Properties of θ -super positive graphs

Cheng Yeaw Ku

Department of Mathematics, National University of Singapore, Singapore 117543 matkcy@nus.edu.sg

Kok Bin Wong

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia kbwong@um.edu.my

Submitted: Sep 13, 2011; Accepted: Jan 26, 2012; Published: Feb 7, 2012 Mathematics Subject Classifications: 05C31, 05C70

Abstract

Let the matching polynomial of a graph G be denoted by $\mu(G,x)$. A graph G is said to be θ -super positive if $\mu(G,\theta) \neq 0$ and $\mu(G \setminus v,\theta) = 0$ for all $v \in V(G)$. In particular, G is 0-super positive if and only if G has a perfect matching. While much is known about 0-super positive graphs, almost nothing is known about θ -super positive graphs for $\theta \neq 0$. This motivates us to investigate the structure of θ -super positive graphs in this paper. Though a 0-super positive graph need not contain any cycle, we show that a θ -super positive graph with $\theta \neq 0$ must contain a cycle. We introduce two important types of θ -super positive graphs, namely θ -elementary and θ -base graphs. One of our main results is that any θ -super positive graph G can be constructed by adding certain type of edges to a disjoint union of θ -base graphs; moreover, these θ -base graphs are uniquely determined by G. We also give a characterization of θ -elementary graphs: a graph G is θ -elementary if and only if the set of all its θ -barrier sets form a partition of V(G). Here, θ -elementary graphs and θ -barrier sets can be regarded as θ -analogue of elementary graphs and Tutte sets in classical matching theory.

KEYWORDS: matching polynomial, Gallai-Edmonds decomposition, elementary graph, barrier sets, extreme sets

1 Introduction

We begin by introducing matching polynomials with an interest in the multiplicities of their roots. This will lead us to a recent extension of the celebrated Gallai-Edmonds Structure Theorem by Chen and Ku [1] which will be useful later in our study of θ -super positive graphs. This result has been instrumental in recent investigations of the subject, see [5, 6, 7, 8, 9, 10].

All the graphs in this paper are simple and finite. The vertex set and edge set of a graph G will be denoted by V(G) and E(G), respectively.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by p(G,r). We set p(G,0) = 1 and define the matching polynomial of G by

$$\mu(G, x) = \sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r p(G, r) x^{n-2r}$$

where n = |V(G)|. We denote the multiplicity of θ as a root of $\mu(G, x)$ by $\operatorname{mult}(\theta, G)$. Let $u \in V(G)$, the graph obtained from G by deleting the vertex u and all edges that contain u is denoted by $G \setminus u$. Inductively if $u_1, \ldots, u_k \in V(G)$, $G \setminus u_1 \cdots u_k = (G \setminus u_1 \cdots u_{k-1}) \setminus u_k$. Note that the order in which the vertices are being deleted is not important, that is, if i_1, \ldots, i_k is a permutation of $1, \ldots, k$, we have $G \setminus u_1 \cdots u_k = G \setminus u_{1_1} \cdots u_{i_k}$. Furthermore, if $X = \{u_1, \ldots, u_k\}$, we set $G \setminus X = G \setminus u_1 \cdots u_k$. If H is a subgraph of G, by an abuse of notation, we have $G \setminus H = G \setminus V(H)$. For example, if $p = v_1v_2 \ldots v_n$ is a path in G then $G \setminus p = G \setminus v_1v_2 \cdots v_n$. If e is an edge of G, let G - e denote the graph obtained from G by deleting the edge e from G. Inductively, if $e_1, \ldots, e_k \in E(G)$, $G - e_1 \cdots e_k = (G - e_1 \cdots e_{k-1}) - e_k$.

A graph G is said to have a *perfect matching* if it has an n/2-matching (n must be even). This is equivalent to mult(0, G) = 0, that is, 0 is not a root of $\mu(G, x)$. Recall that in the literature mult(0, G) is also known as the *deficiency* of G which is the number of vertices of G missed by some maximum matching.

The following are some basic properties of $\mu(G, x)$.

