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Abstract

We study the susceptibility, i.e., the mean size of the component containing a
random vertex, in a general model of inhomogeneous random graphs. This is one of
the fundamental quantities associated to (percolation) phase transitions; in practice
one of its main uses is that it often gives a way of determining the critical point by
solving certain linear equations. Here we relate the susceptibility of suitable random
graphs to a quantity associated to the corresponding branching process, and study
both quantities in various natural examples.

1 Introduction

The susceptibility χ(G) of a (deterministic or random) graph G is defined as the mean
size of the component containing a random vertex:

χ(G) = |G|−1
∑

v∈V (G)

|C(v)|, (1.1)

where C(v) denotes the component of G containing the vertex v, and |H| denotes the
number of vertices in a graph H. Thus, if G has n vertices and components Ci = Ci(G),
i = 1, . . . , K, then

χ(G) :=
K∑
i=1

|Ci|
n
|Ci| =

1

n

K∑
i=1

|Ci|2. (1.2)

Later we shall order the components, assuming as usual that |C1| > |C2| > · · · .

the electronic journal of combinatorics 19 (2012), #P31 1



When the graph G is itself random, in some contexts (such as percolation) it is usual
to take the expectation over G as well as over v. Here we do not do so: when G is random,
χ(G) is a random variable.

Remark 1.1. The term susceptibility comes from physics; we therefore use the notation
χ, which is standard in physics, although it usually means something else in graph theory.
The connection with physics is through (e.g.) the Ising model for magnetism and the
corresponding random-cluster model, which is a random graph where the susceptibility
(1.2), or rather its expectation, corresponds to the magnetic susceptibility.

The susceptibility has been much studied for certain models in mathematical physics.
In percolation theory, which deals with certain random infinite graphs, the corresponding
quantity is the (mean) size of the open cluster containing a given vertex, and this has also
been extensively studied; see e.g. Bollobás and Riordan [8]. In contrast, not much rigorous
work has been done for finite random graphs. Some results for the Erdős–Rényi random
graphs G(n, p) and G(n,m) can be regarded as folk theorems that have been known to
experts for a long time. More recently, Durrett [19] proved that the susceptibility of
G(n, p) has expectation Eχ(G(n, p)) = (1 − λ)−1 + O(1/n) when p = λ/n with λ < 1
fixed. The susceptibility of G(n, p) and G(n,m) has been studied in detail by Janson
and Luczak [24]. For other graphs, one rigorous treatment is by Spencer and Wormald
[33], who considered a class of random graph processes (including the Erdős–Rényi graph
process) and used the susceptibility to study the phase transition in them.

The purpose of the present paper is to study χ(GV(n, κ)) for the inhomogeneous
random graph GV(n, κ) introduced by Bollobás, Janson and Riordan [5]; this is a rather
general model that includes G(n, p) as a special case. In fact, much of the time we shall
consider the even more general setting of [6]. We review the fundamental definitions from
[5; 6] in Section 2 below.

We consider asymptotics as n→∞, and all unspecified limits are as n→∞. As
usual, if Gn is a sequence of random graphs, we say that Gn has a certain property with
high probability, or whp, if the probability that Gn has this property tends to 1 as n→∞.

Remark 1.2. We obtain results for G(n, p) as corollaries of our general results, but
note that these results are not (and cannot be, because of the generality of the model
GV(n, κ)) as precise as the results obtained by Janson and Luczak [24]. The proofs in the
two papers are quite different: the proofs in [24] are based on studying the evolution of
the susceptibility in the random graph process obtained by adding random edges one-by-
one, using methods from stochastic process theory, while the present paper is based on
the standard branching process approximation of the neighbourhood of a given vertex. It
seems likely that the latter method can also be used to prove precise results in the special
case of G(n, p), but we have not attempted this. (Durrett [19] uses this method for the
expectation Eχ(G(n, p)).)

The definition (1.2) is mainly interesting in the subcritical case, when all components
are rather small. In the supercritical case, there is typically one giant component that
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is so large that it dominates the sum in (1.2), and thus χ(G) ∼ |C1|2/n. In fact, in the
supercritical case of [5, Theorem 3.1], whp |C1| = Θ(n) and |C2| = o(n) and thus

K∑
i=1

|Ci|2 = |C1|2 +O
(
|C2|

K∑
i=2

|Ci|
)

= |C1|2 +O
(
|C2|n

)
= (1 + o(1))|C1|2.

(See also [24, Appendix A] for G(n, p).) In this case, it makes sense to exclude the largest
component from the definition; this is in analogy with percolation theory, where one
studies the mean size of the open cluster containing a fixed vertex, given that this cluster
is finite. We thus define the modified susceptibility χ̂(G) of a finite graph G by

χ̂(G) :=
1

n

K∑
i=2

|Ci|2. (1.3)

Note that we divide by n rather than by n− |C1|, which would also make sense.
In the uniform case, i.e., in the usual random graph process, one interpretation of

χ̂(G) is that it gives the rate of growth of the giant component above the critical point.
More generally, if we add a single new edge chosen uniformly at random to a graph G,
then the probability that Ci, i > 2, becomes joined to C1 is asymptotically 2|Ci||C1|/n2,
and when this happens |C1| increases by |Ci|. Thus (under suitable assumptions), the
expected increase in |C1| is asymptotically 2|C1|

∑
i>2 |Ci|2/n2 = 2χ̂(G)|C1|/n.

The results in [5] on components of GV(n, κ) are based on approximation by a branch-
ing process Xκ, see Section 2. We define (at least when µ(S) = 1, see Section 2)

χ(κ) := E
(
|Xκ|

)
∈ [0,∞], (1.4)

χ̂(κ) := E
(
|Xκ|1{|Xκ|<∞}

)
∈ [0,∞], (1.5)

where 1A denotes the indicator function of an event A. Thus, χ(κ) = χ̂(κ) when the
survival probability ρ(κ) := P(|Xκ| = ∞) is zero (the subcritical or critical case), while
χ(κ) = ∞ > χ̂(κ) when ρ(κ) > 0 (the supercritical case). Our main aim is to show
that under suitable conditions, the [modified] susceptibility of GV(n, κ) converges to χ(κ)
[χ̂(κ)].

The rest of this paper is organized as follows. In Section 2 we define the models that
we shall study, and recall some of their basic properties. We also describe the branching
process Xκ and integral operator Tκ associated to the models, and collect together some
facts from functional analysis that we shall need later. In Section 3 we relate the branching
process analogues of the susceptibilities, defined in (1.4) and (1.5), to the operator Tκ.
The heart of the paper is Section 4, where we show that, under certain assumptions,
the susceptibilities of the random graphs are close to those of the branching process; see
Theorems 4.7, 4.8 and 4.9. In Section 5 we study the behaviour of χ(λκ) and χ̂(λκ) as
functions of the parameter λ ∈ (0,∞), and in particular the behaviour near the threshold
for the existence of a giant component; this provides a way to use the susceptibility
to find the threshold for the random graphs treated here. (See, e.g., Durrett [19] and
Spencer and Wormald [33] for earlier uses of this method.) Finally, in Section 6 we
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give some applications and examples of our results, including explicit calculations of the
susceptibilities in certain much-studied special cases.

Remark 1.3. We believe that results similar to those proved here hold for the ‘higher
order susceptibilities’

χm(G) :=
1

|G|
∑

v∈V (G)

|C(v)|m =
1

|G|
∑
i

|Ci|m+1,

but we have not pursued this. (For G(n, p), see [24].)

Acknowledgements. Part of this work was carried out during the programme “Com-
binatorics and Statistical Mechanics” at the Isaac Newton Institute, Cambridge, 2008,
where SJ was supported by a Microsoft fellowship, and part during a visit of both authors
to the programme “Discrete Probability” at Institut Mittag-Leffler, Djursholm, Sweden,
2009. The authors would like to thank a very thorough referee for many suggestions
improving the presentation of the paper.

2 Preliminaries

We review the fundamental definitions from [5; 6], but refer to those papers for further
details, as well as for references to previous work. In terms of motivation and applications,
our main interest is the model GV(n, κ) of [5], but for the proofs we sometimes need (or
can handle) different generality. Throughout the paper we use standard graph theoretic
notation as in [2]; for example, |G| denotes the number of vertices in a graph G, and e(G)

the number of edges. The notation
p−→ denotes convergence in probability. We use x∧ y

as an alternative notation for min{x, y} when convenient.

2.1 The random graph models

All our random graphs will have vertex set [n] = {1, 2, . . . , n}.
By a type space (S, µ) we mean a measure space with 0 < µ(S) < ∞. The reason

for the terminology is that in the graphs GV(n, κ) defined below, each vertex i will have
a type xi ∈ S. Often S = [0, 1] or (0, 1], in which case µ is Lebesgue measure unless
stated otherwise. Usually, µ(S) = 1, so (S, µ) is a probability space. Then the measure µ
describes the limiting distribution of the vertex types in a way that will be made precise
below; the most natural case is when the types are i.i.d. with distribution µ.

The second key ingredient in all cases is a kernel on (S, µ), i.e., a symmetric non-
negative measurable function κ : S ×S → [0,∞). We assume throughout that all kernels
κ are integrable, i.e., that

∫
S2 κ(x, y) dµ(x) dµ(y) <∞.

2.1.1 The general inhomogeneous model.

To define GV(n, κ), we assume that we are given, for each n > 1, a random or deterministic
finite sequence xn = (x1, x2, . . . , xn) of elements of S; the elements will specify the types
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of the vertices. To avoid clutter we write xi rather than x
(n)
i , even though the vertex

types for different n need not be related. We denote the triple (S, µ, (xn)n>1) by V , so V
encodes the type space and, for each n, the (joint) distribution of the vertex types.

Given such a triple V and a kernel κ on (S, µ), the random graph Gn = GV(n, κ) is
defined by first picking the type sequence xn = (x1, x2, . . . , xn) according to the distribu-
tion specified by V and then, given xn, forming the graph on [n] in which each possible
edge ij, i < j, is present independently with probability

pij = min{κ(xi, xj)/n, 1}. (2.1)

(Alternatively, we may take pij = 1 − exp(−κ(xi, xj)/n); as shown in [5; 22], this is
essentially equivalent.)

As in [5], to relate properties of GV(n, κ) to properties of µ and κ some conditions
must be imposed on V and κ.

Let δx denote the measure assigning mass 1 to x ∈ S and zero elsewhere, and let νn
be the (random) measure

νn = n−1

n∑
i=1

δxi . (2.2)

Thus, for A ⊂ S, νn(A) gives the (random) proportion of vertices of Gn with types in
A. The most important condition is that νn should converge to µ in a suitable sense,
meaning (roughly speaking) that µ encodes the asymptotic distribution of vertex types.

To be precise, as in [5], a standard vertex space, or simply a vertex space, is a triple
V = (S, µ, (xn)n>1) where S is a separable metric space, µ is a Borel probability measure

on S, each xn is a random or deterministic sequence of n points of S, and νn
p−→ µ in the

sense of weak convergence of measures, where νn is defined by (2.2).
In the most common special cases, the convergence condition says something very

simple. Firstly, if S is a finite set, then νn({x}) is simply the proportion of vertices

having type x, and νn
p−→ µ if and only if for each type x ∈ S this proportion converges

to µ({x}) in probability. If S = [0, 1] with µ Lebesgue measure, the condition is that
for each interval [a, b] there are asymptotically µ([a, b])n = (b − a)n vertices with types
in [a, b]. This last condition holds, for example, when the types are deterministic with
xi = i/n.

Turning to the kernel, as in [5], we say that the kernel κ is graphical on V if κ is
integrable and a.e. (almost everywhere) continuous, and E e(GV(n, κ))/n→ 1

2

∫
S2 κ. The

last condition says roughly that the expected number of edges is as expected.
As in [5], we say that a sequence (κn) of kernels is graphical on V with limit κ if (i)

each κn is integrable and a.e. continuous, (ii) for a.e. (y, z) ∈ S2, yn → y and zn → z
imply κn(yn, zn) → κ(y, z), and (iii) E e(GV(n, κn))/n → 1

2

∫
S2 κ. As noted in [5] this

includes the case when all κn = κ for some graphical kernel κ.

Remark 2.1. In [5], generalized vertex spaces are considered, where µ(S) need not be
equal to 1, and the number of vertices of GV(n, κ) is not exactly n, but rather asymp-
totically nµ(S). As shown in [5, Section 8.1], the apparent extra generality is essentially
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illusory: one can reduce to the vertex-space case by renormalizing appropriately. For this
reason we shall not consider generalized vertex spaces further, except to note that we
have chosen the normalization in our definitions of χ and χ̂ in (2.10) and (2.11) below
so that our main results apply verbatim to generalized vertex spaces: no extra factors of
µ(S) appear; see Remark 2.3.

Note that we shall consider kernels κ on spaces (S, µ) with µ(S) 6= 1; this will be
useful in the supercritical case, see e.g. Section 2.3.

2.1.2 The i.i.d. case.

As noted in [7], in the special case where the types of the vertices are independent and
identically distributed (i.i.d.), many of the results in [5] hold without the need for some
of the technical assumptions described above. We say that V = (S, µ, (xn)n>1) is an i.i.d.
vertex space if (S, µ) is an arbitrary probability space, and each sequence xn is a sequence
of n i.i.d. random elements x1, . . . , xn of S, each with distribution µ.

To unify the notation, we write

κn
V−→ κ (2.3)

if either (i) V is a standard vertex space and (κn) is graphical on V with limit κ, or (ii)
V is an i.i.d. vertex space, κ is an arbitrary integrable kernel on V , and κn = κ for all
n. (Many results for the i.i.d. case extend to suitable sequences of kernels, for example
assuming that ‖κn− κ‖1 → 0, as then the general setting in the next subsection applies.)

2.1.3 Cut-convergent sequences

To define the final variant we shall consider, we briefly recall some definitions. (A variant
of) the Frieze–Kannan [21] cut norm of an integrable function W : S2 → R is simply

‖W‖� := sup
‖f‖∞, ‖g‖∞61

∫
S2
f(x)W (x, y)g(y) dµ(x) dµ(y).

Given an integrable kernel κ and a measure-preserving bijection τ : S → S, let κ(τ) be
the corresponding rearrangement of κ, defined by

κ(τ)(x, y) = κ(τ(x), τ(y)).

We write κ ∼ κ′ if κ′ is a rearrangement of κ. Given two kernels κ, κ′ on [0, 1], the cut
metric of Borgs, Chayes, Lovász, Sós and Vesztergombi [11] may be defined by

δ�(κ, κ′) := inf
κ′′∼κ′

‖κ− κ′′‖�. (2.4)

There is also an alternative definition via couplings, which extends to kernels defined on
two different probability spaces; see [11; 9].

Suppose that An = (aij) is an n-by-n symmetric matrix with non-negative entries;
from now on any matrix denoted An is assumed to be of this form. Then there is a
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random graph Gn = G(An) naturally associated to An: the vertex set is {1, 2, . . . , n},
edges are present independently, and the probability that ij is an edge is min{aij/n, 1}.
Given An, there is a corresponding kernel κAn on [0, 1] with Lebesgue measure: divide
[0, 1]2 into n2 squares of side 1/n in the obvious way, and take the value of κAn on the
(i, j)th square to be aij. If An is a matrix and κ is a kernel on [0, 1], then we write
δ�(An, κ) for δ�(κAn , κ).

If An is itself random, then G(An) is defined to have the conditional distribution just
described, given An. Any results stating that if δ�(An, κ) → 0 then G(An) has some

property whp apply also if (An) is random with δ�(An, κ)
p−→ 0. (One way to see this is

to note that there is a coupling of the distributions of the An in which δ�(An, κ)→ 0 a.s.,
and we may then condition on (An).)

2.1.4 Relating the models

By the matrix of edge weights in GV(n, κ) we mean the matrix An whose ijth entry is
npij = κ(xi, xj) ∧ n. Note that in general the vertex types xi are random, so An is a
random matrix. Recalling (2.1), we may view GV(n, κ) as G(An) for this matrix of edge
weights.

The following result was proved in [6, Sections 1.2 and 1.3]. (More precisely, the result
in [6] for the i.i.d. case concerns the ‘untruncated’ matrices with entries κ(xi, xj); the
result for An follows easily from this.)

Lemma 2.2. Suppose that Gn = GV(n, κn) where κn
V−→ κ. Then the matrix An of edge

weights associated to Gn satisfies δ�(An, κ)
p−→ 0.

This lemma shows that results applying to G(An) when δ�(An, κ)
p−→ 0 transfer to

the models GV(n, κn) and GV(n, κ) defined in Subsections 2.1.1 and 2.1.2.

2.2 The branching process associated to a kernel

Given an integrable kernel κ on a measure space (S, µ) and an ‘initial type’ x ∈ S, let
Xκ(x) be the multi-type Galton–Watson branching process defined as follows. We start
with a single particle of type x in generation 0. A particle in generation t of type y gives
rise to children in generation t+1 whose types form a Poisson process on S with intensity
κ(y, z) dµ(z). The children of different particles are independent (given the types of their
parents).

If µ is a probability measure, we also consider the branching process Xκ defined as
above but starting with a single particle whose type has the distribution µ.

Writing |X| for the total number of particles in all generations of a branching process
X, let

ρk(κ;x) := P(|Xκ(x)| = k), k = 1, 2, . . . ,∞, (2.5)

and

ρk(κ) :=

∫
S
ρk(κ;x) dµ(x), k = 1, 2, . . . ,∞. (2.6)
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Thus, when µ(S) = 1, ρk(κ) is the probability P(|Xκ| = k).
For convenience we assume that∫

S
κ(x, y) dµ(y) <∞ (2.7)

for all x ∈ S; this implies that all sets of children are finite. This is no real restriction,
since our assumption that

∫
S2 κ < ∞ implies that (2.7) holds for a.e. x, and we may

impose (2.7) by changing κ on a null set, which will a.s. not affect Xκ. (Alternatively, we
could work without (2.7), adding the qualifier “for a.e. x” at some places below.)

Since all generations of Xκ(x) are finite, it follows that ρ∞(κ;x), the probability that
the branching process is infinite, equals the survival probability of Xκ(x), i.e., the prob-
ability that all generations are non-empty. We use the notation ρ(κ;x) := ρ∞(κ;x);
for typographical reasons we sometimes also write ρκ(x) = ρ(κ;x). Similarly, we write
ρ(κ) := ρ∞(κ); if µ(S) = 1, this is the survival probability of Xκ.

We are interested in the analogue of the mean cluster size for the branching processes.
For Xκ(x), we define

χ(κ;x) := E
(
|Xκ(x)|

)
=
∑

16k6∞

kρk(κ;x), (2.8)

χ̂(κ;x) := E
(
|Xκ(x)|1{|Xκ(x)|<∞}

)
=
∑

16k<∞

kρk(κ;x); (2.9)

thus χ(κ;x) = χ̂(κ;x) 6∞ if ρ(κ;x) = 0, and χ̂(κ;x) 6 χ(κ;x) =∞ if ρ(κ;x) > 0. Let

χ(κ) := µ(S)−1

∫
S
χ(κ;x) dµ(x) = µ(S)−1

∑
16k6∞

kρk(κ), (2.10)

χ̂(κ) := µ(S)−1

∫
S
χ̂(κ;x) dµ(x) = µ(S)−1

∑
16k<∞

kρk(κ). (2.11)

If µ(S) = 1, we see that

χ(κ) = E
(
|Xκ|

)
, (2.12)

χ̂(κ) = E
(
|Xκ|1{|Xκ|<∞}

)
. (2.13)

Note that when µ(S) 6= 1, the normalizations in (2.6) and (2.10) are different; these
normalizations are chosen so that our main results, like those of [5], extend unchanged to
generalized vertex spaces; see Remark 2.1.

Remark 2.3. For a generalized vertex space, where µ(S) may differ from 1, we may
renormalize by replacing µ and κ by

µ′ := µ(S)−1µ and κ′ := µ(S)κ. (2.14)

This will not affect Xκ(x), and thus not χ(κ;x) and χ̂(κ;x); furthermore, because of our
choice of normalization in (2.10) and (2.11), χ(κ) and χ̂(κ) also remain unchanged. Hence,
results for generalized vertex spaces follow from the case when µ(S) = 1.
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2.3 Integral operators

Given a kernel κ on a measure space (S, µ), let Tκ be the integral operator on (S, µ) with
kernel κ, defined by

(Tκf)(x) :=

∫
S
κ(x, y)f(y) dµ(y), (2.15)

for any (measurable) function f such that this integral is defined (finite or +∞) for
a.e. x. (As usual, we shall assume without comment that all functions considered are
measurable.) Note that Tκf is defined for every f > 0, with 0 6 Tκf 6∞.

