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Abstract

In this note we prove the following theorem. For any three sets of points in the
plane, each of n ≥ 2 points such that any three points (from the union of three sets)
are not collinear and the convex hull of 3n points is monochromatic, there exists
an integer k ∈ {1, 2, . . . , n− 1} and an open half-plane containing exactly k points
from each set.

1 Introduction

Bisecting two finite sets of points in the plane by a line is a simple exercise. The existence
of such a line follows from the discrete version of the classical ham-sandwich theorem [2]
that states that, for any d finite point sets S1, S2, . . . , Sd in Rd, there exists a hyperplane
h such that each open half-space bounded by h contains at most half of points of each set
Si.

A short survey related to this paper is found in [1]. Another variation of the problem
is about balanced lines [3, 4]. A set of points in the plane is in general position if any three
points are not collinear. Given a set of n black and n white points in general position in
the plane, a line l is said to be balanced if each open half-plane bounded by l contains
precisely the same number of black points as white points. Our definition of balanced
line is slightly different from [3] since we do require the line to pass through two points
of the sets. Pach and Pinchasi [3] proved that the number of balanced lines is at least n
answering the question of George Baloglou.

Sharir and Welzl [4] found that balanced lines in the plane are related to halving
triangles in R3. Let P be a set of 2n + 1 points in R3 in general position, i.e. no four
points are coplanar. A halving triangle of P is a triangle spanned by three points in P
such that the plane containing the three points bisects the remaining points of P (i.e. an
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open half-space bounded by the plane contains exactly n− 1 points of P ). They proved
that the number of halving triangles is at least n2. This bound is tight since points in
convex position have exactly n2 halving triangles.

In this note we study balanced lines for three point sets. Let S = R ∪B ∪G be a set
of 3n points in the plane in general position such that |R| = |B| = |G| = n ≥ 2 (red, blue
and green points). A line l is called balanced if an open half-plane bounded by l contains
exactly k red, k blue and k green points for some k ∈ {1, 2, . . . , n − 1}. Unfortunately,
a balanced line does not always exist, see an example in Figure 1 (b). To develop an
intuition we check points on the line first.

It is known that if n red points and n blue points lie on a line in general position (i.e.,
no two points lie on the same position) and if the two end points have the same color,
then there exists a balanced point.

Proposition 1 Assume that n red points and n blue points are given on the line and no
two points lie on the same position, where n is a positive integer. If both endpoints are
red, then the line can be divided into two parts, the right part I1 and the left part I2, by a
point so that I1 contains k red points and k blue points for some 1 ≤ k ≤ n− 1.

Remark. Notice that the condition of Proposition 1 that both endpoints are the same
color is necessary. For example, a configuration rrrbrbrbbb, where r and b denote a red
point and a blue point, respectively, has no balanced point given in Proposition 1.

We will prove that a balanced line for points in the plane exists if the convex hull of
S is monochromatic.

(a) (b)

Figure 1: (a) Balanced line in a set of 18 points such that the convex hull is monochro-
matic. (b) A set of 12 points with non-monochromatic convex hull such that a balanced
line does not exist.

Theorem 2 Let S be a set of 3n ≥ 6 points in the plane in general position colored in
red/blue/green such that
(i) the number of points of each color is n, and
(ii) the vertices of the convex hull have the same color.
Then there exists a balanced line of S.
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2 Existence of a Balanced Line

In this Section we prove Theorem 2.
Proof. Let d be a direction such that any two points of S have different projections

on a line with slope d. Let p1, . . . , p3n be the order of points in direction d. For every k, let
rk, bk, gk be the number of red/blue/green points in {p1, . . . , pk}, respectively. Consider
point qk = (3bk − k, 3gk − k). Note that qk 6= (0, 0) if k is not multiple of 3. The
theorem follows if qk = (0, 0) for some k = 3, 6, . . . , 3(n − 1). Suppose to the contrary
that qk 6= (0, 0) for any k and any direction d.

Consider path φd = q1q2 . . . q3n−1. By the definition q1 = (−1,−1) and q3n−1 = (1, 1),
see Figure 2 (a). There are three types of vectors −−−→qk−1qk depending on the color of pk,
see Figure 2 (b). Note that the segments qk−1qk do not contain grid points except the

endpoints. Therefore path φd does not contain the origin. If we trace vector
−→
0a where a

traverses path φd the turning angle of a, defined as
3n−2∑
i=1

∠qiOqi+1, will be tπ where t is an

odd integer.

(a) (b)

Figure 2: (a) Path φd with turning angle π. (b) Vectors qk−1qk depending on the color
of pk.

We show that the turning angle of φd does not change with d. It suffices to consider
a flip of two points pk and pk+1 when d changes. Suppose that pk is red and pk+1 is blue.
Then path qk−1qkqk+1 changes to qk−1q

′
kqk+1 as shown in Figure 3 (a). We show that

parallelogram qk−1qkqk+1q
′
k does not contain the origin. Suppose to the contrary that it

contains the origin. Then y(qk) = 0 and 3gk = k and k ≡ 0 mod 3. On the other hand
x(qk) = 3bk − k ∈ {−1,−2} contradicting k ≡ 0 mod 3. The case, where pk is blue and
pk+1 is red, is symmetric.

Similarly, we can show that parallelogram qk−1qkqk+1q
′
k does not contain the origin if

pk and pk+1 have different colors, see Figure 2 (b) and (c). Note that φ−d is symmetric to
φd and its turning angle is −tπ. This contradicts the fact that the turning angle φd does
not change under rotation of d.

We finally note that the condition that the numbers of red, blue and green points are
equal in Theorem 2 is also necessary. It is easy to make an example with distinct number
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Figure 3: Flipping pk and pk+1. Path qk−1qkqk+1 changes to qk−1q
′
kqk+1. (a) pk is red and

pk+1 is blue. (b) pk is green and pk+1 is blue. (c) pk is red and pk+1 is green.

of points of each color that does not admit a balanced line. It is also natural to change
the definition of balanced line in this case. For an red points, bn blue points and cn green
points are given in the plane in general position, a line l is called balanced if an open
half-plane bounded by l contains exactly ak red points and bk blue points and ck green
points for some k ∈ {1, 2, . . . , n − 1}. For example, the configuration of points shown in
Figure 4 has no such balanced line.

Figure 4: Example of 15 red, 15 blue and 3 green points without balanced line. Any line
cutting off 5 red points does not intersect the circle enclosing green points.
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[2] J. Matoušek. Using the Borsuk-Ulam Theorem. Springer-Verlag, Heidelberg, 2003.

[3] J. Pach and R. Pinchasi. On the number of balanced lines. Discrete & Computational
Geometry, 25(4):611–628, 2001.

[4] M. Sharir and E. Welzl. Balanced lines, halving triangles, and the generalized lower
bound theorem. In Symposium on Computational Geometry, pp. 315–318, 2001.

the electronic journal of combinatorics 19 (2012), #P33 4