Theorem 1.2. [2, Theorem 1.1 on p. 2]

- (a) $\mu(G \cup H, x) = \mu(G, x)\mu(H, x)$ where G and H are disjoint graphs,
- (b) $\mu(G,x) = \mu(G-e,x) \mu(G \setminus uv,x)$ if e = (u,v) is an edge of G,
- (c) $\mu(G,x) = x\mu(G \setminus u,x) \sum_{i \sim u} \mu(G \setminus ui,x)$ where $i \sim u$ means i is adjacent to u,
- (d) $\frac{d}{dx}\mu(G,x) = \sum_{i \in V(G)} \mu(G \setminus i,x)$ where V(G) is the vertex set of G.

It is well known that all roots of $\mu(G, x)$ are real. Throughout, let θ be a real number. The multiplicity of a matching polynomial root satisfies the following interlacing property:

Lemma 1.3. [2, Corollary 1.3 on p. 97] (Interlacing) Let G be a graph and $u \in V(G)$. Let θ be a real number. Then

$$\operatorname{mult}(\theta, G) - 1 \le \operatorname{mult}(\theta, G \setminus u) \le \operatorname{mult}(\theta, G) + 1.$$

Lemma 1.3 suggests that given any real number θ , we can classify the vertices of a graph according to an increase of 1 or a decrease of 1 or no change in the multiplicity of θ upon deletion of a vertex.

Definition 1.4. [3, Section 3] For any $u \in V(G)$,

- (a) u is θ -essential if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G) 1$,
- (b) u is θ -neutral if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G)$,
- (c) u is θ -positive if $\operatorname{mult}(\theta, G \setminus u) = \operatorname{mult}(\theta, G) + 1$.

Furthermore, if u is not θ -essential but it is adjacent to some θ -essential vertex, we say u is θ -special.

It turns out that θ -special vertices play an important role in the Gallai-Edmonds Decomposition of a graph (see [1]). Godsil [3, Corollary 4.3] proved that a θ -special vertex must be θ -positive. Note that if $\operatorname{mult}(\theta, G) = 0$ then for any $u \in V(G)$, u is either θ -neutral or θ -positive and no vertices in G can be θ -special. Now V(G) can be partitioned into the following sets:

$$V(G) = D_{\theta}(G) \cup A_{\theta}(G) \cup P_{\theta}(G) \cup N_{\theta}(G),$$

where

- $D_{\theta}(G)$ is the set of all θ -essential vertices in G,
- $A_{\theta}(G)$ is the set of all θ -special vertices in G,
- $N_{\theta}(G)$ is the set of all θ -neutral vertices in G,
- $P_{\theta}(G) = Q_{\theta}(G) \setminus A_{\theta}(G)$, where $Q_{\theta}(G)$ is the set of all θ -positive vertices in G.

Note that there are no 0-neutral vertices. So $N_0(G) = \emptyset$ and $V(G) = D_0(G) \cup A_0(G) \cup P_0(G)$.

Definition 1.5. [3, Section 3] A graph G is said to be θ -critical if all vertices in G are θ -essential and $\text{mult}(\theta, G) = 1$.

The celebrated Gallai-Edmonds Structure Theorem describes the stability of a certain canonical decomposition of V(G) with respect to the zero root of $\mu(G, x)$. In [1], Chen and Ku extended the Gallai-Edmonds Structure Theorem to any root $\theta \neq 0$, which consists of the following two theorems:

Theorem 1.6. [1, Theorem 1.5] (θ -Stability Lemma) Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$ then

- (i) $D_{\theta}(G \setminus u) = D_{\theta}(G)$,
- (ii) $P_{\theta}(G \setminus u) = P_{\theta}(G)$,
- (iii) $N_{\theta}(G \setminus u) = N_{\theta}(G)$,
- (iv) $A_{\theta}(G \setminus u) = A_{\theta}(G) \setminus \{u\}.$

Theorem 1.7. [1, Theorem 1.7] (θ -Gallai's Lemma) If G is connected and every vertex of G is θ -essential then $\text{mult}(\theta, G) = 1$.

Theorem 1.6 asserts that the decomposition of V(G) into $D_{\theta}(G)$, $P_{\theta}(G)$, $N_{\theta}(G)$ and $A_{\theta}(G)$ is *stable* upon deleting a θ -special vertex of G. We may delete every such vertex one by one until there are no θ -special vertices left. Together with Theorem 1.7, it is not hard to deduce the following whose proof is omitted.