We define
‖Tκ‖ := sup

{
‖Tκf‖2 : f > 0, ‖f‖2 6 1

}
6∞. (2.16)

When finite, ‖Tκ‖ is the norm of Tκ as an operator on L2(µ) (see Section 2.7).
One of the results of [5] is that the function ρκ : S → [0, 1] defined by ρκ(x) = ρ(κ;x)

is the unique maximal solution to the non-linear functional equation

f = 1− e−Tκf , f > 0. (2.17)

Moreover, if ‖Tκ‖ 6 1, then ρκ is identically 0 and thus ρ(κ) = 0, while if ‖Tκ‖ > 1,
then ρκ > 0 on a set of positive measure and thus ρ(κ) > 0. The three cases ‖Tκ‖ < 1,
‖Tκ‖ = 1 and ‖Tκ‖ > 1, are called subcritical, critical and supercritical, respectively.

Given a kernel κ on a type space (S, µ), let µ̂ be the measure on S defined by

dµ̂(x) := (1− ρ(κ;x)) dµ(x). (2.18)

(This is interesting mainly when κ is supercritical, since otherwise µ̂ = µ.) The dual
kernel κ̂ is the kernel on (S, µ̂) that is equal to κ as a function. We regard Tκ̂ as an
operator acting on the corresponding space L2(µ̂). Then ‖Tκ̂‖ 6 1; typically ‖Tκ̂‖ < 1
when κ is supercritical, but equality is possible, see [5, Theorem 6.7 and Example 12.4].

The definitions above imply the following explicit formula for Tκ̂f :

(Tκ̂f)(x) :=

∫
S
κ̂(x, y)f(y) dµ̂(y) =

∫
S
κ(x, y)f(y)(1− ρ(κ; y)) dµ(y), (2.19)

so Tκ̂f = Tκ((1− ρκ)f). Note also that

µ̂(S) =

∫
S
(1− ρ(κ;x)) dµ(x) = µ(S)− ρ(κ); (2.20)

if µ(S) = 1, this is the extinction probability of Xκ.

2.4 Small components

Let Nk(G) denote the number of vertices in components of order k in a graph G. Since
the number of such components is Nk(G)/k, we can write the definition (1.2) as

χ(G) =
1

|G|

∞∑
k=1

Nk(G)

k
k2 =

∞∑
k=1

k
Nk(G)

|G|
. (2.21)
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Let N>k(G) :=
∑

j>kNj(G) and ρ>k(κ) :=
∑

k6j6∞ ρj(κ). Collecting together basic
results from [5; 7; 6], we have the following lemma.

Lemma 2.4. Suppose either that Gn = GV(n, κn) where κn
V−→ κ in the sense of (2.3),

or that Gn = G(An) where An is a random sequence of matrices with δ�(An, κ)
p−→ 0.

Then, for every fixed k > 1, we have

N>k(Gn)/n
p−→ ρ>k(κ) (2.22)

and
Nk(Gn)/n

p−→ ρk(κ). (2.23)

Proof. By Lemma 2.2 it suffices to consider the second case Gn = G(An). This result
follows from [6, Lemma 2.11] (the special case when the An are deterministic) by [6,
Remark 1.5].

The result for the model GV(n, κn) was proved in [5, Theorem 9.1] and (for the i.i.d.
case) [7, Lemma 21].

2.5 The giant component

As in [5], we say that a kernel κ is reducible if there exists A ⊂ S with 0 < µ(A) < µ(S)
such that κ(x, y) = 0 for a.e. (x, y) with x ∈ A and y ∈ S \A. Otherwise, κ is irreducible.
Roughly speaking, κ is reducible if the set of types can be partitioned into two parts so
that there will be no edges joining vertices with types in different parts.

Collecting together the results for the various models, we have the following theorem.

Theorem 2.5. Under the assumptions of Lemma 2.4 we have

|C1(Gn)|/n p−→ ρ(κ) (2.24)

and
|C2(Gn)|/n p−→ 0. (2.25)

Proof. This follows from [6, Theorem 1.1] and Lemma 2.2; see also [5, Theorems 3.1 and
3.6].

2.6 Monotonicity

We note a simple monotonicity property of χ; there is no corresponding result for χ̂.

Lemma 2.6. If H is a subgraph of G with the same vertex set, then χ(H) 6 χ(G).

Proof. Immediate from the definition (1.1).
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2.7 Operators on L2 spaces

Although our results connect two random combinatorial objects (random graphs and
branching processes), in the proofs we shall need some tools from functional analysis. For
the reader less familiar with this area, we collect here some of the basic facts we shall use.
See e.g. [15] or [17] for proofs and further details.

Let (S, µ) be a finite measure space. Two (real-valued) functions f and g on S are
equal a.e. if µ({x : f(x) 6= g(x)}) = 0. Formally, the elements of L2(µ) = L2(S, µ) are
equivalence classes of functions under the relation f ∼ g if f and g are equal a.e. In
practice one thinks of them as functions f on S, bearing in mind that f is only defined
up to equality a.e. Adopting this convention, L2(µ) is simply the set of all measurable
real-valued functions f on S such that ‖f‖2 = (

∫
S f(x)2 dµ(x))1/2 is finite.

Two key basic properties of L2(µ) are that ‖f‖2 is indeed a norm on this space, i.e.,
‖λf‖2 = λ‖f‖2 for λ constant and ‖f+g‖2 6 ‖f‖2 +‖g‖2, and that this norm is complete:
if fj ∈ L2(µ) and the sequence (fj) is Cauchy with respect to the norm then there is an

f ∈ L2(µ) with ‖fj − f‖2 → 0. Moreover, the norm is given by ‖f‖2 = 〈f, f〉1/2µ for the
bilinear inner product 〈f, g〉µ :=

∫
S f(x)g(x) dµ(x); thus L2(µ) is a Hilbert space. [15,

§I.1]
A (linear) operator on L2(µ) is simply a linear function T : L2(µ) → L2(µ). (Note

that if f = g a.e. then we must have Tf = Tg a.e.) The operator norm ‖T‖ of T is then
sup{‖Tf‖2 : ‖f‖2 = 1}. T is a bounded operator if ‖T‖ < ∞. The set of all bounded
operators on L2(µ) is a vector space, the operator norm is a norm on this space, and the
space is complete with respect to this norm. (In other words, the set of bounded linear
operators is a Banach space.) An additional property of the operator norm is that if S
and T are operators on L2(µ), then ‖ST‖ 6 ‖S‖‖T‖. [15, §II.1 and Exercise III.2.1]

Note that the integral operator Tκ defined in Section 2.3 is an operator on L2(µ) if
and only if ‖Tf‖2 < ∞ for all f ∈ L2(µ). In this case, ‖Tκ‖ as defined in Section 2.3 is
exactly the operator norm of Tκ. In particular, ‖Tκ‖ <∞ if and only if Tκ is a bounded
operator on L2(µ).

An operator T on L2(µ) is compact if the closure of {Tf : ‖f‖2 6 1} is a compact
subset of L2(µ). An operator T is finite rank if its range {Tf : f ∈ L2(µ)} has finite
dimension; equivalently, if there are some ψi, ϕi ∈ L2(µ) such that Tf is given by the
finite sum

Tf =
k∑
i=1

〈f, ψi〉ϕi. (2.26)

A key property of compact operators is that they can be approximated by finite rank
ones: if T is compact and ε > 0, then there is a finite rank F such that ‖T −F‖ 6 ε. [15,
§II.4]

An important sufficient condition for the integral operator Tκ in (2.15) to be a compact
operator on L2(µ) is that the kernel is square integrable, i.e.,

∫
S×S κ(x, y)2 dµ(x) dµ(y) <

∞ [15, Proposition II.4.7]. Such integral operators are called Hilbert–Schmidt. In partic-
ular, if κ is bounded, then Tκ is compact (since we only consider finite measures µ).
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An operator T on L2(µ) is self-adjoint if 〈Tf, g〉µ = 〈f, Tg〉µ for all f, g ∈ L2(µ). The
integral operator Tκ is always self-adjoint (if defined on L2(µ)), since κ is symmetric.

The spectrum σ(T ) of a bounded operator T is defined to be the complement of the set
{λ : λI − T is one-to-one and has a bounded inverse}. (In general, one considers λ ∈ C,
and the L2 space of complex-valued square integrable functions. For self-adjoint operators
it suffices to consider real λ and real functions.)

One version of the spectral theorem is the following. (Theorem 2.7 holds without
changes for any Hilbert space, but we state it for L2(µ).) For simplicity, we consider only
the case of a compact self-adjoint operator, which is all that we shall need in this paper;
see e.g. [15, Theorem II.5.1] (with a slightly different but equivalent formulation). For the
case of more general operators, see [15, §IX.2].

Theorem 2.7. Let T be a compact self-adjoint operator on L2(µ).

(i) The spectrum σ(T ) is a non-empty compact subset of R, and is either finite or
consists of a sequence converging to 0.

(ii) If λ 6= 0, then λ ∈ σ(T ) if and only if λ is an eigenvalue of T , and in this case the
eigenspace Eλ := {f : Tf = λf} has finite dimension.

(iii) The space L2(µ) can be decomposed as a direct orthogonal sum
⊕

λ∈σ(T ) Eλ. If

f ∈ L2(µ), then f thus has a decomposition f =
∑

λ∈σ(T ) Pλf , where Pλ is the

orthogonal projection onto Eλ, and Tf =
∑

λ∈σ(T ) λPλf .

(iv) The norm ‖T‖ equals the spectral radius sup{|λ| : λ ∈ σ(T )}.

3 Branching processes

We start by showing that the mean cluster sizes χ(κ) and χ̂(κ) can be expressed in terms
of the operators Tκ and Tκ̂. This is doubtless well known, but we have not found the
result in the literature in the generality that we need here. We write 1 for the constant
function 1 on S.

Lemma 3.1. For any integrable kernel κ on a type space (S, µ) we have

χ(κ;x) =
∞∑
j=0

T jκ1(x), (3.1)

χ(κ) = µ(S)−1

∞∑
j=0

∫
S
T jκ1(x) dµ(x) = µ(S)−1

∞∑
j=0

〈T jκ1, 1〉µ, (3.2)

χ̂(κ;x) = (1− ρ(κ;x))
∞∑
j=0

T jκ̂1(x), (3.3)

χ̂(κ) = µ(S)−1

∞∑
j=0

∫
S
T jκ̂1(x) dµ̂(x) = µ(S)−1

∞∑
j=0

〈T jκ̂1, 1〉µ̂. (3.4)
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Proof. Let fj(x) be the expected size of generation j in Xκ(x). Then, for every j > 0, by
conditioning on the first generation,

fj+1(x) =

∫
S
fj(y)κ(x, y) dµ(y) = Tκfj(x).

Thus, by induction, fj = T jκf0 = T jκ1, and (3.1) follows by summing. (Note that the
sum, like χ(κ;x), need not be finite. However, in this and in all sums in the proof, the
summands are non-negative, so the sum is certainly defined, allowing ∞ as a value.)
Recalling the definition (2.10), relation (3.2) follows immediately from (3.1).

As noted in [5, page 38], it is easy to see that if we condition Xκ(x) on extinction,

then we obtain another similar branching process X̂κ(x) with µ replaced by µ̂. Hence, Tκ
is replaced by Tκ̂, so

E
(
|Xκ(x)|

∣∣ |Xκ(x)| <∞
)

= E
(
|X̂κ(x)|

)
.

Since
E
(
|Xκ(x)|1{|Xκ(x)|<∞}

)
= (1− ρ(κ;x))E

(
|Xκ(x)|

∣∣ |Xκ(x)| <∞
)
,

(3.3) follows from (3.1) for X̂κ(x). Finally, recalling the definition (2.11) and the relation
(2.18) between µ̂ and µ, the relation (3.4) follows from (3.3) by integrating with respect
to µ.

Often, it is convenient to assume for simplicity that µ(S) = 1.

Lemma 3.2. Let κ be an integrable kernel on a type space (S, µ) with µ(S) = 1. Then

χ̂(κ) =
∞∑
j=0

〈T jκ̂1, 1〉µ̂ = µ̂(S)χ(κ̂) = (1− ρ(κ))χ(κ̂).

Proof. Use (3.4) for κ and µ and (3.2) for κ̂ and µ̂, together with (2.20).

Theorem 3.3. Let κ be an integrable kernel on a type space (S, µ) with µ(S) = 1.

(i) If κ is subcritical, i.e., ‖Tκ‖ < 1, then χ(κ;x) = (I − Tκ)
−11 a.e., and χ(κ) =

〈(I − Tκ)−11, 1〉µ <∞.

(ii) Suppose that κ is supercritical, i.e., ‖Tκ‖ > 1, and also that ‖Tκ̂‖ < 1. Then χ̂(κ;x) =
(1− ρκ)(I − Tκ̂)−11 a.e., and χ̂(κ) = 〈(I − Tκ̂)−11, 1〉µ̂ <∞.

The conditions of (ii) hold whenever ‖Tκ‖ > 1, κ is irreducible, and
∫
S2 κ

2 <∞.

Proof. The space of operators on L2(µ) is complete with respect to the operator norm.
Since ‖T jκ‖ 6 ‖Tκ‖j, in case (i) the sum

∑∞
j=0 T

j
κ converges and (multiplying out) is the

inverse of I−Tκ. Hence (i) follows from the first two parts of Lemma 3.1. Part (ii) follows
similarly from the last two parts of Lemma 3.1, since now

∑∞
j=0 T

j
κ̂ = (I−Tκ̂)−1 converges

as an operator on L2(µ̂). For the final statement we use [5, Theorem 6.7], which yields
‖Tκ̂‖ < 1.
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In fact, for the last part one can replace the assumption that
∫
S2 κ

2 <∞ by the weaker
assumption that Tκ is compact; this is all that is used in the proof of [5, Theorem 6.7].

In the critical case, when ‖Tκ‖ = 1, we have χ(κ) = χ̂(κ). We typically expect the
common value to be infinite, but there are exceptions; see Section 6.3.

Theorem 3.4. (i) If κ is critical and Tκ is a compact operator on L2(µ), then χ(κ) =∞.
In particular, this applies if

∫
S2 κ(x, y)2 dµ(x) dµ(y) <∞.

(ii) If κ is supercritical, then χ(κ) =∞.

Proof. (i): If
∫
S2 κ

2 < ∞, then Tκ is a Hilbert–Schmidt operator and thus compact, see
Section 2.7.

Tκ is always self-adjoint (when it is bounded), so if Tκ is compact and critical, then by
the spectral theorem (Theorem 2.7), it has an eigenfunction ψ with eigenvalue ±‖Tκ‖ =
±1. Moreover, since κ > 0, there is at least one such eigenfunction ψ1 > 0 with eigenvalue
+1 (with ‖ψ1‖2 = 1, say); see Lemma 5.15 in [5] and its proof, where only compactness is
used. There may also be eigenfunctions with eigenvalue −1, so we consider the positive
compact operator T 2

κ and let ψ1, . . . , ψm be an orthonormal basis of the eigenspace E1

for the eigenvalue 1 of T 2
κ . The eigenvalues of T 2

κ are the squares of the eigenvalues
of Tκ, so σ(T 2

κ ) ⊂ [0,∞); moreover, ‖T 2
κ‖ = ‖Tκ‖2 = 1, and thus σ(T 2

κ ) ⊂ [0, 1]. By
Theorem 2.7(iii), there is an orthogonal decomposition L2(µ) =

⊕
λ∈σ(T 2

κ ) Eλ, so the

orthogonal complement of E1 is simply E⊥1 =
⊕

λ 6=1 Eλ. Furthermore, this subspace is

invariant for T 2
κ , and if R is the norm of T 2

κ restricted to E⊥1 , then R = max{λ : λ ∈
σ(T 2

κ )\{1}} < 1 (using Theorem 2.7(i)). Hence, for any j > 0, T 2j
κ acts on E⊥1 with norm

at most Rj, so

〈T 2j
κ 1, 1〉 =

m∑
i=1

〈1, ψi〉2 +O(Rj)→
m∑
i=1

〈1, ψi〉2.

Since the terms in the sum are non-negative and 〈1, ψ1〉 =
∫
ψ1 dµ > 0, the limit is

strictly positive and thus
∑∞

j=0〈T jκ1, 1〉 cannot converge. Since the terms in this sum are

non-negative, (3.2) yields χ(κ) = µ(S)−1
∑∞

j=0〈T jκ1, 1〉 =∞.
(ii): By [5, Theorem 6.1] we have P(|Xκ| =∞) = ρ(κ) > 0, so χ(κ) =∞.

In the subcritical case, we can find χ(κ) by finding (I − Tκ)−11, i.e., by solving the
integral equation f = Tκf + 1. Actually, we can do this for any κ, and can use this as a
test of whether χ(κ) <∞.

Theorem 3.5. Let κ be a kernel on a type space (S, µ). Then the following are equivalent:

(i) χ(κ) <∞.

(ii) There exists a function f > 0 in L1(µ) such that (a.e.)

f = Tκf + 1. (3.5)

(iii) There exists a function f > 0 in L1(µ) such that (a.e.)

f > Tκf + 1. (3.6)
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When the above conditions hold, there is a smallest non-negative solution f to (3.5), that
is also a smallest non-negative solution to (3.6); this minimal solution f equals χ(κ;x),
and thus χ(κ) = µ(S)−1

∫
S f dµ.

Proof. Recalling (3.1), let g(x) := χ(κ;x) =
∑∞

j=0 T
j
κ1(x); this is a function g : S →

[0,∞] with Tκg =
∑∞

j=1 T
j
κ1 = g − 1, so g satisfies both (3.5) and (3.6). Furthermore,∫

S g dµ = µ(S)χ(κ) by (3.2). Hence, if (i) holds, then g ∈ L1(µ); consequently, g satisfies
(ii) and (iii). (Note that then g is finite a.e.)

Conversely, suppose that f > 0 solves (3.5) or (3.6). Recalling that κ > 0 by definition,
so Tκ is monotone, induction on i gives

f >
i−1∑
j=0

T jκ1 + T iκf

for every i > 1. Thus f >
∑i−1

j=0 T
j
κ1, and letting i → ∞ yields f > g. Hence, if (ii) or

(iii) holds, then g ∈ L1(µ), and (i) holds. Furthermore, in this case, f > g, which shows
that g is the smallest solution in both (ii) and (iii), completing the proof.

Note that in the subcritical case, (3.5) always has a solution in L2(µ): the proof of
Theorem 3.3 shows that (I − Tκ)−1 exists as an operator on L2(µ), so g = (I − Tκ)−11 ∈
L2(µ). In Section 6.3, we give an example where κ is critical and (3.5) has a solution that
belongs to L1(µ), but not to L2(µ). (We do not know whether there can be a non-negative
solution in L2(µ) with κ critical.) Moreover, in this example, in both the subcritical and
critical cases, there is more than one non-negative solution in L1(µ). However, we can
show that there is never more than one non-negative solution in L2(µ).

Corollary 3.6. Suppose that there exists a function f > 0 in L2(µ) such that (3.5)
holds. Then f is the unique non-negative solution to (3.5) in L2(µ), χ(κ;x) = f(x) and
χ(κ) = µ(S)−1

∫
S f dµ.

Proof. Let g be the smallest non-negative solution, guaranteed to exist by Theorem 3.5,
and let h = f − g > 0. Since 0 6 h 6 f , h ∈ L2(µ). Then Tκh = Tκf − Tκg =
(f − 1)− (g − 1) = h, and

〈f, h〉 = 〈Tκf + 1, h〉 = 〈Tκf, h〉+ 〈1, h〉 = 〈f, Tκh〉+ 〈1, h〉 = 〈f, h〉+ 〈1, h〉.

Hence 0 = 〈1, h〉 =
∫
h dµ, so h = 0 a.e., and f = g.

