N . Now each colour in N ∪S occurs at most once, and does not
occur adjacent to c(v). Hence these colours can be used on the remaining z leaves; this
completes the proof. 2

Theorem 4. If T is a tree, then h(T ) 6 |B|+ ∆, where T = (A,B) is a bipartition of T
and |B| 6 |A|.

Proof. We show that there is a harmonious colouring using |B| + ∆ colours. One can
find a labeling for the vertices of T , say {v1, . . . , vn}, such that for every i, i > 1, there
exists a unique vertex vj, j < i, such that vi is adjacent to vj. Let i be the smallest index
such that vi has no colour and the harmonious property holds for every coloured vertex.
We want to colour vi so that the harmonious property holds. By assumption there exists
at most one vertex vj, j < i, such that vj has been coloured. The vertex vj has at most ∆
neighbors in A. Since we have ∆ colours which are not used in the vertex colouring of B,
there is at least one colour which is not used in the neighbor of vj among ∆ new colours,
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say α. Colour vi by α. Suppose that the colour of vj is β. If there exists a vertex vk ∈ B
such that vk is adjacent to a vertex vt ∈ A with colour α, and vk ∈ N(vi), then noting to
the labeling of vertices, we have k > i. On the other hand i > t. Thus vk is adjacent to
two vertices with indices smaller than k, a contradiction. The proof is complete. 2

In the following theorem we show that for every real number α, 0 6 α < 1, there exists a
bipartite graph G such that h(G) > αn+ ∆, where n = |V (G)|.

Theorem 5. For bipartite graph G, the inequality h(G) 6 n
2

+ ∆ is not necessarily true.

Proof. Let k be a natural number and PG(k) be the projective plane of order k. Assume
that m is a natural number such that m

m+1
> α. We form a bipartite graph G = (A,B),

where A contains m copies of each point and B contains a vertex corresponding to each
line of PG(k). Thus |A| = m(k2 + k + 1) and |B| = k2 + k + 1. Join point p ∈ A to line
L ∈ B if p ∈ L.
We have |V (G)| = (m+1)(k2 +k+1) and ∆ = m(k+1). Since for a pair of points there is
a line containing the pair, then in each harmonious colouring of G, the vertices of A must
have different colours. This implies that h(G) > m(k2 + k + 1). We have α|V (G)|+ ∆ =
α(m+1)(k2 +k+1)+m(k+1). If k is sufficiently large, then α|V (G)|+∆ < m(k2 +k+1).
Thus h(G) > α|V (G)|+ ∆. 2

Theorem 6. Let G = (A,B) be a bipartite graph, ∆ > 2 and |B| 6 |A|. Then h(G) 6
|B|+ ∆2 −∆.

Proof. Assume that A = {v1, . . . v|A|} and B = {u1, . . . , u|B|} are two parts of the
graph G. We colour the vertices of B with |B| different colours. Now, we colour the
vertices of Part A step by step. First, we want to colour Part A using ∆2 − ∆ + 1
new colours. Colour vertex v1 by one of the arbitrary colours among ∆2 − ∆ + 1 new
colours. Now, assume that v1, . . . , vi have been coloured such that the induced subgraph
on the vertices u1, . . . , u|B|, v1, . . . , vi, has a harmonious colouring. Now, we try to colour
vi+1. Let N(vi+1) = {ui1 , . . . , uik}, for some k. For every j, 1 6 j 6 k, uij has at most
∆− 1 coloured neighbors. Thus N(N(vi+1)) has at most k(∆− 1) 6 ∆(∆− 1) coloured
neighbors. But we have ∆2 − ∆ + 1 colours which are not used in the colouring of B.
This shows that we have at least one available colour for the colouring of vi+1 such that
the induced subgraph on u1, . . . , u|B|, v1, . . . , vi+1, has a harmonious colouring.

Now, we would like to reduce the number of colours by 1. If in the colouring of A
we use at most |B| + ∆2 − ∆ colours, then we are done. Assume that u ∈ B. Since
∆2 − ∆ + 1 > ∆, then there exists at least one colour, say α, among ∆2 − ∆ + 1 new
colours which is not used in the colouring of the neighbors of u. Now, recolour the vertex
u by α to obtain a harmonious colouring of G by |B|+ ∆2 −∆ colours. 2

Corollary 7. Let G be a bipartite graph of order n. Then h(G) 6 n
2

+ ∆2 −∆.
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3. Harmonious Edge Colouring of Graphs

In this section we extend the concept of harmonious colouring to harmonious edge
colouring. By the definition clearly for every graph G, h′(G) = h(L(G)), where L(G) is
the line graph of G.

Theorem 8. Let G be a connected graph. If G is a tree, then h(G) 6 h′(G) + 1 and if G
is a unicyclic graph, then h(G) 6 h′(G).

Proof. Let c′ : E(G)→ {1, . . . , h′(G)} be a harmonious edge colouring of G. Now, using
c′ we wish to obtain a harmonious colouring of G, say c : V (G) → {1, . . . , h′(G) + 1}.
Assume that L1 = {v ∈ V (G) | dG(v) = 1}. For every v ∈ L1, define c(v) = c′(ev), where
v and edge ev are incident. Now, let G1 = G \ L1. Suppose that

L2 = {v ∈ V (G1) | dG1(v) = 1}.