Corollary 1.8.

- (i) $A_{\theta}(G \setminus A_{\theta}(G)) = \emptyset$, $D_{\theta}(G \setminus A_{\theta}(G)) = D_{\theta}(G)$, $P_{\theta}(G \setminus A_{\theta}(G)) = P_{\theta}(G)$, and $N_{\theta}(G \setminus A_{\theta}(G)) = N_{\theta}(G)$.
- (ii) $G \setminus A_{\theta}(G)$ has exactly $|A_{\theta}(G)| + \text{mult}(\theta, G)$ θ -critical components.
- (iii) If H is a component of $G \setminus A_{\theta}(G)$ then either H is θ -critical or $\text{mult}(\theta, H) = 0$.
- (iv) The subgraph induced by $D_{\theta}(G)$ consists of all the θ -critical components in $G \setminus A_{\theta}(G)$.

This paper is devoted to the study of θ -super positive graphs. A graph is θ -super positive if θ is not a root of $\mu(G,x)$ but is a root of $\mu(G \setminus v,x)$ for every $v \in V(G)$. It is worth noting that G is 0-super positive if and only if G has a perfect matching. While much is known about graphs with a perfect matching, almost nothing is known about θ -super positive graphs for $\theta \neq 0$. This gives us a motivation to investigate the structure of these graphs.

The outline of this paper is as follows:

In Section 2, we show how to construct θ -super positive graphs from smaller θ -super positive graphs (see Theorem 2.2). We prove that a tree is θ -super positive if and only if $\theta = 0$ and it has a perfect matching (see Theorem 2.4). Consequently, a θ -super positive graph must contain a cycle when $\theta \neq 0$. For a connected vertex transitive graph G, we prove that it is θ -super positive for any root θ of $\mu(G \setminus v, x)$ where $v \in V(G)$ (see Theorem 2.8). Finally we prove that if G is θ -super positive, then $N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$ (see Theorem 2.9).

In Section 3, we introduce θ -elementary graphs. These are θ -super positive graphs with $P_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$. We prove a characterization of θ -elementary graphs: a graph G is θ -elementary if and only if the set of all θ -barrier sets form a partition of V(G) (see Theorem 3.13).

In Section 4, we apply our results in Section 3 to prove that an n-cycle C_n is 1-elementary if and only if n = 3k for some $k \in \mathbb{N}$ (see Theorem 4.4). Furthermore, we prove that C_{3k} has exactly 3 1-barrier sets (see Corollary 4.5).

In Section 5, we introduce θ -base graphs which can be regarded as building blocks of θ -super positive graphs. We prove a characterization of θ -super positive graphs, namely a θ -super positive graph can be constructed from a disjoint union of θ -base graphs by adding certain type of edges; moreover, these θ -base graphs are uniquely determined by G (see Theorem 5.7 and Corollary 5.9).

2 θ -super positive graphs

Definition 2.1. A graph G is θ -super positive if θ is not a root of $\mu(G, x)$ and every vertex of G is θ -positive.

By Lemma 1.3, this is equivalent to $\operatorname{mult}(\theta, G) = 0$ and $\operatorname{mult}(\theta, G \setminus v) = 1$ for all $v \in V(G)$. There are a lot of θ -super positive graphs. For instance the three cycle C_3 and the six cycle C_6 are 1-super positive. In the next theorem, we will show how to construct θ -super positive graphs from smaller θ -super positive graphs.

Theorem 2.2. Let G_1 and G_2 be two θ -super positive graphs and $v_i \in V(G_i)$ for i = 1, 2. Let G be the graph obtained by adding the edge (v_1, v_2) to the union of G_1 and G_2 . Then G is θ -super positive.

Proof. Let $e = (v_1, v_2)$. First we prove that $\mu(G, \theta) \neq 0$. By part (b) of Theorem 1.2, we have $\mu(G, x) = \mu(G - e, x) - \mu(G \setminus v_1 v_2, x)$. It then follows from part (a) of Theorem 1.2 that $\mu(G, x) = \mu(G_1, x)\mu(G_2, x) - \mu(G_1 \setminus v_1, x)\mu(G_2 \setminus v_2, x)$. Since G_1 and G_2 are θ -super positive, $\mu(G, \theta) = \mu(G_1, \theta)\mu(G_2, \theta) \neq 0$.