4 Main results

In this section our overall aim is to show that the susceptibilities of suitable random
graphs Gn and branching processes Xκ are related. Ideally, we should like to show that
χ(Gn)

p−→ χ(κ) and χ̂(Gn)
p−→ χ̂(κ) for any of the random graph models Gn introduced
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in Section 2. Our main results (Theorems 4.7, 4.8 and 4.9) show that this does hold in
very great generality, though unfortunately not in the full generality we would like.

This section is organized as follows. Firstly we prove lower bounds on χ(Gn) and
χ̂(Gn) that do hold in full generality (see Theorem 4.1). Then, in Section 4.2, we describe
a general approach to proving corresponding upper bounds, based on path counting. In
Sections 4.3 and 4.4 we prove our upper bound results.

4.1 The lower bound

We begin with a general asymptotic lower bound for the susceptibility. This bound
depends only on convergence of the number of vertices in components of each fixed size,
so it applies to any of the models considered in Section 2. More precisely, we state the
bound and its consequences in the setting of Subsection 2.1.3; as noted there they then
apply to GV(n, κn) under the assumptions in Subsection 2.1.1 or Subsection 2.1.2.

Recall that a matrix denoted An is assumed to be symmetric, n-by-n and to have
non-negative entries.

Theorem 4.1. Let κ be a kernel, let (An) be a sequence of (random) matrices with

δ�(An, κ)
p−→ 0, and set Gn = G(An). Alternatively, let Gn = GV(n, κn) where κn

V−→ κ
in the sense of (2.3). Then

(i) for every b < χ(κ), whp χ(Gn) > b ;

(ii) for every b < χ̂(κ), whp χ̂(Gn) > b ;

(iii) lim inf Eχ(Gn) > χ(κ) and lim inf E χ̂(Gn) > χ̂(κ).

Proof. All we shall use about the graph Gn is that, for each fixed k, we have Nk(Gn)/n
p−→

ρk(κ); this holds by Lemma 2.4.
(i): Let K be a fixed positive integer. Then, by (2.21), (2.22) and (2.23),

χ(Gn) >
∞∑
k=1

(k ∧K)
Nk(Gn)

n

=
K−1∑
k=1

k
Nk(Gn)

n
+K

N>K(Gn)

n

p−→
K−1∑
k=1

kρk(κ) +Kρ>K(κ) =
∑

16k6∞

(k ∧K)ρk(κ).

As K →∞, the right-hand side tends to χ(κ) by monotone convergence and (2.10); hence
we can choose a finite K such that the right-hand side is greater than b, and (i) follows.

(ii): By (1.3), if C1 is the largest component of Gn and |C1| > K, then

χ̂(Gn) >
K∑
k=1

k
Nk(Gn)

n
.
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On the other hand, if |C1| 6 K, then

χ̂(Gn) = χ(Gn)− |C1|2/n > χ(Gn)−K2/n.

Hence, in both cases, using (2.23) again,

χ̂(Gn) >
K∑
k=1

k
Nk(Gn)

n
− K2

n

p−→
K∑
k=1

kρk(κ). (4.1)

As K → ∞, the right-hand side tends to χ̂(κ), and thus we can choose K such that it
exceeds b, and (ii) follows.

(iii): An immediate consequence of (i) and (ii).

4.2 Upper bounds: general techniques

In this section we shall show that, in the light of Theorem 4.1, to prove that χ(Gn)
p−→

χ(κ) it suffices to show that lim supEχ(Gn) 6 χ(κ). Furthermore, we show that Eχ(Gn)
can be bounded from above by counting the expected number of paths of certain types.
We start with a simple general probability exercise.

Lemma 4.2. Let (Xn) be a sequence of non-negative random variables and suppose that
a ∈ [0,∞] is such that

(i) for every real b < a, whp Xn > b, and

(ii) lim supEXn 6 a.

Then Xn
p−→ a and EXn → a. Furthermore, if a <∞, then Xn

L1

−→ a, i.e., E |Xn−a| →
0.

Proof. If a = ∞, (i) says that Xn
p−→ ∞; this implies lim inf EXn > b for every b < ∞,

and thus EXn →∞.
Assume now that a <∞, and let ε > 0 and b < a. Consider the random variable X ′n

taking the value 0 when Xn < b, the value b when b 6 Xn < a + ε, and the value a + ε
when Xn > a+ ε. Since Xn > X ′n we have

E(Xn − a) > E(X ′n − a)

= εP(Xn > a+ ε)− (a− b)P(b 6 Xn < a+ ε)− aP(Xn < b)

> εP(Xn > a+ ε)− (a− b)− o(1),

using (i) for the last step. Hence

lim supE(Xn − a) > ε lim supP(Xn > a+ ε)− (a− b)

and thus, since b < a is arbitrary,

lim supE(Xn − a) > ε lim supP(Xn > a+ ε).
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Since lim supE(Xn− a) 6 0 by (ii), this yields lim supP(Xn > a+ ε) = 0 for every ε > 0,

which together with (i) yields Xn
p−→ a.

Moreover, the same argument yields, for every ε > 0,

lim inf E(Xn − a) > ε lim inf P(Xn > a+ ε).

Taking ε = 0 we obtain lim inf EXn > a, which together with (ii) yields EXn → a.

We would like to apply Lemma 4.2 with Xn = χ(Gn) and a = χ(κ) or Xn = χ̂(Gn)
and a = χ̂(κ). Condition (i) is satisfied by Theorem 4.1, so we only have to verify the
upper bound (ii) for the expected susceptibility. For convenience, we state this explicitly.

Lemma 4.3. Let κ and Gn be as in Theorem 4.1.

(i) If lim supEχ(Gn) 6 χ(κ), then χ(Gn)
p−→ χ(κ) and Eχ(Gn)→ χ(κ).

(ii) If lim supE χ̂(Gn) 6 χ̂(κ), then χ̂(Gn)
p−→ χ̂(κ) and E χ̂(Gn)→ χ̂(κ).

Proof. By Theorem 4.1 and Lemma 4.2 as discussed above.

Sometimes we can control the expectation only after conditioning on some (very likely)
event. This still gives convergence in probability.

Lemma 4.4. Let κ and Gn be as in Theorem 4.1, and let En be an event in the probability
space on which Gn is defined such that En holds whp.

(i) If lim supE(χ(Gn)1En) 6 χ(κ), then χ(Gn)
p−→ χ(κ).

(ii) If lim supE(χ̂(Gn)1En) 6 χ̂(κ), then χ̂(Gn)
p−→ χ̂(κ).

Proof. After conditioning on En, we still have Nk(Gn)/n
p−→ ρk(κ) for each fixed k,

which is all that was needed in the proof of Theorem 4.1. Letting ϕ = χ or χ̂, since
E(ϕ(Gn) | En) ∼ E(ϕ(Gn)1En), under the relevant assumption Lemma 4.2 tells us that
the distribution of ϕ(Gn) conditioned on En converges in probability to ϕ(κ). But then
the unconditional distribution converges in probability.

For future reference, we note a consequence of Lemma 4.3.

Theorem 4.5. Let κ and Gn be as in Theorem 4.1.

(i) If χ(κ) =∞, then χ(Gn)
p−→∞ and Eχ(Gn)→∞.

(ii) If χ̂(κ) =∞, then χ̂(Gn)
p−→∞ and E χ̂(Gn)→∞.

Furthermore, the conclusion of (i) holds if κ is critical and Tκ is compact, or if κ is
supercritical.

the electronic journal of combinatorics 19 (2012), #P31 18



Proof. For (i) and (ii) we simply apply Lemma 4.3. For (i) the only condition to be
verified is that lim supEχ(Gn) 6 χ(κ), but this holds trivially since we now assume that
χ(κ) = ∞. The argument for (ii) is similar. For the final statement, Theorem 3.4 states
that under the given conditions, χ(κ) =∞, so part (i) applies.

One way to obtain the upper bound on the expectation of the susceptibility required
to apply Lemma 4.3 is by counting paths. Let P` = P`(G) denote the number of sequences
v0v1 . . . v` of distinct vertices of G with vi−1vi an edge of G for i = 1, 2, . . . , `. In the rest
of the paper we call such a sequence a path of length `. Note that for convenience we
count directed paths, so in the usual terminology P` would be twice the number of paths
of length ` in G when ` > 1. P0 is simply the number of vertices of G.

Lemma 4.6. Let G be a graph with n vertices. Then χ(G) 6
∑∞

`=0 P`(G)/n.

Proof. For each ordered pair (v, v′) of vertices of G with v and v′ in the same component,
there is at least one path (of length > 0) starting at v and ending at v′. Thus, counting
all such pairs,

∑
i |Ci|2 6

∑∞
`=0 P`.

So far our arguments relied only on convergence of the number of vertices in compo-
nents of a fixed size k, and so apply in very great generality. Unfortunately, bounding
χ(G) from above, via Lemma 4.6 or otherwise, involves proving bounds for all k simulta-
neously. These bounds do not hold in general; we study two special cases where they do
in the next two subsections.

4.3 Bounded kernels on general vertex spaces

In this section we consider Gn = GV(n, κn) where (κn) is any uniformly bounded graphical
sequence of kernels on a vertex space V with limit κ. In fact, we shall consider the
more general situation where Gn = G(An) for some sequence (An) of uniformly bounded

(random) matrices with δ�(An, κ)
p−→ 0. By Lemma 2.2, the graphs GV(n, κn) are of this

form. Note that this is the setting in which the component sizes were studied by Bollobás,
Borgs, Chayes and Riordan [3].

Theorem 4.7. Let κ be a kernel and (An) a uniformly bounded sequence of matrices with

δ�(An, κ)
p−→ 0, and set Gn = G(An). Alternatively, let Gn = GV(n, κn) where κn

V−→ κ
and the κn are uniformly bounded.

(i) We have χ(Gn)
p−→ χ(κ).

(ii) If κ is irreducible, then χ̂(Gn)
p−→ χ̂(κ).

The boundedness assumption is essential unless further conditions are imposed; see
Example 6.9. The extra assumption in (ii) is needed to rule out the possibility that there
are two or more giant components, living in different parts of the type space.
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Proof. By Lemma 2.2 we may assume the setting where G = G(An).
Let M be a constant such that all entries of all An are bounded by M . Coupling

appropriately, we may and shall assume that δ�(An, κ) → 0. Then it is easily seen that
κ 6M holds pointwise (ignoring a null set, if necessary).

For (i), suppose first that ‖Tκ‖ > 1. Then, since κ is bounded, by Theorem 3.4 we

have χ(κ) =∞, and by Theorem 4.5 we have χ(Gn)
p−→∞, as required.

Suppose then that ‖Tκ‖ < 1. Let κn = κAn denote the piecewise constant kernel

corresponding to An. Then, letting 1 denote the vector (1, . . . , 1), and writing An = (a
(n)
ij ),

for n >M we have

EP`(Gn) 6 E
n∑

j0,...,j`=1

∏̀
i=1

a
(n)
ji−1,ji

n

= nE
∫
S`+1

∏̀
i=1

κn(xi−1, xi) dµ(x0) · · · dµ(x`)

= n〈T `κn1, 1〉µ.

(4.2)

Recall that κn and κ are uniformly bounded, and δ�(κn, κ)→ 0. As noted in [3], or by
the Riesz–Thorin interpolation theorem [17, Theorem VI.10.11] (for operators L∞ → L1

and L1 → L∞), it is easy to check that this implies ‖Tκn‖ → ‖Tκ‖. (In fact, the normalized
spectra converge; see [12].) Since ‖Tκ‖ < 1, it follows that for some δ > 0 we have
‖Tκn‖ < 1− δ for n large enough, so

∑
`〈T `κn1, 1〉µ 6

∑
` ‖Tκn‖` converges geometrically.

For a fixed `, and kernels κ, κ′ bounded by M , it is easy to check that |〈T `κ′1, 1〉µ −
〈T `κ1, 1〉µ| 6 `M `−1‖κ′ − κ‖� (see, for example, [6, Lemma 2.7]). Since 〈T `κ′1, 1〉µ is
preserved by rearrangement, we may replace ‖κ′−κ‖� by δ�(κ′, κ) in this bound. Hence,
for each `, we have 〈T `κn1, 1〉µ → 〈T `κ1, 1〉µ. Combined with the geometric decay established
above, it follows that

∞∑
`=0

〈T `κn1, 1〉µ →
∑
`

〈T `κ1, 1〉µ = χ(κ).

By Lemma 4.6 and (4.2) we thus have

lim supEχ(Gn) 6 lim sup
1

n

∞∑
`=0

EP`(Gn) 6 lim sup
∞∑
`=0

〈T `κn1, 1〉µ = χ(κ),

which with Lemma 4.3(i) gives χ(Gn)
p−→ χ(κ) as required.

We now turn to χ̂, i.e., to the proof of (ii). If ‖Tκ‖ 6 1, then ρ(κ) = 0 and χ̂(κ) = χ(κ).
On the other hand, χ̂(Gn) < χ(Gn), so the bound above gives lim supE χ̂(Gn) 6 χ(κ) =
χ̂(κ), and Lemma 4.3(ii) gives the result.

Now suppose that ‖Tκ‖ > 1. Let G̃n be the graph obtained from Gn by deleting all

vertices in the largest component C1, and let ñ be the number of vertices of G̃n. By the
duality result of [25] (see also [5, Theorem 12.1] for the case Gn = GV(n, κn)), there is

a random sequence (Bn) of matrices (of random size ñ × ñ) with δ�(Bn, κ̃)
p−→ 0, such
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that G̃n may be coupled to agree whp with G(Bn); here κ̃ := κ̂′ is κ̂ renormalized as in
(2.14). (Recall that κ̂ is regarded as a kernel on (S, µ̂), where µ̂ defined by (2.18) is not
a probability measure.) By Remark 2.3, χ(κ̃) = χ(κ̂).

Note that
|G̃n|
n

=
n− |C1|

n

p−→ 1− ρ(κ) (4.3)

by (2.24). After conditioning on the number of vertices of G̃n we can apply part (i) to

conclude that χ(G(Bn))
p−→ χ(κ̃) = χ(κ̂), and thus, since χ(G̃n) = χ(G(Bn)) whp,

χ(G̃n)
p−→ χ(κ̂). (4.4)

Finally, if {Ci}i>1 are the components of Gn, then {Ci}i>2 are the components of G̃n, and
thus by (1.3), (1.2), (4.3), (4.4) and Lemma 3.2

χ̂(Gn) =

∑
j>2 |Ci|2

n
=
|G̃n|χ(G̃n)

n

p−→ (1− ρ(κ))χ(κ̂) = χ̂(κ).

4.4 The i.i.d. case

In this section we consider the case Gn = GV(n, κ), where V is an i.i.d. vertex space and
κ is an arbitrary integrable kernel on the associated probability space (S, µ). We prove
two results, one for χ(Gn), and one for χ̂(Gn).

Theorem 4.8. Let κ be an integrable kernel on an i.i.d. vertex space V. Then we have
χ(GV(n, κ))

p−→ χ(κ) and Eχ(GV(n, κ))→ χ(κ).

Proof. Similarly to the estimate in the proof of Theorem 4.7, for any `, the expected
number EP` of paths of length ` is

n · · · (n− `)
∫
S`+1

∏̀
i=1

min
(κ(xi−1, xi)

n
, 1
)

dµ(x0) · · · dµ(x`)

6 n

∫
S`+1

∏̀
i=1

κ(xi−1, xi) dµ(x0) · · · dµ(x`) = n〈T `κ1, 1〉µ.

Summing over all ` > 0, we see by (3.2) that the expected total number of paths is at
most nχ(κ). Hence, by Lemma 4.6,

Eχ(GV(n, κ)) 6 E
∞∑
`=0

P`/n 6 χ(κ). (4.5)

The result follows by Lemma 4.3.

Our next aim is to prove an analogous result for χ̂. Unfortunately, in the proof we
need an extra assumption. We shall assume that Tκ is compact, though any condition
guaranteeing (4.28) below will do. We do not know whether the result holds without such
an assumption.
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Theorem 4.9. Let κ be an irreducible, integrable kernel on an i.i.d. vertex space V with
‖Tκ‖ > 1, and let Gn = GV(n, κ). If Tκ is compact, then χ̂(Gn)

p−→ χ̂(κ).

The proof of Theorem 4.9 will be rather involved; this is perhaps surprising given that
one expects the i.i.d. case to be easy to handle for many questions. The rest of this section
is devoted to the proof; we shall need various preparatory lemmas, many of which hold
under more general conditions than Theorem 4.9 itself.

For the rest of the section V is assumed to be an i.i.d. vertex space, and Gn = GV(n, κ)
for some kernel κ. The main idea of the proof is to count the expected number of paths
P of a given length ` such that P is not joined to a large component of Gn − P . Recall
that Gn is a random graph with vertex set [n] = {1, 2, . . . , n}. Since the vertex types are
i.i.d., the distribution of Gn is unchanged if we permute the vertices in any fixed way.
Hence it suffices to estimate the probability that the ‘first’ `+ 1 vertices, i.e., the vertices
{1, 2, . . . , `+ 1}, form a path P not joined to the giant component. The obvious strategy
is to ‘reveal’ the types of the vertices 1, 2, . . . , ` + 1, and reveal the entire graph on the
vertices `+ 2, . . . , n, including the types of these vertices. Then we try to argue that the
latter graph will contain a giant component C, and if ` is fairly large, it is very likely that
P will be joined to this giant component. The problem is that the probability that P is
joined to C depends on the types of the vertices in P and in C, so we need (fairly strong,
as it turns out) bounds on the probability that the giant component C contains ‘too few’
vertices with types in some set.

As usual, we approach results about the giant component by first considering small
components. For A ⊂ S let Nk(A) denote the number of vertices i of Gn such that i is in
a component of order k and xi ∈ A.

Lemma 4.10. Let κ be an integrable kernel on an i.i.d. vertex space V = (S, µ, (xn)n>1),
and let A be a measurable subset of S. Then

Nk(A)/n
p−→ ρk(A) :=

∫
A

ρk(x) dµ(x). (4.6)

Moreover, the convergence is uniform in A: given any ε > 0 there is an n0 such that

P
(
|Nk(A)/n− ρk(A)| > ε

)
6 ε

holds for all n > n0 and all measurable A.

Proof. Suppose first that κ is bounded. Then the result follows easily from the local
coupling argument in [7, Section 3]; for completeness, we sketch this argument.

Suppose that κ(x, y) 6 M for all x and y. To avoid having to write min{·, 1}, we
consider only n >M in what follows.

We may construct Gn in three stages: (i) let G+
n be the standard Erdős–Rényi random

graph G(n,M/n). (ii) assign each vertex i of G+
n a type xi ∈ S, with the types i.i.d. with

distribution µ. (iii) delete edges of G+
n randomly to obtain Gn, retaining each edge ij

with probability κ(xi, xj)/M independently of the other edges.
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Similarly, we may construct Xκ, which we regard as an infinite rooted tree, by (i) start-
ing from the single-type Galton–Watson process X+ in which the offspring distribution
is Poisson with mean M , (ii) assigning each vertex (individual) a type as in the graph
case, (iii) deleting edges of the rooted tree as in the graph case, and (iv) taking for Xκ

the component of the resulting forest containing the root.
It is well known that for any fixed t, the neighbourhoods of a (fixed or uniformly

random) vertex v of G(n,M/n) up to distance t may be coupled to agree whp with the
first t generations of X+. The constructions above show that this coupling extends to Gn

and Xκ. We shall apply this with t = k+1, noting that whether the component containing
v has size k or not can be determined from its (k + 1)-neighbourhood. Let ηk,n denote
the error probability in the coupling when t = k + 1, so for fixed k we have ηk,n → 0 as
n→∞.

Let Ei,k,A denote the event that vertex i is in a component of size k and xi ∈ A. Let
Ek,A denote the event that the branching process Xκ has total size k and the type of its
root is in A. Then the coupling shows that P(Ei,k,A) = P(Ek,A) + o(1): more precisely,
the difference is at most ηk,n.

Conditioning on the type of the root, we see that P(Ek,A) is exactly ρk(A). On the
other hand, since all vertices are equivalent, ENk(A) =

∑
i P(Ei,k,A) = nP(E1,k,A), so

|E(Nk(A)/n)− ρk(A)| 6 ηk,n → 0.
To complete the proof in the bounded case we use a similar coupling argument starting

with two vertices v and w to show that |E(Nk(A)2/n2)−ρk(A)2| 6 η′k,n for some η′k,n that
tends to 0 as n → ∞. Since the coupling error probabilities ηk,n and η′k,n do not depend
on A, the final result is uniform in A.