For every v ∈ L2, define c(v) = c′(ev), where v and ev are incident in G1. Let G2 = G1\L2.
Now, inductively Gi and Li are defined as follows:

Li+1 = {v ∈ V (Gi) | dGi
(v) = 1}

and Gi+1 = Gi \ Li+1, where G0 = G. For each v ∈ Li+1, define c(v) = c′(ev), where v
and ev are incident. Assume that r is the minimum number such that Lr+1 = ∅. Now,
since G is a connected graph, two cases can be considered:
Case 1. G is a tree. Thus Gr is an isolated vertex. Let V (Gr) = {w}. Now, define
c(w) = h′(G) + 1. We claim that c is a harmonious colouring of G. First we show that
c is a proper colouring. Assume that c(u) = c(v) and uv ∈ E(G). Thus c′(eu) = c′(ev).
Clearly, uv ∈ {eu, ev}. With no loss of generality assume that uv = eu. Since uv and
ev are adjacent and they have the same colour, this contradicts the properness of c′.
Hence c is a proper colouring of G. Next, we prove that c is a harmonious colouring.
Let {c(u), c(v)} = {c(x), c(y)}, uv, xy ∈ E(G), and uv 6= xy. With no loss of generality
assume that c(u) = c(x) and c(v) = c(y). Therefore c′(eu) = c′(ex) and c′(ev) = c′(ey).
Since uv ∈ {eu, ev} and xy ∈ {ex, ey}, one may assume that uv = eu, xy = ex. Now, since
xy and ey, and uv and ev, respectively are incident and {c′(xy), c′(ey)} = {c′(uv), c′(ev)},
we conclude that c′ is not a harmonious edge colouring, a contradiction.
Case 2. G is a unicyclic graph. Thus Gr = Ck, for some k > 3. Assume that Ck is as
follows:

v1e1v2e2 . . . vk−1ek−1vkekv1.

For every i, 1 6 i 6 k define c(vi) = c′(ei). Similar to the Case 1, it is not hard to see
that this colouring is a harmonious colouring of G. 2

Now, we propose the following conjecture.

Conjecture. If G is a connected graph and G is not a tree, then h(G) 6 h′(G).
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Remark. It is easily seen that if G is a strongly regular graph with positive parameters,
then h(G) = |V (G)|. Thus h′(Kn)−h(Kn) =

(
n
2

)
−n. So the difference between h′(G) and

h(G) can be arbitrarily large.

Theorem 9. Let G be a connected graph of order n and size m. Then the following hold:

(i) h′(G) >
√

2m(2m−n)
n

.

(ii) If G 6= K2, then h
′(G) >

√
2m.

Proof. (i) Let d1, . . . , dn be the degree sequence of G. Then by the Cauchy-Schwartz
inequality we have(

h′(G)

2

)
> |E(L(G))| =

n∑
i=1

(
di
2

)
>

(
∑n

i=1 di)
2

2n
−m.

Thus h′(G)2

2
>
(
h′(G)

2

)
> 2m2−mn

n
and the proof is complete.

(ii) Since G is connected, L(G) is connected and has m vertices, hence L(G) has at
least m− 1 edges. Therefore (

h′(G)

2

)
> m− 1.

If G = K1, then the assertion is clear. Now, assume that |V (G)| > 3. Thus h′(G) > 2
and this implies that

h′(G)2

2
> m− 1 +

h′(G)

2
> m.

Hence h′(G) >
√

2m. 2

Theorem 10. Let G be a k-regular graph of order n. Then⌈
1 +

√
1 + 4n(k2 − k)

2

⌉
6 h′(G) 6 4(k − 1)

√
nk

2
− 1.

Proof. Since G is a k-regular graph, we find that |E(L(G))| = n
(
k
2

)
. We know that(

h′(G)
2

)
=
(
h(L(G))

2

)
> |E(L(G))|. This implies that (h′(G))2− h′(G)− n(k2− k) > 0. There-

fore, we find h′(G) > d1+
√

1+4n(k2−k)

2
e. By a result in [6], h(G) 6 2∆

√
n− 1. Thus

h′(G) 6 (4k − 4)

√
nk

2
− 1.

2
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Now, we wish to determine the harmonious edge colouring number of the Petersen graph.
Let P denote the Petersen graph. By Theorem 10, we have h′(P ) > 9. We show that
h′(P ) 6= 9. We know that L(P ) has 15 vertices and 30 edges. Suppose h′(P ) = 9, then
there are at least 2 colours which are used once, since if there is exactly one colour which
is used once, then we should have at least 2×8+1 = 17 vertices in L(P ), a contradiction.
Thus there are two colours say, i and j, which are used once. Since L(P ) is a 4-regular
graph, there are exactly 4 pairs containing i which do not appear on the edges of L(P ).
The same holds for j. So there are at least 7 pairs containing i or j such that do not
appear on the edges of P . Since there are

(
9
2

)
= 36 pairs of colours and |E(L(P ))| = 30,

at most 6 pairs cannot be appeared on the edges of L(P ), a contradiction. So h′(P ) > 10.
But the following shows a harmonious edge-colouring for Petersen graph using 10 colours.

Figure 1: A harmonious edge-colouring of Petersen graph using 10 colours
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