It is left to prove that $\mu(G \setminus v, \theta) = 0$ for all $v \in V(G)$. Let $v \in V(G_1)$. Suppose $v = v_1$. Then by part (a) of Theorem 1.2, $\mu(G \setminus v, x) = \mu(G_1 \setminus v_1, x)\mu(G_2, x)$, and

thus $\mu(G \setminus v, \theta) = 0$. Suppose $v \neq v_1$. By part (b) of Theorem 1.2, $\mu(G \setminus v, x) = \mu((G \setminus v) - e, x) - \mu((G \setminus v) \setminus v_1 v_2, x)$. Note that $(G \setminus v) - e = (G_1 \setminus v) \cup G_2$ and $(G \setminus v) \setminus v_1 v_2 = (G_1 \setminus v v_1) \cup (G_2 \setminus v_2)$. Hence $\mu(G \setminus v, \theta) = \mu(G_1 \setminus v, \theta) \mu(G_2, \theta) - \mu(G_1 \setminus v v_1, \theta) \mu(G_2 \setminus v_2, \theta) = 0$ (part (a) of Theorem 1.2).

The case $v \in V(G_2)$ is proved similarly.

The graph G in Figure 1 is constructed by using Theorem 2.2, with $G_1 = C_6$ and $G_2 = C_3$. Therefore it is 1-super positive graph.

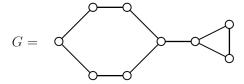


Figure 1.

It is clear that a 0-super positive need not contain any cycle. However, we will show later that if G is θ -super positive and $\theta \neq 0$, then it must contain a cycle (see Corollary 2.5). Note that any tree T with at least three vertices can be represented in the following form (see Figure 2), where u is a vertex with n+1 neighbors v_1, \ldots, v_{n+1} such that all of them except possibly v_1 have degree 1 and T_1 is a subtree of T that contains v_1 . Such a representation of T is denoted by $(T_1, u; v_1, \ldots, v_{n+1})$.

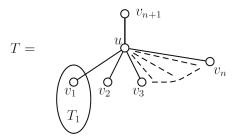


Figure 2.

Lemma 2.3. Let T be a tree with at least three vertices. Suppose T has a representation $(T_1, u; v_1, \ldots, v_{n+1})$. Then θ is a root of $\mu(T, x)$ if and only if

$$(n - \theta^2)\theta^{n-1}\mu(T_1, \theta) + \theta^n\mu(T_1 \setminus v_1, \theta) = 0.$$

Proof. By part (c) of Theorem 1.2, $\mu(T, \theta) = \theta \mu(T \setminus u, \theta) - \sum_{i=1}^{n+1} \mu(T \setminus uv_i, \theta)$ (see Figure 2), which implies (using part (a) of Theorem 1.2),

$$\mu(T,\theta) = (\theta^2 - n)\theta^{n-1}\mu(T_1,\theta) - \theta^n\mu(T_1 \setminus v_1,\theta).$$

Hence the lemma holds. \Box

Theorem 2.4. Let T be a tree. Then T is θ -super positive if and only if $\theta = 0$ and it has a perfect matching.

Proof. Suppose T is θ -super positive and $\theta \neq 0$. Then T must have at least three vertices. By Lemma 2.3,

$$(n - \theta^2)\theta^{n-1}\mu(T_1, \theta) + \theta^n\mu(T_1 \setminus v_1, \theta) \neq 0.$$

By part (a) of Theorem 1.2, $0 = \mu(T \setminus u, \theta) = \theta^n \mu(T_1, \theta)$ (see Figure 2). Therefore $\mu(T_1, \theta) = 0$ and $\mu(T_1 \setminus v_1, \theta) \neq 0$. Now $\mu(T \setminus v_{n+1}, \theta) = 0$. By part (c) of Theorem 1.2, $\mu(T \setminus v_{n+1}, \theta) = \theta \mu(T \setminus uv_{n+1}, \theta) - \sum_{i=1}^n \mu(T \setminus uv_i v_{n+1}, \theta) = \theta^n \mu(T_1, \theta) - (n-1)\theta^{n-2}\mu(T_1, \theta) - \theta^{n-1}\mu(T_1 \setminus v_1, \theta)$. This implies that $\mu(T_1 \setminus v_1, \theta) = 0$, a contradiction. Hence $\theta = 0$. Since 0 is not a root of $\mu(T, x)$, T must have a perfect matching.