Using the fact that adding or deleting an edge from a graph G changes the set of
vertices in components of size k in at most 2k places, and arguing as in [5] (see the proof
of Lemma 9.9), the result for general κ follows easily.

Recall that C1 = C1(Gn) ⊆ [n] denotes the (vertex set of) the largest component of Gn.
As in [5], given Gn, let ν1

n denote the empirical distribution of the types of the vertices in
C1(Gn), so for A ⊂ S we have

ν1
n(A) = n−1

∣∣{i ∈ C1(Gn) : xi ∈ A
}∣∣.

Lemma 4.11. Let κ be an irreducible, integrable kernel on an i.i.d. vertex space V =
(S, µ, (xn)n>1), and let A be a measurable subset of S. Then

ν1
n(A)

p−→ µκ(A) :=

∫
A

ρ(κ;x) dµ(x). (4.7)

More precisely, the convergence is uniform in A: given any ε > 0 there is an n0 such that
for all n > n0 and all measurable A we have

P
(
|ν1
n(A)− µκ(A)| > ε

)
6 ε.

Note that the first statement corresponds to Theorem 9.10 of [5], but, due to the
different conditions, is not implied by it.
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Proof. It suffices to prove the second statement. Recall that ρ>k(κ) is the probability that
the branching process Xκ has total size (number of individuals in all generations together)
at least k, and that ρ(κ) is the probability that Xκ is infinite. Thus ρ>k(κ) ↘ ρ(κ) as
k →∞. Fix ε > 0 once and for all, and choose k0 so that ρ>k0(κ) 6 ρ(κ) + ε/6.

Applying Lemma 4.10 for k = 1, 2, . . . , k0 and summing, we see that N6k0(A)/n
p−→

ρ6k0(A), and indeed that

P
(
|N6k0(A)/n− ρ6k0(A)| > ε/5

)
6 ε/3 (4.8)

for all large enough n and all measurable A.
By a medium component of Gn we mean any component of size greater than k0 other

than C1(Gn). Let M(A) denote the number of vertices with types in A in medium
components, and M(Gn) = M(S) the total number of vertices in medium components.

Since Nk(Gn)/n
p−→ ρk(κ) for each k and |C1(Gn)|/n p−→ ρ(κ), we have M(Gn)/n

p−→
ρ>k0+1(κ)− ρ(κ) 6 ε/6. Hence, whp

sup
A
M(A) = M(Gn) 6 εn/5. (4.9)

Let N(A) denote the total number of vertices of Gn with types in A. Then N(A) has a
binomial distribution with parameters n and µ(A), so for n large enough we have

P
(
|N(A)/n− µ(A)| > ε/5

)
6 ε/3 (4.10)

for all A. Finally, let C1(A) = nν1
n(A) denote the number of vertices in C1(Gn) with types

in A. Then
C1(A) = N(A)−N6k0(A)−M(A) +O(1), (4.11)

with the final O(1) correction term accounting for the possibility that |C1(Gn)| 6 k0, so
the ‘giant’ component is ‘small’.

Combining equations (4.8)–(4.11), we see that

P
(
|C1(A)/n− (µ(A)− ρ6k0(A))| > 4ε/5

)
6 ε

for all large enough n and all A. But

µ(A)− ρ6k0(A) = µκ(A) +
∞∑

k=k0+1

ρk(A).

The sum above is at least 0 and, by choice of k0, at most ε/6, so µ(A)− ρ6k0(A) is within
ε/6 of µκ(A) and the result follows.

In [6, Theorem 1.4], it was shown (in a slightly different setting) that stability of the
giant component under deletion of vertices implies that the distribution of the size of
the giant component has an exponential tail. Parts of this argument adapt easily to the
present setting.

First, as a consequence of Lemma 2.2 (or Lemma 1.7 of [6]), all results of [6] asserting
that a certain conclusion holds whp when δ�(An, κ) → 0 apply to the random graphs
GV(n, κ). In particular, Theorem 1.3 of [6] implies the following result.
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Theorem 4.12. Let κ be an irreducible, integrable kernel on an i.i.d. vertex space V, and
let Gn = GV(n, κ). For every ε > 0 there is a δ > 0 such that whp we have

ρ(κ)− ε 6 |C1(G′n)|/n 6 ρ(κ) + ε

for every graph G′n that may be obtained from Gn by deleting at most δn vertices and their
incident edges, and then adding or deleting at most δn edges.

In the proof of our next result, we shall use the following inequality due to McDi-
armid [28].

Theorem 4.13. Let f be a real-valued function of n variables that is c-Lipschitz, i.e.,
changing one input changes the output by at most c. Let X1, . . . , Xn be independent
random variables. Then for any t > 0 we have

P
(
|f(X1, . . . , Xn)− E f(X1, . . . , Xn)| > t

)
6 e−2t2/(c2n).

Using Theorems 4.12 and 4.13, it is easy to get an exponential lower tail bound on
the number of vertices of C1(Gn) with types in a given set A ⊂ S. Unfortunately, there is
a minor complication, due to the possible (but very unlikely) non-uniqueness of the giant
component.

Given a graph G whose vertices have types in S, let C̃1(A;G) denote the maximum
over all components C of G of the number of vertices of C with types in A:

C̃1(A;G) = max
{
|{i ∈ C : xi ∈ A}| : C a component of G

}
. (4.12)

Let C̃1(A) = C̃1(A;Gn), so C̃1(A) is within |C2(Gn)| of C1(A) = nν1
n(A).

Lemma 4.14. Let κ be an irreducible, integrable kernel on an i.i.d. vertex space V =
(S, µ, (xn)n>1) with ‖Tκ‖ > 1, and let ε > 0. Then there is a c = c(κ, ε) > 0 such that for
all large enough n, for every subset A of S we have

P
(
C̃1(A;Gn) 6 (µκ(A)− ε)n

)
6 e−cn. (4.13)

Proof. Fix A. Given a graph G on [n] where each vertex has a type in S, let D(G) =
DA(G) be the minimum number of vertices that must be deleted from G so that in the
resulting graph G′ we have

C̃1(A;G′) 6 (µκ(A)− ε)n, (4.14)

so our aim is to bound P(D(Gn) = 0). By Lemma 4.11, whp C1(Gn) has at least (µκ(A)−
ε/2)n vertices with types in A. Also, by Theorem 4.12, there is some δ > 0 such that
whp deleting at most δn vertices of Gn removes fewer than εn/2 vertices from the (whp
unique) giant component. It follows that ED(Gn) > δn/2 for n large; moreover, this
bound is uniform in A.

Since the condition (4.14) is preserved by deleting vertices, if G′′ is obtained from
G by adding and deleting edges all of which are incident with one vertex i, and also
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perhaps changing the type of i, then |D(G) − D(G′′)| 6 1. We may construct Gn by
taking independent variables x1, . . . , xn and {yij : 1 6 i < j 6 n} all of which are uniform
on [0, 1], and joining i to j if and only if yij 6 κ(xi, xj)/n. Modifying the variables in
Sj = {xj} ∪ {yij : i < j} only affects edges incident with vertex j. Considering the values
of all variables in Sj as a single random variable Xj, we see that D(Gn) is a 1-Lipschitz
function of n independent variables, so by Theorem 4.13 we have

P
(
D(Gn) = 0

)
6 e−2(ED(Gn))2/n 6 e−δ

2n/2,

completing the proof.

It would be nice to have an exponential bound on the upper tail of the number of
vertices in ‘large’ components. Unfortunately, the argument in [6] does not seem to go
through. Indeed, the corresponding result is false in this setting without an additional
assumption: it is easy to find a κ for which there is a small, but only polynomially small,
chance that the degree of some vertex v is of order n. In fact, one can even arrange that
P(|C1(Gn)| = n) is only polynomially small in n.

The next lemma is the combinatorial heart of the proof of Theorem 4.9. We would like
to bound the expectation of χ̂(Gn), so that we can apply Lemma 4.3. Unfortunately, we
cannot do this directly; instead we bound the contribution from components with size up
to some small constant times n. Formally, given a graph G with n vertices and a δ > 0,
let

χ̂δ(G) :=
1

n

∑
v∈V (G) : |C(v)|6δn

|C(v)| = 1

n

∑
i : |Ci|6δn

|Ci|2. (4.15)

Note that if |C2| 6 δn < |C1|, then χ̂δ(G) = χ̂(G).
Given a kernel κ and an M > 0, we write κM for the pointwise minimum of κ and M .

Lemma 4.15. Let κ be an irreducible, integrable kernel on an i.i.d. vertex space V with
‖Tκ‖ > 1, and let ε > 0 and M > 0. Then there is a δ = δ(ε,M, κ) > 0 such that

E χ̂δ(GV(n, κ)) 6
∞∑
`=0

〈T `κ̌1, 1〉µ̌ + o(1), (4.16)

where µ̌ is the measure on S defined by dµ̌(x) := f(x) dµ(x) with

f(x) :=
(
1− ρ

(
(1− ε)κM ;x

)
+ 5ε

)
∧ 1, (4.17)

and Tκ̌ is the integral operator on (S, µ̌) with kernel κ.

Proof. A simple coupling argument shows that if κ1 6 κ2 pointwise then ρ(κ1;x) 6
ρ(κ2;x). Hence increasing M and/or decreasing ε can only increase ρ((1 − ε)κM ;x),
and thus can only decrease f(x), and hence decrease the right-hand side of (4.16). By
monotone convergence ‖TκM‖ → ‖Tκ‖ as M → ∞. Hence, by first increasing M if
necessary and then decreasing ε if necessary, we may assume that (1−ε)κM is supercritical,
and that ρ((1− ε)κM) > 2ε. We also assume that M > 1 and e4ε < 1 + 5ε.
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Let 0 < δ < ε/M be a small constant to be chosen later, depending only on κ, ε
and M , and let Z = nχ̂δ(Gn) denote the number of ordered pairs (v, w) of vertices of
Gn = GV(n, κ) such that v and w are in a common component of size at most δn. Also,
let Z` denote the number of such pairs joined by a path of length `. Since Z 6

∑δn−1
`=0 Z`,

it suffices to show that for 0 6 ` < δn we have

EZ`/n 6 〈T `κ̌1, 1〉µ̌ + o(1/n), (4.18)

with the error bound uniform in `.
We may bound Z` by the number of paths of length ` in Gn lying in components

with at most δn vertices. Thus, from the symmetry of the model GV(n, κ) under vertex
permutations, EZ` is at most n`+1 times the probability that 12 · · · (` + 1) forms such a
path. Let V0 = {1, 2, . . . , `+ 1} consist of the first `+ 1 vertices of Gn, and let V ′ consist
of the last (1− ε/M)n vertices. Note that ` 6 δn < εn/M , so V0 and V ′ are disjoint. We
shall define a certain subgraph G′ of Gn[V ′], in a way that is independent of Gn[V0], and
consider paths in V0 not joined to G′.

Let κ1 = 1−ε
1−ε/M κ

M ; this slightly unnatural choice simplifies some formulae below. Since

κ1 6 κM 6 κ, conditional on the vertex types, the edge probabilities in G1
n = GV(n, κ1) are

at most those in Gn = GV(n, κ). Hence we may construct these graphs simultaneously
in such a way that G1

n ⊆ Gn, by first constructing Gn and then deleting edges with
appropriate probabilities. Coupling G1

n and Gn in this way, let G′ = G1
n[V ′] be the

subgraph of G1
n induced by V ′. We shall use the following properties of G′: firstly, G′ is

a subgraph of Gn. Secondly, G′ has the distribution

G′ ∼ GV(n′, (1− ε)κM), (4.19)

where n′ = (1− ε/M)n. (We ignore the irrelevant rounding to integers.)
Let A = A` be the event that 12 · · · (`+ 1) forms a path in Gn, and let B = B` be the

event that some vertex in [`+ 1] is joined by an edge of GM
n to some component of G′ of

order at least δn. Then
EZ` 6 n`+1 P(A ∩ Bc).

Unfortunately, we cannot quite prove the estimate we need for the right hand side above,
so we need to use a slightly less natural but stronger upper bound on EZ`.

Let Z ′` be the number of ordered pairs (v, w) of vertices in V0 = [` + 1] such that v
and w are joined in Gn by a path of length ` lying in V0 (and thus visiting all vertices of
V0). Since all possible sets of `+ 1 vertices contribute equally to the expectation EZ`, we
have

EZ` 6
(

n

`+ 1

)
E(Z ′`1Bc). (4.20)

Roughly speaking, our plan is to show that with very high probability C1(G′) will
contain almost the ‘right’ number of vertices of each type, so that, given the type y of
one of the first `+ 1 vertices, its probability of having one or more neighbours in C1(G′) is
almost what it ‘should be’. Unfortunately, there will certainly be sets A of types that are
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‘under-represented’ in C1(G′), for example, the set of all types not appearing at all! So
our plan is to ‘reveal’ the types x1, . . . , x`+1 of the first `+ 1 vertices, and then to define
certain subsets A of S from these (the sets Ay,i below). We show that these sets of types
are unlikely to be under-represented, and deduce that each of the first ` + 1 vertices has
a not-too-small probability of being joined to C1(G′). There is one further complication:
for technical reasons, when making this argument precise we must replace C1(G′) by the
union of all components of G′ of order at least δn.

Recall that (1−ε)κM is supercritical and that ρ((1−ε)κM) > 2ε. Let µ′ = µ(1−ε)κM , so,
recalling (4.7), dµ′(x) = ρ((1 − ε)κM ;x) dµ(x). Recalling the definition (4.12), applying
Lemma 4.14 to G′ we find that there is some c > 0 such that for any measurable A ⊂ S
we have

P
(
C̃1(A;G′) 6 (µ′(A)− ε/M)n′

)
6 e−cn.

Since n′ = (1− ε/M)n, it follows that

P
(
C̃1(A;G′) 6 (µ′(A)− 2ε/M)n

)
6 e−cn. (4.21)

Let
δ0 := min

{
ε/M, 1/10

}
> 0,

and fix 0 < δ < δ0 chosen small enough that

(e/δ)δ < ec/2. (4.22)

Let L denote the union of all components of G′ of order at least δn, and let L(A) be the
number of vertices in L with types in A. If µ′(A) > 3ε/M and C̃1(A;G′) > (µ′(A) −
2ε/M)n, then since C̃1(A;G′) > εn/M > δn, we have L(A) > C̃1(A;G′). Using (4.21), it
follows that

P
(
L(A) 6 (µ′(A)− 3ε/M)n

)
6 e−cn (4.23)

for any A; the condition is vacuous if µ′(A) < 3ε/M .
Given y ∈ S and an integer i > 0, let Ay,i = {x ∈ S : κM(x, y) > εi}. Let Ey be the

event that L(Ay,i)/n > µ′(Ay,i)−3ε/M holds for all i with 1 6 i 6M/ε. Applying (4.23)
M/ε = O(1) times, we see that, for each y ∈ S,

P(Ec
y) 6 (M/ε)e−cn = O(e−cn). (4.24)

From the definition of Ay,i we see that

∑
v∈L

κM(xv, y) >
M/ε∑
i=1

L(Ay,i)ε.

It follows that if Ey holds, then

∑
v∈L

κM(xv, y) >
M/ε∑
i=1

ε(µ′(Ay,i)− 3ε/M)n > n

M/ε∑
i=1

εµ′(Ay,i)− 3εn.
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Since κM is by definition bounded by M , the set Ay,i is empty for i > M/ε, so we have

M/ε∑
i=1

εµ′(Ay,i) =
∞∑
i=1

εµ′{x : κM(x, y) > εi} =

∫
S
εbκM(x, y)/εc dµ′(x)

>
∫
S
κM(x, y) dµ′(x)− ε =

∫
S
κM(x, y)ρ((1− ε)κM ;x) dµ(x)− ε.

Putting these bounds together, writing κ′ for (1− ε)κM , when Ey holds we have∑
v∈L

κM(xv, y)/n >
∫
S
κM(x, y)ρ(κ′;x) dµ(x)− 4ε

= (TκMρκ′)(y)− 4ε > (Tκ′ρκ′)(y)− 4ε.

Recalling that κ′ is supercritical, from (2.17) we have Tκ′ρκ′ = − log(1− ρκ′), so when Ey
holds we have ∑

v∈L

κM(xv, y)/n > − log(1− ρ(κ′; y))− 4ε,

and hence, using 1− z 6 e−z and e4ε 6 1 + 5ε,∏
v∈L

(1− κM(xv, y)/n) 6 (1− ρ(κ′; y))e4ε 6 1− ρ(κ′; y) + 5ε.

Since κM is bounded by M , and the product is always at most 1, it follows that if Ey
holds and n >M , then, recalling the definition (4.17) of f ,∏

v∈L

(
1− (κM(xv, y)/n ∧ 1)

)
6 f(y). (4.25)

Let E = Ex1 ∩ · · · ∩ Ex`+1
. Recall that by assumption the vertex types x1, . . . , xn

are independent, and that G′ involves only vertices in V ′, which is disjoint from V0 =
{1, 2, . . . , `+ 1}. Hence G′ is independent of x1, . . . , x`+1. Given these types, from (4.24)
we have P(E) = 1− O(`e−cn) = 1− O(ne−cn), with the implicit constant independent of
the types. Hence, we have P(E) = 1−O(ne−cn) unconditionally. For ` 6 δn, noting that
Z ′` 6 (`+ 1)2 by definition, we have(

n

`+ 1

)
E(Z ′`1Ec) 6

(
n

`+ 1

)
(`+ 1)2 P(Ec) 6 (e/δ)δnn2 P(Ec) = o(1), (4.26)

using (4.22) in the last step.
Estimating Z ′` by the number of paths of length ` lying in V0,(

n

`+ 1

)
E(Z ′`1Bc∩E) 6

(
n

`+ 1

)
(`+ 1)!P(A ∩ Bc ∩ E) 6 n`+1 P(A ∩ Bc ∩ E). (4.27)
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To estimate the final probability let us condition on G′ and also on the vertex types
x1, . . . , x`+1, assuming as we may that E holds. Note that we have not yet ‘looked at’
edges within V0, or edges from V0 to V ′. The conditional probability of A is then exactly

∏̀
i=1

(κ(xi, xi+1)/n ∧ 1) 6 n−`
∏̀
i=1

κ(xi, xi+1).

For i 6 ` + 1 and v ∈ L, the edge iv is present with probability min{κ(xi, xv)/n, 1} >
min{κM(xi, xv)/n, 1}, since κM 6 κ. Since Exi holds we have from (4.25) that the proba-
bility that i has no neighbours in L is thus at most f(xi). These events are (conditionally)
independent for different i, so

P(A ∩ Bc ∩ E | x1, . . . , x`+1, G
′) 6 n−`

∏̀
i=1

κ(xi, xi+1)
`+1∏
i=1

f(xi).

Since the right-hand side is independent of G′, the same bound holds conditional only on
x1, . . . , x`+1. Integrating out it follows that

n`+1 P(A ∩ Bc ∩ E) 6 n

∫
S`+1

∏̀
i=1

κ(xi, xi+1)
`+1∏
i=1

f(xi) dµ(x1) · · · dµ(x`+1)

= n〈T `κ̌1, 1〉µ̌.

From (4.27) it follows that
(
n
`+1

)
E(Z ′`1Bc∩E) 6 n〈T `κ̌1, 1〉µ̌. Combined with (4.26) and

(4.20) this establishes (4.18); as noted earlier, the result follows.

Taking, say, M = 1/ε and defining fε(x) by (4.17), as ε→ 0 we have (1− ε)κM ↗ κ
pointwise. Hence, by [5, Theorem 6.4], ρ((1−ε)κM ;x)↗ ρ(κ;x) pointwise. Thus fε(x)↘
1− ρ(κ;x) pointwise. If we know that 〈T `κ̌1, 1〉µ̌ <∞ for some ε > 0, then by dominated
convergence it follows that 〈T `κ̌1, 1〉µ̌ ↘ 〈T `κ̂1, 1〉µ̂ as ε→ 0. Furthermore, if we have

∞∑
`=0

〈T `κ̌1, 1〉µ̌ <∞ (4.28)

for some ε > 0, then by dominated convergence, as ε→ 0 we have

∞∑
`=0

〈T `κ̌1, 1〉µ̌ ↘
∞∑
`=0

〈T `κ̂1, 1〉µ̂ = χ̂(κ). (4.29)

Unfortunately we need some assumption on κ to establish (4.28).

Proof of Theorem 4.9. Suppose for the moment that (4.28) holds for some ε > 0, where
µ̌ is defined using fε(x), which is in turn given by (4.17) with M = 1/ε, say.

From (4.29) it follows that, given any η > 0, choosing ε small enough and M = 1/ε
we have

∑∞
`=0〈T `κ̌1, 1〉µ̌ 6 χ̂(κ) + η. Lemma 4.15 then gives E χ̂α(η)(Gn) 6 χ̂(κ) + 2η if n

is large enough, for some α(η) > 0.
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Suppose that δ(n) tends to zero. Since χ̂δ is an increasing function of δ, for any η > 0
we see that if n is large enough, then E χ̂δ(n)(Gn) 6 E χ̂α(η)(Gn) 6 χ̂(κ) + 2η. Hence,

lim supE χ̂δ(n)(Gn) 6 χ̂(κ). (4.30)

Since κ is supercritical we have ρ(κ) > 0, and by (2.24) we have |C1(Gn)| > ρ(κ)n/2
whp. For any fixed δ > 0, by (2.25) we have |C2(Gn)| < δn whp; this also holds if
δ = δ(n) tends to zero sufficiently slowly. Given a function δ(n), let En be the event that
|C2(Gn)| 6 nδ(n) < |C1(Gn)|. Then, provided δ(n) tends to zero slowly enough, En holds
whp. When En holds we have χ̂δ(n)(Gn) = χ̂(Gn), so E(χ̂(Gn)1En) 6 E χ̂δ(n)(Gn), and

(4.30) gives lim supE(χ̂(Gn)1En) 6 χ̂(κ). By Lemma 4.4 this implies that χ̂(Gn)
p−→ χ̂(κ),

which is our goal. It thus suffices to establish that (4.28) holds for some ε > 0.
Recall that fε(x) 6 1 and fε ↘ f0 = 1 − ρκ as ε → 0. Recall also that Tκ̌ is defined

as the integral operator on L2(µ̌) with

(Tκ̌g)(x) =

∫
κ(x, y)g(y) dµ̌(y) =

∫
κ(x, y)fε(y)g(y) dµ(y).

The map g(x) 7→ g(x)fε(x)1/2 is an isometry of L2(µ̌) onto L2(µ), and thus Tκ̌ is unitarily
equivalent to the integral operator Tε on L2(µ) with kernel fε(x)1/2κ(x, y)fε(y)1/2. In
particular, ‖Tκ̌‖ = ‖Tε‖, and for the special case ε = 0, when Tκ̌ = Tκ̂, ‖Tκ̂‖ = ‖T0‖.

Fix η > 0. Since Tκ is compact, there is a finite rank operator F such that ∆ = Tκ−F
satisfies ‖∆‖ < η. Let Fε and ∆ε denote the operators on L2(µ) obtained by multiplying
the kernels of F and ∆ by fε(x)1/2fε(y)1/2; thus Tε = Fε + ∆ε. Since fε 6 1 holds
pointwise, we have

‖∆ε‖ 6 ‖∆‖ < η.

For any g ∈ L2(µ) we have f
1/2
ε g − f

1/2
0 g → 0 pointwise and hence (by dominated

convergence) in L2(µ). Applying this with g each of the functions ψi, ϕi in the expression
(2.26) for F , it follows that ‖Fε − F0‖ → 0, and hence that

lim sup
ε→0

‖Tε − T0‖ 6 lim sup
ε→0

‖Fε − F0‖+ 2η = 2η.

Since η > 0 was arbitrary, this gives ‖Tε − T0‖ → 0, and in particular ‖Tκ̌‖ = ‖Tε‖ →
‖T0‖ = ‖Tκ̂‖. Furthermore, ‖Tκ̂‖ < 1 by [5, Theorem 6.7] (and its proof; [5, Theorem 6.7]
is stated only for the case when Tκ is Hilbert–Schmidt, but the proof assumes only that
Tκ is compact). Hence, there exists ε > 0 such that ‖Tκ̌‖ < 1. But then (4.28) holds,
because 〈T `κ̌1, 1〉µ̌ 6 ‖Tκ̌‖`.

Remark 4.16. Chayes and Smith [14] have recently proved a result related to Theo-
rem 4.7(i) and Theorem 4.8, for the special case where the type space S is finite. Their
model has a fixed number of vertices of each type, which makes essentially no difference
in this finite-type case. Chayes and Smith consider (in effect) the number of ordered pairs
(v, w) of vertices with v of type i, w of type j, and v and w in the same component, nor-
malized by dividing by n, showing convergence to the relevant branching process quantity.
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These numbers sum to give the susceptibility, so such a result is more refined than the
corresponding result for the susceptibility itself.

In our setting, the analogue is to fix arbitrary measurable subsets S and T of the
type space, and consider χS,T (Gn), defined as 1/n times the number of pairs (v, w) in the
same component with the type of v lying in S and that of w in T . The corresponding
branching process quantity is just χS,T (κ), the integral over x ∈ S of the expected number
of particles in Xκ(x) with types in T . In analogy with Theorem 3.3, in the subcritical
case this quantity may be expressed as χS,T (κ) = 〈(I −Tκ)−11S, 1T 〉µ <∞. It is not hard
to see that the proof of Theorem 4.8 in fact shows that

χS,T (Gn)
p−→ χS,T (κ), (4.31)

where Gn = GV(n, κ) is defined on an i.i.d. vertex space. The key point is that, in the light
of Theorem 4.1 and its proof, it suffices to prove a convergence result for the contribution
to χS,T (Gn) from components of a fixed size k. For all the models we consider here, this
may be proved by adapting the methods used to prove convergence of Nk(Gn)/n; we omit
the details. Once we have such convergence, we also obtain the analogue of (4.31) for χ̂,
so all our results in this section may be extended in this way, with the proviso that when
considering GV(n, κ) with a general vertex space V as in [5], we must assume that S and
T are µ-continuity sets.

Remark 4.17. We believe that all the results in this section extend, with suitable modifi-
cations, to the random graphs with clustering introduced by Bollobás, Janson and Riordan
[7], and generalized (to a form analogous to G(An)) in [6]; these may be seen as the simple
graphs obtained from an appropriate random hypergraph by replacing each hyperedge by
a complete graph on its vertex set. Note that in this case the appropriate limiting object
is a hyperkernel (for the definitions see [7]), and the corresponding branching process is
now a (multi-type, of course) compound Poisson one.

A key observation is that in such a graph, which is the union of certain complete
graphs, two vertices are in the same component if and only if they are joined by a path
which uses at most one edge from each of these complete graphs. Roughly speaking,
this means that we need consider only the individual edge probabilities, and not their
correlations, and then arguments such as the proof of Theorem 4.8 and (at least the first
part of) Theorem 4.7 go through with little change. It also tells us that the susceptibility
of a hyperkernel is simply that of the corresponding edge kernel; this is no surprise,
since for the expected total size of the branching process all that matters is (informally)
the expected number of type-y children of each type-x individual, not the details of the
distribution. This does not extend to the modified susceptibility χ̂, since this depends
on the (type-dependent) survival probability ρ(κ;x), which certainly is sensitive to the
details of the offspring distribution.

Adapting the proof of Theorem 4.9 needs more work, but we believe it should be
possible. Most of the time, one can work with bounded hyperkernels, where not only are
the individual (hyper)matrix entries uniformly bounded, but there is a maximum edge
cardinality. Taking the r-uniform case for simplicity, one needs to show that the number

the electronic journal of combinatorics 19 (2012), #P31 32



of (r−1)-tuples of vertices in the giant component in some subset of Sr−1 is typically close
to what it should be, since, in the proof of Lemma 4.15, the sets Ay,i should (presumably)
be replaced by corresponding subsets of Sr−1. For strong concentration, one argues as
here but using the appropriate stability result from [6] in place of Theorem 4.12. Needless
to say, since we have not checked the details, there is always the possibility of unforeseen
complications!

5 Behaviour near the threshold

In this section we consider the behaviour of χ and χ̂ for a family λκ of kernels, with
κ fixed and the ‘scaling factor’ λ ranging from 0 to ∞. Since ‖Tλκ‖ = λ‖Tκ‖, then,
as discussed in [5], λκ is subcritical, critical and supercritical for λ < λcr, λ = λcr and
λ > λcr, respectively, where λcr = ‖Tκ‖−1. Note that if ‖Tκ‖ < ∞, then λcr > 0, while if
‖Tκ‖ =∞, then λcr = 0, so λκ is supercritical for any λ > 0.

Note also that Theorem 3.5 provides an alternative way to find λcr (and thus ‖Tκ‖):
we can try to solve the integral equation f = 1 + Tλκf = 1 + λTκf and see whether there
are any integrable positive solutions. By Theorem 3.5 this tells us whether χ(λκ) is finite;
since, by Theorems 3.3 and 3.4, the susceptibility is finite in the subcritical case and
infinite in the supercritical case, this information determines λcr. The advantage of this
approach over attempting to solve (2.17) itself is that the equation is linear; this is one of
the main motivations for studying χ. (Another is that it tends to evolve very simply in
time in suitably parameterized models.)

In the subcritical case, λ < λcr, we have the following simple result. As usual, when
we say that a function f defined on the reals is analytic at a point x, we mean that there
is a neighbourhood of x in which f is given by the sum of a convergent power series;
equivalently, f extends to a complex analytic function in a complex neighbourhood of x.

Theorem 5.1. Let κ be a kernel. Then the function λ 7→ χ(λκ) = χ̂(λκ) is increasing and
analytic on (0, λcr), with a singularity at λcr. Furthermore, χ(λκ)↗ χ(λcrκ) = χ̂(λcrκ) 6
∞ as λ↗ λcr, and χ(λκ;x)↗ χ(λcrκ;x) pointwise.

Proof. By (3.2),

χ(λκ) = µ(S)−1

∞∑
j=0

〈T jκ1, 1〉λj, (5.1)

which converges for 0 < λ < λcr by Theorem 3.3. Hence, χ(λκ) is increasing and analytic
on (0, λcr). Moreover, by Theorem 3.4(ii), the sum in (5.1) diverges for λ > λcr; hence the
radius of convergence of this power series is λcr. Since the coefficients are non-negative,
this implies that χ(λκ) is not analytic at λcr.

Finally, χ(λκ) ↗ χ(λcrκ) as λ ↗ λcr by (5.1) and monotone convergence. Similarly,
χ(λκ;x)↗ χ(λcrκ;x) by (3.1) and monotone convergence.

We shall see in Section 6.3 that it is possible to have χ(λcrκ) < ∞. As we shall now
show, if Tκ is compact, then χ(λcrκ) =∞, and the critical exponent of χ is −1 as λ↗ λcr.
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Theorem 5.2. Suppose that Tκ is compact (for example, that
∫
κ2 <∞). Then for some

constant a, 0 < a 6 1, we have

χ(λκ) = χ̂(λκ) =
aλcr

λcr − λ
+O(1), 0 < λ < λcr,

and χ(λcrκ) = χ̂(λcrκ) =∞.

If, in addition, κ is irreducible, then a =
(∫
S ψ
)2
/
∫
S ψ

2, where ψ is any non-negative
eigenfunction of Tκ.

Proof. Since a compact operator is bounded, λcr > 0. We may assume that µ(S) =
1 by Remark 2.3. Furthermore, we may replace κ by λcrκ and may thus assume, for
convenience, that ‖Tκ‖ = 1 and λcr = 1.

We use Theorem 2.7. Since ‖Tκ‖ = 1, we have σ(Tκ) ⊂ [−1, 1]. Let E1 be the
eigenspace {f ∈ L2(µ) : Tκf = f} of Tκ, and let P1 be the orthogonal projection onto E1.
Since Tκ is compact and self-adjoint, E1 and its orthogonal complement are Tκ-invariant.
Furthermore, if r := max{s ∈ σ(Tκ) \ {1}}, then r < 1 and for 0 6 λ 6 1,

‖(I − λTκ)−1(I − P1)‖ = sup
s

{
(1− λs)−1 : s ∈ σ(Tκ) \ {1}

}
=

1

1− λr
6

1

1− r
.

On the other hand, since Tκ is the identity on E1, we have (I − λTκ)−1P1 = (1− λ)−1P1

for λ < 1. Consequently, by Theorem 3.3,

χ(λκ) = 〈(I − λTκ)−11, 1〉 = (1− λ)−1〈P11, 1〉+O(1).

Let a := 〈P11, 1〉 = ‖P11‖2
2 > 0; then a 6 ‖1‖2

2 = 1, so 0 6 a 6 1. If a = 0, then
P11 = 0, so the constant function 1 is orthogonal to E1. But this contradicts the fact that
E1 always contains a non-zero eigenfunction ψ > 0, see the proof of Theorem 3.4 and [5,
Lemma 5.15]. Hence, a > 0.

The fact that χ(λcrκ) =∞ now follows from Theorem 5.1.
Furthermore, if κ is irreducible, then E1 is one-dimensional, see again [5, Lemma 5.15

and its proof], so P1f = ‖ψ‖−2
2 〈f, ψ〉ψ, and the formula for a follows, noting that every

non-negative eigenfunction is a multiple of this ψ.

In a moment, we shall discuss the supercritical case. First we state a lemma from
perturbation theory that we shall need in the proof. The exact form of this lemma is
adapted to our purposes; see [17, Section VII.6] or [26] for similar arguments and many
related results.

Lemma 5.3. Let T be a compact self-adjoint operator on L2(µ), such that T has a largest
eigenvalue 1 that is simple, with a corresponding normalized eigenfunction ψ. Then there
exists η > 0 such that if T ′ is any self-adjoint operator with ‖T ′−T‖ < η such that I−T ′
is invertible, then

〈(I − T ′)−1f, g〉 =
〈f, ψ〉〈ψ, g〉+O(‖T ′ − T‖)

1− 〈T ′ψ, ψ〉+O(‖T ′ − T‖2)
+O(1) (5.2)

uniformly for all f, g ∈ L2(µ) with ‖f‖, ‖g‖ 6 1.
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Proof. In this proof (only!) we use the complex version of L2(µ), since the spectral theory
is more complete in the complex case. The result then holds in the real case too. We
assume for simplicity that T ′ too is compact; this holds in our application below. (The
general case is similar but uses more advanced spectral theory, see [15, §§VII.2 and IX.2]
or [17, VII.3].)

By Theorem 2.7(i), the spectrum σ(T ) is contained in (−∞, 1 − δ] ∪ {1} for some
δ > 0. Let γ be the circle {z : |z − 1| = δ/2}. Then the minimum distance between γ
and σ(T ) is δ/2 > 0. For z ∈ γ, on each eigenspace Eλ of T the map (zI −T )−1 is simply
multiplication by (z − λ)−1. By Theorem 2.7(iii), L2(µ) is the orthogonal direct sum of
the Eλ. Since the factors (z − λ)−1 are uniformly bounded (by 2/δ), it follows that for
any f ∈ L2(µ) we have

(zI − T )−1f =
∑

λ∈σ(T )

(z − λ)−1Pλf, (5.3)

where Pλ is the orthogonal projection onto Eλ. Furthermore, the sum converges uniformly
in z ∈ γ. Integrating, and using Cauchy’s integral formula on each term, we see that the
‘spectral projection’

Q0 :=
1

2πi

∮
γ

(zI − T )−1 dz (5.4)

is the orthogonal projection onto the sum of the eigenspaces Eλ of T for λ in the interior
of γ. (See [17, §VII.3] for more general results.) In our case the only eigenvalue inside
γ is 1, so Q0 = P1, the projection onto E1. Furthermore, by assumption E1 is the one-
dimensional space spanned by ψ, so, for any f ∈ L2(µ),

Q0f = P1f = 〈f, ψ〉ψ. (5.5)

Let A = T ′ − T , and suppose that ‖A‖ 6 η := δ/4. For z ∈ γ, let X = zI − T , so
zI − T −A = X −A = X(I −X−1A). From the formula (5.3) we have ‖X−1‖ 6 2/δ, so
‖X−1A‖ 6 ‖X−1‖‖A‖ 6 1/2. Hence the sum

∑
r>0(X−1A)rX−1 converges in the space

of operators on L2(µ) and (multiplying out) is the inverse of zI − T − A. Note that
(zI−T −A)−1− (zI−T )−1 =

∑
r>1(X−1A)rX−1 has norm at most

∑
r>1(2/δ)r+1‖A‖r =

O(‖A‖), uniformly in A with ‖A‖ 6 η.
Let

QA :=
1

2πi

∮
γ

(zI − T − A)−1 dz. (5.6)

Thus QA is the spectral projection for T+A associated to the interior of γ. It follows from
(5.4), (5.6) and the estimate on ‖(zI − T −A)−1 − (zI − T )−1‖ above that ‖QA −Q0‖ =
O(‖A‖), so, reducing η if necessary, we have ‖QA − Q0‖ < 1 whenever ‖A‖ 6 η. Then
by [17, Lemma VII.6.7] QA too has rank 1; thus QA must be the orthogonal projection
onto a one-dimensional space spanned by an eigenfunction ψA of T + A with eigenvalue
λA, with |λA − 1| < δ/2. Moreover, if I − T ′ = I − T − A is invertible, then λA 6= 1 so,
since all other eigenvalues of T + A lie outside γ,

(I − (T + A))−1 = (1− λA)−1QA +RA, (5.7)
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with ‖RA‖ 6 2/δ = O(1).
Since ‖QAψ−ψ‖ = ‖(QA−Q0)ψ‖ = O(‖A‖), QAψ 6= 0 (provided η is small enough),

and thus we can take ψA = QAψ. Hence ‖ψA−ψ‖ = ‖QAψ−ψ‖ = O(‖A‖) and, assuming
‖A‖ 6 η (with η small),

〈ψA, ψ〉 = 〈ψ, ψ〉+O(‖A‖) = 1 +O(‖A‖),
〈TψA, ψ〉 = 〈ψA, Tψ〉 = 〈ψA, ψ〉,
〈AψA, ψ〉 = 〈Aψ,ψ〉+O(‖A‖2),

and thus, recalling that A = T ′ − T and Tψ = ψ,

λA =
〈(T + A)ψA, ψ〉
〈ψA, ψ〉

= 1 +
〈AψA, ψ〉
〈ψA, ψ〉

= 1 + 〈Aψ,ψ〉+O(‖A‖2)

= 〈Tψ, ψ〉+ 〈Aψ,ψ〉+O(‖A‖2) = 〈T ′ψ, ψ〉+O(‖A‖2).

(5.8)

Furthermore, for any f and g with ‖f‖, ‖g‖ 6 1, using (5.5),

〈QAf, g〉 = 〈Q0f, g〉+O(‖A‖) = 〈f, ψ〉〈ψ, g〉+O(‖A‖). (5.9)

The result follows from (5.7), (5.8) and (5.9).

In the supercritical case, only χ̂ is of interest. If we allow reducible κ, we can have
several singularities, coming from different parts of the type space; see Example 6.8. We
therefore assume that κ is irreducible. Even in that case, it is possible that the dual kernel
κ̂ is critical, see [5, Example 12.4]; in this example it is not hard to check that χ̂(κ) is
infinite.

We conjecture that when κ is irreducible, χ̂(λκ) is analytic for all λ 6= λcr under very
weak conditions, but we have only been able to show this under the rather stringent
condition (5.10) below. (See also the examples in Section 6.) Under this condition, we
can also show that the behaviour of χ̂ is symmetric at λcr to first order: the asymptotic
behaviour is the same on the subcritical and supercritical sides. As seen in Examples 6.2
and 6.3, this does not hold for all κ, even if we assume the Hilbert–Schmidt condition∫
κ2 <∞. (Furthermore, we shall see in Sections 6.1 and 6.2 that the second order terms

generally differ between the two sides.)

Theorem 5.4. Suppose that κ is irreducible, and that

sup
x

∫
S
κ(x, y)2 dµ(y) <∞. (5.10)

(i) The function λ 7→ χ̂(λκ) is analytic except at λcr := ‖Tκ‖−1.