The converse is obvious. \Box

A consequence of Theorem 2.4 is the following corollary.

Corollary 2.5. If G is θ -super positive for some $\theta \neq 0$, then G must contain a cycle.

We shall need the following lemmas.

Lemma 2.6. [4, Theorem 6.3] (Heilmann-Lieb Identity) Let $u, v \in V(G)$. Then

$$\mu(G \setminus u, x)\mu(G \setminus v, x) - \mu(G, x)\mu(G \setminus uv) = \sum_{p \in \mathcal{P}(u, v)} \mu(G \setminus p, x)^2,$$

where $\mathcal{P}(u,v)$ is the set of all the paths from u to v in G.

Lemma 2.7. [3, Lemma 3.1] Suppose $\operatorname{mult}(\theta, G) > 0$. Then G contains at least one θ -essential vertex.

Theorem 2.8. Let G be connected, vertex transitive and $z \in V(G)$. If θ is a root of $\mu(G \setminus z, x)$ then G is θ -super positive.

Proof. Since $G \setminus z$ is isomorphic to $G \setminus y$ for all $y \in V(G)$, $\mu(G \setminus z, x) = \mu(G \setminus y, x)$ for all $y \in V(G)$. So $\text{mult}(\theta, G \setminus z) = \text{mult}(\theta, G \setminus y)$. This implies that θ is a root of $\mu(G \setminus y, x)$ for all y.

Now it remains to show that $\mu(G, \theta) \neq 0$. Suppose the contrary. Then by Lemma 2.7, G has at least one θ -essential vertex. Since G is vertex transitive, all vertices in G are θ -essential. By Theorem 1.7, $\operatorname{mult}(\theta, G) = 1$. But then $\operatorname{mult}(\theta, G \setminus z) = 0$, a contradiction. Hence $\mu(G, \theta) \neq 0$ and G is θ -super positive.

However, a θ -super positive graph is not necessarily vertex transitive (see Figure 1). Furthermore a θ -super positive graph is not necessary connected, for the union of two C_3 is 1-super positive.

Theorem 2.9. Let G be θ -super positive. Then $N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$.

Proof. Suppose $N_{\theta}(G \setminus v) \neq \emptyset$ for some $v \in V(G)$. Let $u \in N_{\theta}(G \setminus v)$. By Lemma 2.6,

$$\mu(G \setminus u, x)\mu(G \setminus v, x) - \mu(G, x)\mu(G \setminus uv) = \sum_{p \in \mathcal{P}(u, v)} \mu(G \setminus p, x)^{2}.$$

Note that the multiplicity of θ as a root of $\mu(G \setminus u, x)\mu(G \setminus v, x)$ is 2, while the multiplicity of θ as a root of $\mu(G, x)\mu(G \setminus vu, x)$ is 1 since u is θ -neutral in $G \setminus v$. Therefore the multiplicity of θ as a root of the polynomial on the left-hand side of the equation is at least 1. But the multiplicity of θ as a root of the polynomial on the right-hand side of the equation is even and so, in comparison with the left-hand side, it must be at least 2. This forces the multiplicity of θ as a root of $\mu(G, x)\mu(G \setminus vu, x)$ to be at least 2, a contradiction. Hence $N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$.

Now we know that for a θ -super positive graph G, $N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$. So it is quite natural to ask whether $P_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$. Well, this is not true in general (see Figure 1). This motivates us to study the θ -super positive graph G, for which $P_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$. We proceed to do this in the next section.

3 θ -elementary graphs

Definition 3.1. A graph G is said to be θ -elementary if it is θ -super positive and $P_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$.

The graph G in Figure 3 is 1-elementary. Not every θ -positive graph is θ -elementary. For instance, the graph in Figure 1 is not 1-elementary.

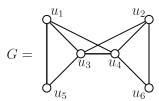


Figure 3.

Theorem 3.2. A graph G is θ -elementary if and only if $\operatorname{mult}(\theta, G) = 0$ and $P_{\theta}(G \setminus v) \cup N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$.

Proof. Suppose $\operatorname{mult}(\theta, G) = 0$ and $P_{\theta}(G \setminus v) \cup N_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$. For each $v \in V(G)$, $G \setminus v$ must consist entirely of θ -essential and θ -special vertices and must have at least one θ -essential vertex; therefore $\operatorname{mult}(\theta, G \setminus v) = 1$. Therefore G is θ -super positive and it is θ -elementary.

The other implication follows from Theorem 2.9.

It turns out that the notion of a 0-elementary graph coincide with the classical notion of an elementary graph. Properties of elementary graphs can be found in Section 5.1 on p. 145 of [11].

The number of θ -critical components in G is denoted by $c_{\theta}(G)$.

Definition 3.3. A θ -barrier set is defined to be a set $X \subseteq V(G)$ for which $c_{\theta}(G \setminus X) = \text{mult}(\theta, G) + |X|$.

A θ -extreme set in G is defined to be a set $X \subseteq V(G)$ for which $\operatorname{mult}(\theta, G \setminus X) = \operatorname{mult}(\theta, G) + |X|$.

 θ -barrier sets and θ -extreme sets can be regarded as θ -analogue of Tutte sets and extreme sets in classical matching theory. Properties of θ -barrier sets and θ -extreme sets have been studied by Ku and Wong [5]. In particular, the following results are needed.

Lemma 3.4. [5, Lemma 2.4] A subset of a θ -extreme set is a θ -extreme set.

Lemma 3.5. [5, Lemma 2.5] If X is a θ -barrier set in G and $Y \subseteq X$ then $X \setminus Y$ is a θ -barrier set in $G \setminus Y$.

Lemma 3.6. [5, Lemma 2.6] Every θ -extreme set in G lies in a θ -barrier set in G.

Lemma 3.7. [5, Lemma 2.7] Let X be a θ -barrier set in G. Then X is a θ -extreme set in G.

Lemma 3.8. [5, Lemma 3.1] If X is a θ -barrier set in G then $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.

Lemma 3.9. [5, Theorem 3.5] Let X be a θ -barrier set in G. Then $A_{\theta}(G) \subseteq X$.

Lemma 3.10. Let G be a graph. If X is a θ -barrier set in G, $x \in X$ and $P_{\theta}(G \setminus x) = \emptyset$, then $A_{\theta}(G \setminus x) = X \setminus \{x\}$.

Proof. By Lemma 3.5, $X \setminus \{x\}$ is a θ -barrier set in $G \setminus x$. By Lemma 3.8, $X \setminus \{x\} \subseteq A_{\theta}(G \setminus x) \cup P_{\theta}(G \setminus x)$. Therefore $X \setminus \{x\} \subseteq A_{\theta}(G \setminus x)$. It then follows from Lemma 3.9 that $A_{\theta}(G \setminus x) = X \setminus \{x\}$.

Definition 3.11. We define $\mathfrak{P}(\theta, G)$ to be the set of all the θ -barrier sets in G.

Note that in Figure 3, $\mathfrak{P}(1,G) = \{\{u_1\}, \{u_2\}, \{u_3, u_4\}, \{u_5\}, \{u_6\}\}\}$. Now Lemma 3.12 follows from part (c) of Theorem 1.2.

Lemma 3.12. Suppose G is θ -super positive. Then for each $v \in V(G)$ there is a $u \in V(G)$ with $(u, v) \in E(G)$ and $\text{mult}(\theta, G \setminus uv) = 0$.

Theorem 3.13. A graph G is θ -elementary if and only if $\mathfrak{P}(\theta,G)$ is a partition of V(G).