(ii) As λ→ λcr,

χ̂(λκ) =
bλcr

|λ− λcr|
+O(1),

with b =
(∫
S ψ
)2
/
∫
S ψ

2 > 0, where ψ is any non-negative eigenfunction of Tκ.
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Proof. Note that (5.10) implies that Tκ is Hilbert–Schmidt and thus compact. The sub-
critical case λ < λcr thus follows from Theorem 5.2, so we assume λ > λcr. We may also
assume that µ(S) = 1.

(i): Let λ0 > λcr. By [5, Section 15], there exists an analytic function z 7→ ρ+
z defined

in a complex neighbourhood U of λ0 with values in the Banach space L2(µ) such that
ρ+
z = ρzκ when z is real, and (2.17) extends to

ρ+
z = 1− e−zTκρ

+
z . (5.11)

Shrinking U if necessary, we may assume that ‖ρ+
z ‖2 is bounded in U . Then, by (5.10)

and Cauchy–Schwartz, ‖Tκ(ρ+
z )‖∞ = O(1) in U , and thus, by (5.11), |1− ρ+

z | is bounded
above and below, uniformly for z ∈ U . In particular, for every λκ with real λ ∈ U ,
L2(µ̂) = L2(µ), with uniformly equivalent norms. We can therefore regard Tλ̂κ as an
operator on L2(µ).

We define, for z ∈ U , T̂zf := zTκ((1− ρ+
z )f); thus T̂λ = Tλ̂κ for real λ ∈ U by (2.19).

Note that z 7→ T̂z is an analytic map of U into the Banach space of bounded operators
on L2(µ).

By Theorem 3.3, I − Tλ̂0κ is invertible. By continuity, we may assume that I − T̂z is

invertible in U . Then f(z) := 〈(I − T̂z)−11, 1 − ρ+
z 〉µ is an analytic function on U , and

f(λ) = χ̂(λκ) for real λ ∈ U by Theorem 3.3(ii). Hence χ̂(λκ) is analytic at λ0.
(ii): We may rescale and assume that λcr = ‖Tκ‖ = 1, i.e., κ is critical.
It will be convenient to use the fixed Hilbert space L2(µ) rather than L2(µ̂); recall

that µ̂ depends on λ. Define a self-adjoint operator T̃λ on L2(µ) by

T̃λf := (1− ρλκ)1/2λTκ(f(1− ρλκ)1/2), (5.12)

and note that if Uλ is the unitary mapping f 7→ (1− ρλκ)1/2f of L2(µ̂) onto L2(µ), then

T̃λ = UλTλ̂κU
−1
λ by (2.19). Hence, T̃λ as an operator on L2(µ) is unitarily equivalent to

Tλ̂κ on L2(µ̂). Further, by Theorem 3.3(ii),

χ̂(λκ) = 〈(I − Tλ̂κ)
−11, 1〉µ̂ = 〈(I − T̃λ)−1Uλ1, Uλ1〉µ. (5.13)

Note that ρκ = 0, and thus T̃1 = Tκ, which has a simple eigenvalue 1, with a positive
eigenfunction ψ [5, Lemma 5.15], and all other eigenvalues strictly smaller. We may
assume that ‖ψ‖2 = 1.

We apply Lemma 5.3 with T = T̃1 and T ′ = T̃λ, with λ = 1 + ε for small ε > 0. By [5,
Section 15], ‖ρλκ‖∞ = O(ε), and more precisely, ρλκ = aεψ + ρ∗ε with ‖ρ∗ε‖2 = O(ε2) and

aε =
2∫

S ψ
3 dµ

ε+O(ε2). (5.14)

It follows (recalling that ψ is bounded because ψ = Tκψ and (5.10) holds) that (1 −
ρλκ)

1/2ψ = ψ − 1
2
aεψ

2 + rε, with ‖rε‖2 = O(ε2). Consequently, (5.12) implies that ‖T̃λ −
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T̃1‖ = O(ε) and, using 〈Tκψ2, ψ〉 = 〈ψ2, Tκψ〉 = 〈ψ2, ψ〉 =
∫
S ψ

3 dµ and (5.14),

〈T̃λψ, ψ〉 = λ
〈
Tκ
(
(1− ρλκ)1/2ψ

)
, (1− ρλκ)1/2ψ

〉
= λ

(
〈Tκψ, ψ〉 − 1

2
aε〈Tκψ, ψ2〉 − 1

2
aε〈Tκψ2, ψ〉+O(ε2)

)
= (1 + ε)(1− 2ε+O(ε2))

= 1− ε+O(ε2).

Further, Uλ1 = (1− ρλκ)1/2 = 1 +O(ε). Hence, (5.13) and (5.2) yield

χ̂((1 + ε)κ) =
〈1, ψ〉2 +O(ε)

ε+O(ε2)
+O(1) =

〈1, ψ〉2

ε
+O(1),

which is the desired result.

6 Examples

In this section we give several examples illustrating the results in the rest of the paper
and their limits. We sometimes drop κ from the notation: we let ρk denote the function
x 7→ ρk(x) = ρk(κ;x). (But we continue to denote the number

∫
S ρk dµ by ρk(κ), in order

to distinguish it from the function ρk.)
Note first that the probabilities ρk(x) can in principle be calculated by recursion and

integration. The number of children of an individual of type x in the branching process Xκ

is Poisson with mean
∫
κ(x, y) dµ(y) = Tκ1(x), and thus (in somewhat informal language)

ρ1(x) = P(x has no child) = e−Tκ1(x). (6.1)

Next, |Xκ(x)| = 2 if and only if x has a single child, which is childless. Hence, by
conditioning on the offspring of x,

ρ2(x) = e−Tκ1(x)

∫
S
κ(x, y)P(|Xκ(y)| = 1) dµ(y) = e−Tκ1(x)Tκ(ρ1)(x)

= ρ1(x)Tκ(ρ1)(x).

(6.2)

Similarly, considering the two ways to get |Xκ(x)| = 3,

ρ3(x) = e−Tκ1(x)

∫
S
κ(x, y)ρ2(y) dµ(y)

+ e−Tκ1(x) 1

2

∫
S
κ(x, y)ρ1(y) dµ(y)

∫
S
κ(x, z)ρ1(z) dµ(z)

= ρ1(x)Tκ(ρ2)(x) + 1
2
ρ1(x)

(
Tκ(ρ1)(x)

)2
,

(6.3)

and the three ways to get |Xκ(x)| = 4,

ρ4 = ρ1T (ρ3) + ρ1T (ρ1)T (ρ2) +
1

6
ρ1(T (ρ1))3, (6.4)
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and so on. In general, in the expression for ρk, k > 2, there is one term ρ1

∏
j T (ρj)

mj/mj!
for each partition 1m12m2 · · · of k − 1.

The numbers ρk(κ) are then obtained by integration.
Alternatively, a similar recursion can be given for the probability that Xκ(x) has the

shape of a given tree; this can then be summed over all trees of a given size.

6.1 The Erdős–Rényi case

Let S consist of a single point, with µ(S) = 1. Thus, κ is a positive number. (More gener-
ally, a constant κ on any probability space (S, µ) yields the same results. See [5, Example
4.1].) We keep to more traditional notation by letting κ = λ > 0; then GV(n, κ) = G(n, p)
with p = λ/n. We write in this case e.g. Tλ, χ(λ) and ρ(λ).

Since Tλ is just multiplication by λ, ‖Tλ‖ = λ, and, as is well-known, λ is subcritical
if λ < 1, critical if λ = 1, and supercritical if λ > 1.

In the subcritical case, by (3.2) or Theorem 3.3(i),

χ(λ) =
1

1− λ
, λ < 1. (6.5)

Theorem 4.7 or Theorem 4.8 shows that χ(G(n, λ/n))
p−→ (1 − λ)−1 for every constant

λ < 1. (This and more detailed results are shown by Janson and Luczak [24] by another
method. See also Durrett [19, Section 2.2] for the expectation Eχ(G(n, λ/n)).)

Similarly, if λ > 1 then χ(G(n, λ/n))
p−→ χ(λ) = ∞ by Theorem 3.4 and any of

Theorems 4.5, 4.7 or 4.8.
For χ̂, we have the same results for λ 6 1. In the supercritical case λ > 1, Tκ̂ is

multiplication by λ(1 − ρ(λ)) < 1, where 1 − ρ(λ) = exp(−λρ(λ)) by (2.17). Hence, by
Theorems 4.7 and 3.3, or (3.4), for λ > 1,

χ̂(G(n, λ/n))
p−→ χ̂(λ) =

µ̂(S)

1− λ(1− ρ(λ))
=

1− ρ(λ)

1− λ(1− ρ(λ))
. (6.6)

More generally, Theorem 4.7 shows that χ̂(G(n, λn/n))
p−→ χ̂(λ) for every sequence

λn → λ > 0.
For λ = 1 + ε, ε > 0, we have the Taylor expansion

ρ(1 + ε) = 2ε− 8

3
ε2 +

28

9
ε3 − 464

135
ε4 + . . . (6.7)

and thus

χ̂(1 + ε) = ε−1 − 4

3
+

4

3
ε− 176

135
ε2 + . . . (6.8)

Combining (6.5) and (6.8), we see that, as shown by Theorem 5.4, χ̂(λ) ∼ 1/|λ− 1| for λ
on both sides of 1, but the second order terms are different for λ↗ 1 and λ↘ 1.
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We can also obtain χ(λ) and χ̂(λ) from ρk and the formulae (2.10) and (2.11). In
this case, Xκ is an ordinary, single-type, Galton–Watson process with Poisson distributed
offspring, and it is well-known, see e.g. [10; 29; 35; 20; 34; 30], that |Xκ| has a Borel
distribution (degenerate if λ > 1), i.e.,

ρk(λ) = ρk(x) =
kk−1

k!
λk−1e−kλ, k > 1. (6.9)

Consequently, if T (z) :=
∑∞

k=1
kk−1

k!
zk is the tree function, then

ρ(λ) = 1−
∑

16k<∞

ρk(λ) = 1− T (λe−λ)

λ
(6.10)

and, using the well-known identity zT ′(z) = T (z)/(1− T (z)), see e.g. [23],

χ̂(λ) =
∑

16k<∞

kρk(λ) =
∞∑
k=1

kk

k!
λk−1e−kλ = λ−1 T (λe−λ)

1− T (λe−λ)
. (6.11)

In the subcritical case, when λ < 1, we have T (λe−λ) = λ, and we recover (6.5). In
general, (6.10) and (6.11) yield (6.6).

Remark 6.1. Consider the random graph G(n,m) with a given number m of edges. In

the subcritical case m ∼ λn/2 with 0 < λ < 1, we obtain χ(G(n,m))
p−→ χ(λ) = 1/(1−λ)

by comparison with G(n, p) with p = λn/n for λn = 2m/n±n−1/3, say, using Lemma 2.6.
In the supercritical case λ > 1, one can use standard results on the numbers of vertices
and edges in the giant component: conditioning on the giant component assuming typical
values, the rest of the graph is essentially a subcritical instance of G(n,m) with different
parameters; this may be compared with G(n, p) as above. Consequently, for m ∼ λn/2

with λ > 1, χ̂(G(n,m))
p−→ χ̂(λ), where χ̂(λ) is given by (6.6) and (6.11), just as for

G(n, p) with p = λ/n.

6.2 The rank 1 case

Suppose that κ(x, y) = ψ(x)ψ(y) for some positive integrable function ψ on S. This is the
rank 1 case studied in [5, Section 16.4]; note that Tκ is the rank 1 operator f 7→ 〈f, ψ〉ψ,
with ψ as eigenfunction, provided ψ ∈ L2(µ).

We assume, for simplicity, that µ(S) = 1. As in Section 5 we consider the family of
kernels λκ, λ > 0. In this case, ‖Tκ‖ = ‖ψ‖2

2 =
∫
S ψ

2, and thus λcr = ‖ψ‖−2
2 .

In the subcritical case, λ < λcr =
(∫

ψ2
)−1

, which entails
∫
S ψ

2 < ∞, we have by
induction

T jλκ1(x) = λj
(∫
S
ψ2 dµ

)j−1
∫
S
ψ dµ · ψ(x), j > 1,
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and thus by (3.2) (or by solving (3.5))

χ(λκ) = χ̂(λκ) = 1 +
λ
(∫

ψ
)2

1− λ
∫
ψ2

= 1 +
λ
(∫

ψ
)2

1− λ/λcr

=

(∫
ψ
)2
/
∫
ψ2

1− λ/λcr

+ 1−
(∫

ψ
)2∫

ψ2
.

(6.12)

In particular, this verifies the formula in Theorem 5.2.
In the supercritical case, we first note that the equation (2.17) for ρ = ρλκ becomes

ρ = 1− e−λTκρ = 1− e−λ〈ρ,ψ〉ψ. (6.13)

We define ξ ∈ (0,∞) by ξ := λ〈ρ, ψ〉, and thus have

ρ = 1− e−ξψ, (6.14)

with ξ given by the implicit equation

ξ = λ

∫
S
ρ(x)ψ(x) dµ(x) = λ

∫
S
ψ(x)

(
1− e−ξψ(x)

)
dµ(x). (6.15)

(See [5, Section 16.4], where the notation is somewhat different.) We know, by [5, Theorem
6.1], that (6.13) has a unique positive solution ρ for every λ > λcr; thus (6.15) has a unique
solution ξ = ξ(λ) > 0 for every λ > λcr.

It is easier to use ξ as a parameter; by (6.15) we have

λ =
ξ∫

(1− e−ξψ)ψ
. (6.16)

The denominator is finite for every ξ > 0 since ψ ∈ L1; moreover,
∫

(1− e−ξψ)ψ <
∫
ξψ2,

and thus (6.16) yields λ > 1/
∫
ψ2 = λcr. Consequently, (6.15) and (6.16) give a bijection

between λ ∈ (λcr,∞) and ξ ∈ (0,∞). Furthermore, differentiation of (6.16) shows that
λ = λ(ξ) is differentiable, and it follows easily from

∫
(1 − e−ξψ)ψ >

∫
ξψ2e−ξψ that

dλ/ dξ > 0. Hence, the function λ(ξ) and its inverse ξ(λ) are both strictly increasing and
continuous. In particular, λ ↘ λcr ⇐⇒ ξ ↘ 0. Moreover, the denominator in (6.16)
is an analytic function of complex ξ with Re ξ > 0; hence λ(ξ) and its inverse ξ(λ) are
analytic, for ξ > 0 and λ > λcr, respectively.

We note also the following equivalent formula, provided
∫
S ψ

2 <∞:

1

λcr

− 1

λ
= ξ−1

∫
S

(
e−ξψ − 1 + ξψ

)
ψ. (6.17)

By (2.19) and (6.14),

Tλ̂κf = Tλκ
(
(1− ρ)f

)
= λ〈(1− ρ)f, ψ〉ψ = λ

∫
S
e−ξψ(x)ψ(x)f(x) dµ(x)ψ. (6.18)
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Hence Tλ̂κ too is a rank 1 operator, with eigenfunction ψ and eigenvalue (take f = ψ in
(6.18))

γ = λ

∫
S
e−ξψ(x)ψ(x)2 dµ(x) =

ξ
∫
e−ξψψ2∫

(1− e−ξψ)ψ
. (6.19)

Since y2e−y < y(1 − e−y) for y > 0, it follows that 0 < γ < 1. (When
∫
ψ2 < ∞, this

follows also from the general result [5, Theorem 6.7], cf. Theorem 3.3.) Hence I − Tλ̂κ is
invertible (in, for example, L2(µ̂)), and by Theorem 3.3(ii),

χ̂(λκ;x) = (1− ρ(x))(I − Tλ̂κ)
−11(x) = e−ξψ(x)(I − Tλ̂κ)

−11(x). (6.20)

Let us write g := (I − Tλ̂κ)
−11. Then, by (6.18), 1 = (I − Tλ̂κ)g = g − ζψ, with

ζ = λ
∫
S e
−ξψψg. Hence, g = 1 + ζψ and, using (6.19),

ζ = λ

∫
S
e−ξψψg = λ

∫
S
e−ξψψ + λζ

∫
S
e−ξψψ2 = λ

∫
S
e−ξψψ + ζγ.

Hence, using (6.16) and (6.19),

ζ =
λ
∫
e−ξψψ

1− γ
=

ξ
∫
e−ξψψ∫ (

1− e−ξψ
)
ψ − ξ

∫
e−ξψψ2

.

Finally, by (6.20),

χ̂ =

∫
S
χ̂(λκ;x) dµ(x) =

∫
S
e−ξψg =

∫
S
e−ξψ + ζ

∫
S
e−ξψψ

=

∫
S
e−ξψ +

ξ
(∫

e−ξψψ
)2∫ (

1− e−ξψ(1 + ξψ)
)
ψ
.

(6.21)

We observe that (6.21) shows that χ̂ is an analytic function of ξ ∈ (0,∞), and thus
of λ ∈ (λcr,∞). (So in the rank 1 case, at least, the condition (5.10) is not required for
Theorem 5.4(i).)

Next, suppose that
∫
S ψ

3 < ∞. In this case, we can differentiate twice under the
integral signs in (6.16) and (6.21) using dominated convergence (comparing with

∫
S ψ

3),
and taking Taylor expansions we see that as ξ → 0 we have

λ =
ξ

ξ
∫
ψ2 − 1

2
ξ2
∫
ψ3 + o(ξ2)

= λcr +
1

2
ξ

∫
ψ3(∫
ψ2
)2 + o(ξ) (6.22)

and

χ̂ = O(1) +
ξ
(∫

ψ +O(ξ)
)2

1
2
ξ2
∫
ψ3 + o(ξ2)

∼
2
(∫

ψ
)2∫

ψ3
ξ−1 ∼

(∫
ψ
)2
/
(∫

ψ2
)2

λ− λcr

, (6.23)

where we used (6.22) in the last step.
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Note that (6.12) and (6.23) show that the behaviour of χ̂ at the critical point λcr is
symmetrical to the first order:

χ̂(λκ) ∼
(∫

ψ
)2
/
(∫

ψ2
)2

|λ− λcr|
=

(∫
ψ
)2
/
∫
ψ2

|λ/λcr − 1|
, λ→ λcr, (6.24)

at least when
∫
ψ3 < ∞. (This is the same first order asymptotics as given by Theo-

rem 5.4(ii), but note that the latter applies only when ψ is bounded, since (5.10) fails
otherwise.) The second order terms are different on the two sides of λcr, though: if∫
ψ4 <∞, then carrying the Taylor expansions above one step further leads to

χ̂(λκ) =

(∫
ψ
)2
/
∫
ψ2

λ/λcr − 1
+ 1 +

(∫
ψ
)2∫

ψ2
−

4
∫
ψ
∫
ψ2∫

ψ3
+

2
(∫

ψ
)2 ∫

ψ4

3
(∫

ψ3
)2

+ o(1), λ↘ λcr,

(6.25)

in contrast to (6.12) for λ < λcr.
To see what may happen if

∫
S ψ

3 =∞, we look at a few specific examples.