Proof. Let $\mathfrak{P}(\theta, G) = \{S_1, \dots, S_k\}.$

- (⇒) Suppose G is θ -elementary. Then for each $v \in V(G)$, $\{v\}$ is a θ -extreme set. By Lemma 3.6, it is contained in some θ -barrier set. Therefore $V(G) = S_1 \cup \cdots \cup S_k$. It remains to prove that $S_i \cap S_j = \emptyset$ for $i \neq j$. Suppose the contrary. Let $x \in S_i \cap S_j$. By Lemma 3.10, $S_i \setminus \{x\} = A_{\theta}(G \setminus x) = S_j \setminus \{x\}$ and so $S_i = S_j$, a contradiction. Hence $S_i \cap S_j = \emptyset$ for $i \neq j$ and $\mathfrak{P}(\theta, G)$ is a partition of V(G).
- (\Leftarrow) Suppose $\mathfrak{P}(\theta,G)$ is a partition of V(G). Let $v \in V(G)$. Then $v \in S_i$ for some θ -barrier set S_i . By Lemma 3.8, $v \in A_{\theta}(G) \cup P_{\theta}(G)$. Therefore $V(G) \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. This implies that $\operatorname{mult}(\theta,G)=0$, for otherwise $D_{\theta}(G)\neq\varnothing$ by Lemma 2.7. Hence $A_{\theta}(G)=\varnothing$ and $V(G)=P_{\theta}(G)$, i.e., G is θ -super positive. It remains to show that $P_{\theta}(G\setminus v)=\varnothing$ for all $v\in V(G)$. Suppose the contrary. Then $P_{\theta}(G\setminus v_0)\neq\varnothing$ for some $v_0\in V(G)$. We may assume $v_0\in S_1$. By Corollary 1.8, $(G\setminus v_0)\setminus A_{\theta}(G\setminus v_0)$ has a component H for which $\operatorname{mult}(\theta,H)=0$. By Theorem 2.9, $N_{\theta}(G\setminus v_0)=\varnothing$. So we conclude that H is θ -super positive. Let $w\in H$. By Lemma 3.12, there is a $z\in V(H)$ with $(w,z)\in E(H)$ and $\operatorname{mult}(\theta,H\setminus wz)=0$. By part (a) of Theorem 1.2, and, (ii) and (iii) of Corollary 1.8, $\operatorname{mult}(\theta,(G\setminus v_0)\setminus A_{\theta}(G\setminus v_0))\setminus wz)=1+|A_{\theta}(G\setminus v_0)|$.

On the other hand, by Lemma 3.5, $S_1 \setminus \{v_0\}$ is a θ -barrier set in $G \setminus v_0$. So by Lemma 3.9, $A_{\theta}(G \setminus v_0) \subseteq S_1 \setminus \{v_0\}$. By Lemma 3.5 again, $S_1 \setminus (\{v_0\} \cup A_{\theta}(G \setminus v_0))$ is a θ -barrier set in $(G \setminus v_0) \setminus A_{\theta}(G \setminus v_0)$. Note that w is θ -positive in $G \setminus v_0$ (by Corollary 1.8). Therefore $\{w, v_0\}$ is an θ -extreme set in G. By Lemma 3.6, $\{w, v_0\}$ is contained in some θ -barrier set in G. Since $\mathfrak{P}(\theta, G)$ is a partition of V(G) and $v_0 \in S_1$, we must have $\{w, v_0\} \subseteq S_1$. Note also z is θ -positive in $G \setminus v_0$ (recall that H is θ -super positive). Using a similar argument, we can show that $\{z, v_0\} \subseteq S_1$. By Lemma 3.4 and Lemma 3.7, we conclude that $\{w, z\} \subseteq S_1 \setminus (\{v_0\} \cup A_{\theta}(G \setminus v_0))$ is a θ -extreme set in $(G \setminus v_0) \setminus A_{\theta}(G \setminus v_0)$. This implies that $\text{mult}(\theta, ((G \setminus v_0) \setminus A_{\theta}(G \setminus v_0)) \setminus wz) = 3 + |A_{\theta}(G \setminus v_0)|$, contradicting the last sentence of the preceding paragraph. Hence $P_{\theta}(G \setminus v) = \emptyset$ for all $v \in V(G)$ and G is θ -elementary.

Lemma 3.14. Suppose G is θ -elementary. Then for each $\emptyset \neq X \subseteq S \in \mathfrak{P}(\theta, G)$, $A_{\theta}(G \setminus X) = S \setminus X$ and $P_{\theta}(G \setminus X) \cup N_{\theta}(G \setminus X) = \emptyset$.