Example 6.2. Let 2 < q < 3 and take S = [1,∞) with dµ(x) = qx−q−1 dx, and take
ψ(x) = x; note that

∫
S ψ

p < ∞ if and only if p < q; in particular
∫
S ψ

2 < ∞ but∫
S ψ

3 = ∞. By (6.17), and standard integration by parts of Gamma integrals, as ξ → 0
we have

1

λcr

− 1

λ
= ξ−1

∫ ∞
1

(
e−ξx − 1 + ξx

)
qx−q dx = qξq−2

∫ ∞
ξ

(
e−y − 1 + y

)
y−q dy

∼ qξq−2

∫ ∞
0

(
e−y − 1 + y

)
y−q dy = qξq−2Γ(1− q),

or λ− λcr ∼ qΓ(1− q)λ2
crξ

q−2. Similarly, by another integration by parts,∫
S

(
1− e−ξψ(1 + ξψ)

)
ψ dµ =

∫ ∞
1

(
1− e−ξx(1 + ξx)

)
qx−q dx

= qξq−1

∫ ∞
ξ

(
1− e−y(1 + y)

)
y−q dy ∼ qξq−1

∫ ∞
0

(
1− e−y(1 + y)

)
y−q dy

=
qξq−1

q − 1
Γ(3− q) = q(q − 2)ξq−1Γ(1− q),

and thus by (6.21),

χ̂ ∼
ξ
(∫

ψ
)2

q(q − 2)ξq−1Γ(1− q)
∼

(∫
ψ
)2
λ2

cr

(q − 2)(λ− λcr)
, λ↘ λcr,

which still has power −1, but differs by a factor (q−2)−1 from the subcritical asymptotics
in (6.12) and Theorem 5.2. Hence, (6.24) does not hold in general without assuming∫
S ψ

3 <∞. (Although this integral does not appear in the formula.)
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Example 6.3. We see in Example 6.2 that χ̂ is relatively large in the barely supercritical
phase when ψ is only a little more than square integrable. We can pursue this further
by taking the same S and ψ, and dµ(x) = c(log x + 1)−qx−3 dx with q > 1 and a
normalization constant c. Similar calculations using (6.17) and (6.23) (we omit the details)
show that, letting c denote different positive constants (depending on q), as ξ → 0 we
have λ− λcr ∼ c(log(1/ξ))−(q−1) and χ̂ ∼ c(log(1/ξ))q, and thus

χ̂(λκ) ∼ c(λ− λcr)
−q/(q−1), λ↘ λcr,

with an exponent −q/(q − 1), which can be any real number in (−∞,−1).
Taking instead dµ(x) = c(log log x)−2(log x)−1x−3 dx, x > 3, we similarly find λ−λcr ∼

c(log log(1/ξ))−1 and χ̂ ∼ c(log(1/ξ))(log log(1/ξ))2, and thus

χ̂(λκ) = exp

(
−c+ o(1)

λ− λcr

)
, λ↘ λcr,

with an even more dramatic singularity. Of course, this sequence of examples can be
continued to yield towers of exponents.

6.3 The CHKNS model

Consider the family of kernels λκ, λ > 0, with

κ(x, y) :=
1

x ∨ y
− 1 (6.26)

on S = (0, 1] with Lebesgue measure µ. We thus have

Tλκf(x) = λ
(1

x
− 1
)∫ x

0

f(y) dy + λ

∫ 1

x

(1

y
− 1
)
f(y) dy

=
λ

x

∫ x

0

f(y) dy + λ

∫ 1

x

f(y)

y
dy − λ

∫ 1

0

f(y) dy.

(6.27)

Remark 6.4. Equivalently, by a change of variable, we could consider the kernel λ(ex∧y−
1) on S = [0,∞) with dµ = e−x dx; we leave it to the reader to reformulate results in
this setting.

This kernel arises in connection with the CHKNS random graph model introduced
by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [13]. This graph grows from a
single vertex; vertices are added one-by-one, and after each vertex is added, an edge is
added with probability δ ∈ (0, 1); the endpoints are chosen uniformly among all existing
vertices. Following Durrett [18; 19], we consider a modification where at each step a
Poisson Po(δ) number of edges are added to the graph, again with endpoints chosen
uniformly at random. As discussed in detail in [5, Section 16.3], this yields a random
graph of the type GV(n, κn) for a graphical sequence of kernels (κn) with limit λκ, where
λ = 2δ, on a suitable vertex space V (with S and µ as above).
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Let us begin by solving (3.5). If f = Tλκf+1, then (6.27) implies first that f ∈ C(0, 1)
and then f ∈ C1(0, 1). Hence we can differentiate and find, using (6.27) again, that

f ′(x) = (Tλκf)′(x) = − λ

x2

∫ x

0

f(y) dy. (6.28)

With F (x) :=
∫ x

0
f(y) dy, this yields F ′′(x) = −λF (x)/x2, with the solution F (x) =

C1x
α+ +C2x

α− , where α± are the roots of α(α−1) = −λ, i.e., α± = 1
2
±
√

1
4
− λ; if λ = 1/4

we have a double root α+ = α− = 1/2 and the solution is F (x) = C1x
1/2 + C2x

1/2 log x.
Hence any integrable solution of (3.5) must be of the form f(x) = C+x

α+−1 +C−x
α−−1, or

f(x) = C+x
−1/2 + C−x

−1/2 log x if λ = 1/4. Any such f satisfies (6.28), and since (6.27)
yields Tλκf(1) = 0, it solves (3.5) if and only if f(1) = 1, i.e., if C+ + C− = 1 (C+ = 1 if
λ = 1/4).

If 0 < λ < 1/4, then 0 < α− < 1/2 < α+ < 1, so the solution f(x) = xα+−1 is in
L2(0, 1) and non-negative; by Corollary 3.6, this is the unique non-negative solution in
L2, and

χ(λκ) =

∫ 1

0

xα+−1 dx =
1

α+

=
2

1 +
√

1− 4λ
=

1−
√

1− 4λ

2λ
. (6.29)

(If we are lucky, or with hindsight, we may observe directly that xα+−1 is a solution of
(3.5) by (6.31) below, and apply Corollary 3.6 directly, eliminating most of the analysis
above.)

For λ < 1/4, we have shown that χ(λκ) is finite, so λκ is subcritical; thus λcr > 1/4.
Since the right-hand side in (6.29) has a singularity at λ = 1/4, Theorem 5.1 shows
that λcr > 1/4 is impossible, so we conclude that λcr = 1/4. (Equivalently, ‖Tκ‖ = 4.)
This critical value for the CHKNS model has earlier been found by Callaway, Hopcroft,
Kleinberg, Newman and Strogatz [13] by a non-rigorous method, also using (6.29) which
they found in a different way; another non-rigorous proof was given by Dorogovtsev,
Mendes and Samukhin [16], and the first rigorous proof was given by Durrett [18; 19]. See
also Bollobás, Janson and Riordan [4; 5], where different methods were used not involving
the susceptibility. The argument above seems to be new.

By Theorem 5.1, we can let λ ↗ λcr in (6.29), and see that the equation holds for
λ = λcr = 1/4 too; i.e., χ(λcrκ) = 2.

We see also that in the (sub)critical case λ 6 1/4, χ(λκ;x) = xα+−1.
We have no need for the other solutions of (3.5), but note that our analysis shows that

for λ < λcr, the other non-negative, integrable solutions of (3.5) are given by xα+−1 +
C(xα−−1 − xα+−1), with C > 0. Similarly, although we have no need for the solutions of
(3.5) for λ > λcr, let us note that for the critical case λ = λcr, the argument above shows
that there is a minimal non-negative solution x−1/2, which belongs to L1 but not to L2;
there are further solutions x−1/2 − Cx−1/2 log x, C > 0. For λ > 1/4, the roots α± are
complex, and the only real integrable solution to (3.5) is 1

2
(xα+−1 + xα−−1) = Re xα+−1 =

x−1/2 cos
(
(λ − 1

4
)1/2 log x

)
, which oscillates; thus there is no finite non-negative solution

at all.
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Before proceeding to χ̂ in the supercritical case, let us calculate ρk for small k. We
begin by observing, from (6.27), that Tλκ1(x) = −λ log x. Hence (6.1) yields

ρ1(λκ;x) = eλ log x = xλ. (6.30)

Further, by (6.27), for every non-zero γ > −1,

Tλκ(x
γ) =

λ

γ(γ + 1)
(1− xγ). (6.31)

Hence (6.2) yields

ρ2(λκ;x) = xλTλκ(x
λ) =

1

1 + λ
(xλ − x2λ). (6.32)

Similarly, (6.3) and (6.4) yield

ρ3(λκ;x) =
(2 + 3λ)x3λ − 4(1 + 2λ)x2λ + (2 + 5λ)xλ

2(1 + λ)2(1 + 2λ)
, (6.33)

and a formula for ρ4(λκ;x) that we omit, and so on. By integration we then obtain

ρ1(λκ) =
1

1 + λ
, (6.34)

ρ2(λκ) =
λ

(1 + λ)2(1 + 2λ)
, (6.35)

ρ3(λκ) =
3λ2

(1 + λ)3(1 + 2λ)(1 + 3λ)
, (6.36)

ρ4(λκ) =
2λ3(7 + 15λ)

(1 + λ)4(1 + 2λ)2(1 + 3λ)(1 + 4λ)
. (6.37)

It is obvious that each ρk(λκ;x) is a polynomial in xλ with coefficients that are rational
functions in λ, with only factors 1 + jλ, j = 1, . . . , k, in the denominator. Hence, each
ρ(λκ) is a rational function of the same type.

There is no obvious general formula for the numbers ρk(λκ), but, surprisingly, they
satisfy a simple quadratic recursion, given in the following theorem. This recursion was
found by Callaway, Hopcroft, Kleinberg, Newman and Strogatz [13], using their recursive
construction of the graph, see also [19, Chapter 7.1]. (The argument in [13] is non-rigorous,
but as pointed out by Durrett [18; 19], it is not hard to make it rigorous.) We give here
a proof that instead uses the branching process, which gives more detailed information
about the distribution of the ‘locations’ of the components.

Theorem 6.5. For the CHKNS kernel (6.26), ρk(λκ) satisfies the recursion

ρk(λκ) =
kλ

2(1 + kλ)

k−1∑
j=1

ρk−j(λκ)ρj(λκ), k > 2, (6.38)
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with ρ1(λκ) = 1/(1 + λ). Hence, for each k > 1, ρk(λκ) is a rational function of λ, with
poles only at −1/j, j = 1 . . . , k.

Moreover, each function ρk(x) = ρk(λκ;x) is a polynomial in xλ, with coefficients that
are rational functions of λ, which can be calculated recursively by

x
d

dx
ρk(λκ;x) = kλρk(λκ;x)−

k−1∑
j=1

jλρk−j(λκ)ρj(λκ;x), k > 1, (6.39)

together with the boundary conditions ρ1(λκ; 1) = 1 and ρk(λκ; 1) = 0, k > 2.

Proof. Fix λ > 0. To simplify the notation, throughout this proof we write κ for the kernel
so far denoted λκ. Let ε ∈ (0, 1/2), say, and let X′κ be Xκ with all points scaled by the
factor (1− ε); this is the branching process defined by S ′ := (0, 1− ε], dµ′ := (1− ε)−1 dx
and κ′(x, y) := λ

(
1−ε
x∨y − 1

)
. In X′κ, the offspring process of an individual of type x has

intensity

κ′(x, y) dµ′(y) = λ
( 1

x ∨ y
− 1

1− ε

)
dy = κ(x, y) dy − ελ

1− ε
dy, y 6 1− ε.

This is less than the intensity in Xκ. We let κ′(x, y) = 0 if x > 1 − ε or y > 1 − ε, and
define κ′′(x, y) = κ(x, y)− κ′(x, y) > 0. More precisely, for 0 < x 6 1− ε and 0 < y 6 1,

κ′′(x, y) =

{
ελ

1−ε , 0 < y 6 1− ε,
λ
(

1
y
− 1
)
6 ελ

1−ε , 1− ε < y 6 1.
(6.40)

Thus Xκ(x) and X′κ(x) may be coupled in the natural way so that X′κ(x) ⊆ Xκ(x) in the
sense that an individual in X′κ(x), of type z say, also belongs to Xκ(x), and its children
in Xκ(x) are its children in X′κ(x) plus some children born according to an independent
Poisson process with intensity κ′′(z, y) dy; we call the latter children (if any) adopted. An
adopted child of type y gets children and further descendants according to a copy of Xκ(y),
independent of everything else. Note that this adoption intensity κ′′(x, y) is independent

of x ∈ S ′, and that the total adoption intensity is
∫ 1

0
κ′′(x, y) dy = ελ+O(ε2).

Fix k > 1. If |Xκ(x)| = k, then either |X′κ(x)| = k and there are no adoptions, or
|X′κ(x)| = j for some j < k and there are one or more adoptions, with a total family size
of k − j. If |X′κ(x)| = k, then the probability of some adoption is kελ+O(ε2), and thus

P
(
|Xκ(x)| = k

∣∣ |X′κ(x)| = k
)

= 1− kλε+O(ε2). (6.41)

Now, suppose that |X′κ(x)| = j < k. The probability of two or more adoptions is O(ε2).
Suppose that there is a single adoption. If the adopted child has type y, the probability
that this leads to an adopted branch of size k − j, and thus to |Xκ(x)| = k, is ρk−j(κ; y).
By (6.40), the adoption intensity κ′′(z, y) is independent of z as remarked above, and is
almost uniform on (0, 1]; it follows that the probability that |Xκ(x)| = k, given |X′κ(x)| = j
and that there is a single adoption, by some individual of type z in X′κ(x), equals∫ 1

0
κ′′(z, y)ρk−j(κ; y) dy∫ 1

0
κ′′(z, y) dy

=

∫ 1

0

ρk−j(κ; y) dy +O(ε) = ρk−j(κ) +O(ε). (6.42)
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Since the probability of an adoption at all is jελ+O(ε2), we obtain

P(|Xκ(x)| = k | |X′κ(x)| = j) = jλρk−j(κ)ε+O(ε2). (6.43)

Consequently, for every k > 1 and x ∈ (0, 1− ε],

ρk(κ;x) = (1− kλε)ρk(κ′;x) +
k−1∑
j=1

jλρk−j(κ)ρj(κ
′;x)ε+O(ε2). (6.44)

(The implicit constant in O here and below may depend on k but not on x or ε.) Replace

x by (1−ε)x and observe that, by definition, |X′κ((1−ε)x)| d
= |Xκ(x)| and thus ρj(κ

′; (1−
ε)x) = ρj(κ;x). This yields

ρk(κ; (1− ε)x) = (1− kλε)ρk(κ;x) +
k−1∑
j=1

jλρk−j(κ)ρj(κ;x)ε+O(ε2). (6.45)

Letting ε↘ 0 we see first that ρk(κ;x) is Lipschitz continuous in (0, 1), and then that it
is differentiable with

x
d

dx
ρk(κ;x) = kλρk(κ;x)−

k−1∑
j=1

jλρk−j(κ)ρj(κ;x), k > 1, (6.46)

which is (6.39) in the present notation.
For k = 1, (6.46) gives ρ1(κ;x) = Cxλ, for some constant C. For x = 1 we have

κ(1, y) = 0, so the branching process Xκ(x) dies immediately, and ρ1(κ;x) = 1. Thus
ρ1(κ;x) = xλ as shown in (6.30). For k > 2, we note that xρk(κ;x) → 0 as x → 0 or
x→ 1, because ρk(κ;x) 6 1− ρ1(κ;x) = 1− xλ, and thus, integrating by parts,∫ 1

0

x
d

dx
ρk(κ;x) =

[
xρk(κ;x)

]1
0
−
∫ 1

0

ρk(κ;x) dx = 0− ρk(κ).

Hence, integration of (6.46) yields the recursion formula

(1 + kλ)ρk(κ) =
k−1∑
j=1

jλρk−j(κ)ρj(κ), k > 2. (6.47)

Replacing j by k− j in the right-hand side of (6.47) and summing the two equations,
we find that

2(1 + kλ)ρk(κ) =
k−1∑
j=1

(j + k − j)λρk−j(κ)ρj(κ), k > 2, (6.48)

which is (6.38).
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The susceptibility χ̂ was calculated for all λ by Callaway, Hopcroft, Kleinberg, New-
man and Strogatz [13] using the recursion formula (6.38), see also Durrett [18; 19]. We
repeat their argument for completeness.

Let G(z) :=
∑∞

k=1 ρk(λκ)zk be the probability generating function of |Xλκ|, defined
at least for |z| 6 1. Note that in the supercritical case, |Xλκ| is a defective random
variable which may be ∞; we have G(1) = 1 − P(|Xλκ| = ∞) = 1 − ρ(λκ). Further,
G′(1) = χ̂(λκ) 6∞.

The recursion (6.38) yields, most easily from the version (6.47),

G(z) + λzG′(z) = λzG′(z)G(z) + (1 + λ)ρ1(λκ)z = λzG′(z)G(z) + z, (6.49)

and thus

G′(z) =
z −G(z)

λz(1−G(z))
, |z| < 1. (6.50)

In the supercritical case, G(1) < 1, and we can let z ↗ 1 in (6.50), yielding χ̂(λκ) =
G′(1) = 1/λ. (In the subcritical case, l’Hôpital’s rule, or differentiation of (6.49), yields a
quadratic equation for G′(1), with (6.29) as a solution; this is the method by which (6.29)
was found in [13].)

Summarizing, we have rigorously verified the explicit formula by Callaway, Hopcroft,
Kleinberg, Newman and Strogatz [13]:

χ̂(λκ) =

{
1−
√

1−4λ
2λ

, λ 6 1
4
,

1
λ
, λ > 1

4
.

(6.51)

Note that there is a singularity at λ = 1/4 with a finite jump from 2 to 4, with infinite
derivative on the left side and finite derivative on the right side. It is striking that there
is a simple explicit formula for χ̂(λκ) = G′(1), while no formula is known for G(1) =
1− ρ(λκ). This is presumably related to the fact that χ̂(λκ) may be found by solving the
linear equation (3.5), whereas ρ(λκ) is related to the non-linear equation (2.17). As λ =
1/4 + ε↘ 1/4, ρ(λκ) approaches 0 extremely rapidly, as exp

(
−(π/2

√
2)ε−1/2 +O(log ε)

)
[16; 5]; the behaviour at the singularity is thus very different for G(1) and G′(1).

Note also that, by (2.11), the discontinuous function χ̂(λκ) is the pointwise sum of
the analytic functions kρk(κ).

Remark 6.6. We can obtain higher moments of the distribution (ρk(λκ))k>1 of |Xλκ|
by repeatedly differentiating the differential equation (6.50) for its probability generating
function and then letting z ↗ 1. In the supercritical case, this yields the moments of
|Xλκ|1{|Xλκ|<∞} (or, equivalently, the moments of |Xλκ| conditioned on |Xλκ| < ∞); it
follows that all these moments are finite, and we can obtain explicit formulae for them
one-by-one. For example, with ρ = ρ(λκ),

E(|Xλκ|21{|Xλκ|<∞}) = G′′(1) +G′(1) =
1− ρ
λρ

+
1

λ
=

1

λρ
, (6.52)

E(|Xλκ|31{|Xλκ|<∞}) = G′′′(1) + 3G′′(1) +G′(1) =
2

λ2ρ2
+

1

λρ
. (6.53)
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It can be seen that for each m > 1, as λ↘ λcr, and thus ρ→ 0, we have

E(|Xλκ|m1{|Xλκ|<∞}) ∼ cmρ
1−m (6.54)

for some constant cm > 0; we do not know any general formula for cm. For any λ > λcr = 1
4

and a, b > 0, writing X̂ := |Xλκ|1{|Xλκ|<∞}, from (6.51) and (6.52)–(6.53) we obtain

E
(
X̂21{X̂6a/ρ}

)
6
a

ρ
E X̂ =

a

ρ
χ̂(λκ) =

a

λρ
,

E
(
X̂21{X̂>b/ρ}

)
6
ρ

b
E X̂3 =

2

bλ2ρ
+

1

bλ
,

and hence

E
(
X̂21{a/ρ6X̂6b/ρ}

)
>

1

λρ
− a

λρ
− 2

bλ2ρ
− 1

bλ
=

1

λρ

(
1− a− 2

bλ
− ρ

b

)
.

Choosing, for example, a = 1/4 and b = 32, so bλ > 8, the last quantity is at least
1/(3λρ) > 1.3/ρ if λ is close to λcr, and thus, for such λ at least,

P
( 1

4ρ
6 |Xλκ| 6

32

ρ

)
>

1.3

ρ

(ρ
b

)2

>
ρ

1000
.

Hence, |Xλκ| may be as large as about ρ−1 with probability about ρ, as suggested by
(6.54).

Note that each ρk(λκ) is a continuous function of λ, so as λ ↘ λcr, the (defective)
distribution of |Xλκ| converges to the distribution of the critical |Xλcrκ|, which has mean
χ(λcrκ) = 2 and P(|Xλcrκ| = k) ∼ 2/(k2 log k) as k →∞, see [19, Section 7.3].

In the subcritical case, ρk(λκ) decreases as a power of k, see [19, Section 7.3] for
details.

We have so far studied χ(λκ) and χ̂(λκ), or, equivalently, the cluster size in the
branching process Xλκ. Let us now return to the random graphs; we then have to be
careful with the precise definitions. The Poisson version of the CHKNS model mentioned
above can be described as the random multigraph where the number of edges between
vertices i and j is Po(λij) with intensity λij := λ(1/(j − 1) − 1/n), for 1 6 i < j 6 n,
independently for all such pairs i, j, see [18; 19; 5]. For the moment, let us call this random
graph GI

n. Let GII
n be defined similarly, but with λij := λ(1/j − 1/n), and let GIII

n be
defined similarly with λij := λ(1/j−1/(n+1)), for 1 6 i < j 6 n. Since multiple edges do
not matter for the components, we may as well consider the corresponding simple graphs
with multiple edges coalesced; then the probability of an edge between i and j, i < j, is
pij := 1− exp(−λij). (If, for simplicity, we consider λ 6 1 only, it is easy to see that the
results below hold also if we instead let the edges appear with probabilities pij = λij; this
follows by the same arguments or by contiguity and [22, Corollary 2.12(iii)].)

We first consider GII
n ; note that this is exactly (the Poisson version of) GV(n, λκ) with

κ defined in (6.26) and the vertex space V given by S = (0, 1] with µ Lebesgue measure
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as above, and the deterministic sequence xn = (x1, . . . , xn) with xi = i/n. Arguing as in
the proof of Theorem 4.7, summing over distinct indices only, and using the fact that κ
is non-increasing in each variable, we find that the expected number EP`(GII

n ) of paths
of length ` is

EP`(GII
n ) 6

n∑
j0,...,j`=1

∏̀
i=1

λκ(ji−1, ji)

n

6
n∑

j0,...,j`=1

n

∫
∏
i((ji−1)/n,ji/n]

∏̀
i=1

λκ(xi−1, xi) dx0 · · · dx`

6 n

∫
S`+1

∏̀
i=1

λκ(xi−1, xi) dx0 · · · dx` = n〈T `λκ1, 1〉.

Hence Lemmas 4.6 and 4.3 imply that (4.5) holds and χ(GII
n )

p−→ χ(λκ).
For GIII

n , we observe that GIII
n can be seen as an induced subgraph of GII

n+1, and thus

E
∑
`

P`(G
III
n ) 6 E

∑
`

P`(G
II
n+1) 6 (n+ 1)χ(λκ). (6.55)

Hence Lemma 4.3 implies that χ(GIII
n )

p−→ χ(λκ).
Finally, it is easily checked that GI

n and GIII
n satisfy the conditions of [22, Corollary

2.12(iii)], and thus are contiguous. Hence χ(GI
n)

p−→ χ(λκ) too. (One can also compare
GI
n and GII

n as in [4, Lemma 11].)
It turns out that in probability bounds such as the one we have just proved do not

obviously transfer from GI
n to the original CHKNS model. On the other hand (as we shall

see below), bounds on the expected number of paths do. Hence, in order to analyze the
original CHKNS model, we shall need to show that

lim supEn−1
∑
`

P`(G
I
n) 6 χ(λκ). (6.56)

If λ > 1/4, then λκ supercritical, so χ(λκ) = ∞ and there is nothing to prove. Suppose
then that λ 6 1/4. We may regard GI

n with the vertex 1 deleted as GIII
n−1. Writing P (G)

for the total number of paths in a graph G, and P ∗ for the number involving the vertex
1, by (6.55) we thus have

EP (GI
n)− EP ∗(GI

n) = EP (GIII
n−1) 6 nχ(λκ),

so to prove (6.56) it suffices to show that EP ∗(GI
n) = o(n).

Let S(GI
n) denote the number of paths in GI

n starting at vertex 1. Since a path visiting
vertex 1 may be viewed as the edge disjoint union of two paths starting there, and edges
are present independently, we have EP ∗(GI

n) 6 (ES(GI
n))2. Now ES(GI

n) is given by 1
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plus the sum over i of 1/i times the expected number of paths in GIII
n−1 starting at vertex

i. Durrett [18, Theorem 6] proved the upper bound

3

8

1√
ij

(log i+ 2)(log n− log j + 2)

log n+ 4

on the expected number of paths between vertices i and j in the graph H on [n] in which
edges are present independently and the probability of an edge ij, i < j, is 1/(4j) (a form
of Dubins’ model; see the next section). In fact, his result is stated for the probability
that a path is present, but the proof bounds the expected number of paths. (The factor
1/
√
ij is omitted in [18, Theorem 6]; this is simply a typographical error.) This bound

carries over to GIII
n−1, which we may regard as a subgraph of H. Multiplying by 1/i and

summing, a little calculation shows that this bound implies that ES(GI
n) = O(n1/2/ log n)

for λ = 1/4, and hence for any λ 6 1/4. From the comments above, (6.56) follows, and

for any λ > 0 we have χ(GI
n)

p−→ χ(λκ).
Recall that the original CHKNS model Gn has the same expected edge densities as

GI
n, but the mode of addition is slightly different, with 0 or 1 edges added at each step,

rather than a Poisson number; this introduces some dependence between edges. However,
as noted in [4], the form of this dependence is such that conditioning on a certain set of
edges being present can only reduce the probability that another given edge is present.
Thus, any given path is at most as likely in Gn as in GI

n, and (6.56) carries over to the
CHKNS model. On the other hand, the effect of this dependence is small except for the
first few vertices, and it is easy to see that Nk(Gn) has almost the same distribution as

Nk(G
I
n). In particular, Nk(Gn)/n

p−→ ρk(λκ), so the proof of Theorem 4.1 goes though.

Using Lemma 4.2 it follows that χ(Gn)
p−→ χ(λκ).

Turning to the supercritical case, let Mk(G) denote the number of components of a
graph G, other than C1, that have order k. We claim that, in all variants GI

n, GII
n , GIII

n

or the original CHKNS model, for fixed λ > λcr there is some sequence of events En that
holds whp, and some η > 0 such that

n−1 E(Mk(Gn) | En) 6 100e−ηk
1/5

, (6.57)

say, for all n, k > 1. Suppose for the moment that (6.57) holds. Then

E(χ̂(Gn) | En) = n−1
∑
k>1

k2 E(Mk(Gn) | En) 6
∑
k

100k2e−ηk
1/5

<∞.

For each fixed k we have n−1 E k2Mk(Gn) = n−1 E(kNk(Gn)−O(k))→ kρk(λκ). Since En
holds whp and n−1k2Mk(Gn) is bounded it follows that n−1k2 E(Mk(Gn) | En)→ kρk(λκ).
Hence, by dominated convergence, E(χ̂(Gn) | En) →

∑
kρk(λκ) = χ̂(λκ), and (which

we know already in this case), χ̂(λκ) is finite. By Lemma 4.4(ii), it then follows that

χ̂(Gn)
p−→ χ̂(λκ).

To prove (6.57) we use an idea from [4]; with an eye to the next subsection, in the proof
we shall not rely on the exact values of the edge probabilities, only on certain bounds.
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Fix λ > λcr. Choosing η small, in proving (6.57) we may and shall assume that k is at
least some constant that may depend on λ. Set δ = k−1/100, and let G′n be the subgraph
of Gn induced by the first n′ = (1 − δ)n vertices. (We ignore the irrelevant rounding to
integers.) In all variants GI

n, GII
n , GIII

n , the distribution of G′n stochastically dominates
that of Gn′ , so whp G′n contains a component C of order at least 3ρ(λκ)n′/4 > ρ(λκ)n/2.
Let us condition on G′n, assuming that this holds. Note that whp the largest component
of Gn will contain C, so it suffices to bound the expectation of M ′

k, the number of k-vertex
components of Gn not containing C. To adapt what follows to the original CHKNS model,
we should instead condition on the edges added by time n′ as the graph grows; we omit
the details.

Suppose that C ′ is a component of G′n other than C. Consider some vertex v, n′ <
v 6 (1 − δ/2)n. Then v has probability at least λ(1/v − 1/n) > λδ/(2n) > δ/(8n)
of being joined to any given vertex, and hence probability at least δ|S|/(9n) of having
at least one neighbour in any given set S of vertices. Hence with probability at least
δ2ρ(λκ)|C ′|/(200n), v has neighbours in C and in C ′. Since these events are independent
for different v, the probability that C ′ is not part of the same component of Gn as C is
at most(

1− δ2ρ(λκ)|C ′|/(200n)
)δn/2

6 exp
(
−δ3ρ(λκ)|C ′|/400

)
= exp(−aδ3|C ′|),

for some a > 0 independent of k.
Let A be the number of components of G′n of size at least k1/4 that are not joined to

C in Gn. Then it follows that EA 6 ne−ak
1/5

.
For any v 6 n′, the expected number of edges from ‘late’ vertices w > n′ to v is at

most 1/2, say. (We may assume δ is small if λ is large.) Let B be the number of vertices
receiving at least k1/4 edges from late vertices. Then it is easy to check (using a Chernoff

bound or directly) that EB 6 ne−bk
1/4

for some b > 0. The subgraph of Gn induced by
the late vertices is dominated by an Erdős–Rényi random graph with average degree at
most 1/2. Let N be the number of components of this subgraph with size at least k1/4.
Then, since the component exploration process is dominated by a subcritical branching
process, we have EN 6 ne−ck

1/4
for some c > 0.

Let M ′′
k be the number of k-vertex components of Gn other than that containing

C that do not contain any of the components/vertices counted by A, B or N . Since

E(M ′
k −M ′′

k ) 6 E(A + B + N) 6 ne−dk
1/5

for some d > 0, it suffices to bound EM ′′
k .

Condition on G′n and explore from some vertex not in C. To uncover a component
counted by M ′′

k , this exploration must cross from late to early vertices at least k1/4 times
– each time we reach a component of size at most k1/4, and from each of these vertices
we get back to at most k1/4 late vertices, and from each of those to at most k1/4 other
late vertices before we next cross over to early vertices. However, every time we find an
edge from a late to an early vertex (conditioning on the presence of such an edge but not
its destination early vertex), we have probability at least ρ(λκ)/2 of hitting C. It follows

that EM ′′
k 6 n(1− ρ(λκ)/2)k

1/4
, and (6.57) follows.

Note that since χ̂(λκ) is a discontinuous function of λ, we cannot obtain convergence
to χ̂(λκ) for an arbitrary sequence λn → λ, as in Theorem 4.7 and Section 6.1. In fact, it
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follows easily from Theorem 4.1 that if λn ↘ λcr slowly enough, then χ(GV(n, λnκ))
p−→

∞ > χ(λcrκ) and χ̂(GV(n, λnκ)) > limλ↘λcr χ̂(λκ) − ε = 4 − ε > χ̂(λcrκ) whp for every
ε ∈ (0, 2), for any vertex space V (with S and µ as above), and thus in particular for GII

n .

6.4 Dubins’ model

A random graph closely related to the CHKNS model is the graph GV(n, λκ) with kernel

κ(x, y) :=
1

x ∨ y
(6.58)

on S = (0, 1], where the vertex space V is as in Section 6.3, so xn = (x1, . . . , xn). In
this case, the probability pij of an edge between i and j is given (for λ 6 1) by pij =
λκ(i/n, j/n)/n = λ/(i∨j). Note that this is independent of n, so we may regard GV(n, λκ)
as an induced subgraph of an infinite random graph with vertex set N and these edge
probabilities, with independent edges.

This infinite random graph was introduced by Dubins, who asked when it is a.s.
connected. Shepp [32] proved that this holds if and only if λ > 1/4. The finite random
graph GV(n, λκ) was studied by Durrett [18, 19], who showed that λcr = 1/4; thus the
critical value for the emergence of a giant component in the finite version coincides with
the critical value for connectedness of the infinite version. See also [4; 31; 5].

We have

Tλκf(x) =
λ

x

∫ x

0

f(y) dy + λ

∫ 1

x

f(y)

y
dy. (6.59)

We can solve (3.5) as in Section 6.3; we get the same equation (6.28) and thus the same
solutions f(x) = C+x

α+−1 + C−x
α−−1 (unless λ = 1/4 when we also get a logarithmic

term), and substitution into (6.59) shows that this is a solution of (3.5) if and only if
C+α+ + C−α− = 1, see (6.62) below. If 0 < λ < 1/4, so α+ > 1/2 > α−, there is thus a
positive solution f(x) = α−1

+ xα+−1 in L2. (This is the unique solution in L2, by a direct
check or by Corollary 3.6.) Hence, Corollary 3.6 yields

χ(λκ) =

∫ 1

0

f(x) dx = α−2
+ =

1− 2λ−
√

1− 4λ

2λ2
, 0 < λ < 1/4. (6.60)

Since this function is analytic on (0, 1/4) but has a singularity at λ = 1/4 (although it
remains finite there), Theorem 5.1 shows that λcr = 1/4, which gives a new proof of this
result by Durrett [18]. Note that χ(λcrκ) = 4 is finite.

We can estimate the expected number of paths as in Section 6.3, and show by Lemmas
4.6 and 4.3 that χ(GV(n, λκ))

p−→ χ(λκ) for any λ > 0.
In the supercritical case, the tail bound (6.57) goes through, showing that for any

λ > λcr we have χ̂(λκ) < ∞, and χ̂(GV(n, λκ))
p−→ χ̂(λκ). Unfortunately, while the

argument gives a tail bound on the sum
∑

k kρk(λκ) for each fixed λ > λcr, the dependence
on λ is rather bad, so it does not seem to tell us anything about the behaviour of χ̂(λκ)
as λ approaches the critical point.
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We can easily calculate ρk for small k. First, by (6.59), Tλκ1(x) = λ− λ log x. Hence
(6.1) yields

ρ1(λκ;x) = e−λ+λ log x = e−λxλ. (6.61)

Further, instead of (6.31) we now have, for every non-zero γ > −1,

Tλκ(x
γ) =

λ

γ
− λ

γ(γ + 1)
xγ. (6.62)

Hence (6.2) yields

ρ2(λκ;x) = e−λxλTλκ(e
−λxλ) = e−2λxλ

(
1− xλ

λ+ 1

)
. (6.63)

Similarly, by (6.3) and some calculations,

ρ3(λκ;x) =
e−3λ

2(1 + λ)2(1 + 2λ)(
(2 + 3λ)x3λ − 4(1 + 2λ)(1 + λ)x2λ + (2 + 3λ)(1 + 2λ)(1 + λ)xλ

)
,

and so on. By integration we then obtain

ρ1(λκ) =
e−λ

1 + λ
, (6.64)

ρ2(λκ) =
2λe−2λ

(1 + λ)(1 + 2λ)
, (6.65)

ρ3(λκ) =
(15λ2 + 18λ3)e−3λ

2(1 + λ)2(1 + 2λ)(1 + 3λ)
. (6.66)

It is clear that each ρk(λκ) is e−kλ times a rational function of λ, but we do not know
any general formula or a recursion that enables us to calculate χ̂(λκ) in the supercritical
case as in Section 6.3.

6.5 Functions of max{x, y}
The examples in Sections 6.3 and 6.4 are both of the type κ(x, y) = ϕ(x ∨ y) for some
function ϕ on (0, 1]. It is known that if, for example, ϕ(x) = O(1/x), then Tκ is bounded
on L2, and thus there exists a positive λcr > 0; see [27; 1] and [5, Section 16.6].

We have

Tλκf(x) = λϕ(x)

∫ x

0

f(y) dy + λ

∫ 1

x

ϕ(y)f(y) dy. (6.67)

If ϕ ∈ C1(0, 1], then any integrable solution of (3.5) must be in C1(0, 1] too, and dif-
ferentiation yields f ′ = λϕ′F , where F (x) :=

∫ x
0
f(y) dy is the primitive function of f ;
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furthermore, we have f(1) = 1 + Tλκf(1) = 1 + λϕ(1)F (1). Hence, solving (3.5) is
equivalent to solving the Sturm–Liouville problem

F ′′(x) = λϕ′(x)F (x) (6.68)

with the boundary conditions

F (0) = 0 and F ′(1) = λϕ(1)F (1) + 1. (6.69)

If there is a solution to (6.68) and (6.69) with F ′ > 0 and F ′ ∈ L2, then Corollary 3.6
shows that

χ(λκ) =

∫ 1

0

F ′(x) dx = F (1). (6.70)

The examples in Sections 6.3 and 6.4 are examples of this, as is the Erdős–Rényi case
in Section 6.1 (ϕ = 1). We consider one more simple explicit example.

Example 6.7. Let ϕ(x) = 1 − x. Then (6.68) becomes F ′′ = −λF , with the solution,
using (6.69), F (x) = A sin(

√
λx) with A

√
λ cos(

√
λ) = 1. This solution satisfies F ′ > 0 if√

λ < π/2, so we find λcr = π2/4 and, by (6.70),

χ(λκ) =
tan(
√
λ)√

λ
, λ < λcr = π2/4. (6.71)

6.6 Further examples

We give also a couple of counterexamples.

Example 6.8. Let S = {1, 2}, with µ{1} = µ{2} = 1/2, and let κε(1, 1) = 2, κε(2, 2) = 1
and κε(1, 2) = κε(2, 1) = ε for ε > 0.

For ε = 0, κ0 is reducible; given the numbers n1 and n2 of vertices of the two types, the
random graph GV(n, λκ0) consists of two disjoint independent random graphs G(n1, 2λ/n)

and G(n2, λ/n); since n1/n, n2/n
p−→ 1/2, the first part has a threshold at λ = 1 and

the second a threshold at λ = 2. Similarly, the branching process Xλκ0(x) is a single-type
Galton–Watson process with offspring distribution Po(λ) if x = 1 and Po(λ/2) if x = 2,
so Xλκ0 is a mixture of these. Hence, if χ̂1(λ) denotes the (modified) susceptibility in the
Erdős–Rényi case, given by (6.5) for λ < 1 and (6.6) for λ > 1, then

χ̂(λκ0) = 1
2
χ̂1(λ) + 1

2
χ̂1(λ/2), (6.72)

so χ̂(λκ0) has two singularities, at λ = 1 and λ = 2. Clearly, λcr = 1.
Now consider ε > 0 and let ε ↘ 0. Then λcr(κε) 6 λcr(κ0) = 1. Furthermore, for

any fixed λ, ρ(λκε;x) → ρ(λκ0;x) by [5, Theorem 6.4(ii)], and hence Tλ̂κε → Tλ̂κ0 (we
may regard the operators as 2× 2 matrices). Consequently, if λ > 1 with λ 6= 2 and thus
‖Tλ̂κ0‖ < 1, then (I−Tλ̂κε)

−1 → (I−Tλ̂κ0)
−1, and thus χ̂(λκε)→ χ̂(λκ0) by Theorem 3.3.

This holds for λ = 2 also, with the limit χ̂(2κ0) = ∞, for example by (3.4) and Fatou’s
lemma.
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Since χ̂(λκ0) has singularities both at 1 and 2, we may choose δ ∈ (0, 1/2) such
that χ̂((1 + δ)κ0) > χ̂(3

2
κ0) and χ̂((2− δ)κ0) > χ̂(3

2
κ0), and then choose ε > 0 such that

χ̂((1+δ)κε) > χ̂(3
2
κε) and χ̂((2−δ)κε) > χ̂(3

2
κε). This yields an example of an irreducible

kernel κ such that χ̂(λκ) is not monotone decreasing on (λcr,∞).

Example 6.9. Theorem 4.7 shows convergence of χ(GV(n, κ)) to χ(κ) for any vertex
space V when κ is bounded. For unbounded κ, some restriction on the vertex space is
necessary. (Cf. Theorem 4.8 with a very strong condition on V and none on κ.) The
reason is that our conditions on V are weak and do not notice sets of vertices of order
o(n), but such sets can mess up χ.

In fact, assume that κ is unbounded. For each n > 16, find (an, bn) ∈ S2 with
κ(an, bn) > n. Define xn by taking bn3/4c points xi = an, bn3/4c points xi = bn, and
the remaining n − 2bn3/4c points i.i.d. with distribution µ. It is easily seen that this
yields a vertex space V , and that we have created a component with at least 2bn3/4c
vertices. Consequently, |C1| > n3/4, and by (1.2), χ(GV(n, κ)) > |C1|2/n > n1/2, so
χ(GV(n, κ))→∞, even if κ is subcritical and thus χ(κ) <∞.

Using a similar construction (but this time for more specific kernels κ), it is easy to
give examples of unbounded supercritical κ with χ̂(κ) < ∞ but χ̂(GV(n, κ)) → ∞ for
suitable vertex spaces V .
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