Proof. Let $x \in X$. Then $P_{\theta}(G \setminus x) = \emptyset$. By Theorem 2.9, $N_{\theta}(G \setminus x) = \emptyset$. Now by Lemma 3.10, $S \setminus \{x\} = A_{\theta}(G \setminus x)$ so that $X \setminus \{x\} \subseteq S \setminus \{x\} = A_{\theta}(G \setminus x)$. By Theorem 1.6, we conclude that $A_{\theta}(G \setminus X) = S \setminus X$ and $P_{\theta}(G \setminus X) \cup N_{\theta}(G \setminus X) = \emptyset$.

Corollary 3.15. Suppose G is θ -elementary. Let $S \subseteq V(G)$. Then $S \in \mathfrak{P}(\theta, G)$ if and only if $G \setminus S$ has exactly |S| components and each is θ -critical.

Proof. Suppose $G \setminus S$ has exactly |S| components and each is θ -critical. Then $c_{\theta}(G \setminus S) = |S|$ and S is a θ -barrier set in G. Hence $S \in \mathfrak{P}(\theta, G)$.

The other implication follows from Lemma 3.14 and Corollary 1.8. \Box

4 1-elementary cycles

We shall need the following lemmas.

Lemma 4.1. [10, Corollary 4.4] Suppose G has a Hamiltonian path P and θ is a root of $\mu(G, x)$. Then every vertex of G which is not θ -essential must be θ -special.

Lemma 4.2. Let p_n be a path with $n \ge 1$ vertices. Then

$$\mu(p_n, 1) = \begin{cases} 1, & \text{if } n \equiv 0 \text{ or } 1 \mod 6; \\ -1, & \text{if } n \equiv 3 \text{ or } 4 \mod 6; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Note that for $t \geq 2$, $\mu(p_t, x) = x\mu(p_{t-1}, x) - \mu(p_{t-2}, x)$ (part (c) of Theorem 1.2), where we define $\mu(p_0, x) = 1$. Therefore $\mu(p_t, 1) = \mu(p_{t-1}, 1) - \mu(p_{t-2}, 1)$. Now $\mu(p_1, 1) = 1$. So, $\mu(p_2, 1) = 0$, and recursively we have $\mu(p_3, 1) = -1$, $\mu(p_4, 1) = -1$ and $\mu(p_5, 1) = 0$. By induction the lemma holds.

Lemma 4.3. Let C_n be a cycle with $n \geq 3$ vertices. Then

$$\mu(C_n, 1) = \begin{cases} 1, & \text{if } n \equiv 1 \text{ or } 5 \mod 6; \\ -1, & \text{if } n \equiv 2 \text{ or } 4 \mod 6; \\ 2, & \text{if } n \equiv 0 \mod 6; \\ -2, & \text{if } n \equiv 3 \mod 6. \end{cases}$$

Proof. By part (c) of Theorem 1.2, $\mu(C_n, 1) = \mu(p_{n-1}, 1) - 2\mu(p_{n-2}, 1)$. The lemma follows from Lemma 4.2.

Theorem 4.4. A cycle C_n is 1-elementary if and only if n = 3k for some $k \in \mathbb{N}$.

Proof. (\Rightarrow) Suppose C_n is 1-elementary. Then for any $v \in V(C_n)$, $C_n \setminus v = p_{n-1}$. By Lemma 4.2, mult $(1, p_{n-1}) > 0$ if and only if $n - 1 \equiv 2$ or 5 mod 6. Thus n = 3k for some $k \in \mathbb{N}$.

(\Leftarrow) Suppose n=3k for some $k\in\mathbb{N}$. By Lemma 4.3, $\operatorname{mult}(1,C_n)=0$. Note that $3k\equiv 3$ or 6 mod 6. Therefore $3k-1\equiv 2$ or 5 mod 6, and by Lemma 4.2 and Lemma 1.3, $\operatorname{mult}(1,C_n\setminus v)=\operatorname{mult}(1,p_{n-1})=1$ for all $v\in V(C_n)$. Thus C_n is 1-super positive. By Lemma 4.1, $P_1(C_n\setminus v)=\varnothing$ for all $v\in V(C_n)$. Hence C_n is 1-elementary.

For our next result, let us denote the vertices of C_{3k} by $1, 2, 3, \ldots, 3k$ (see Figure 4).

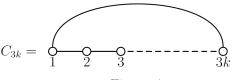


Figure 4.

Corollary 4.5. C_{3k} has exactly 3 1-barrier sets, that is

$$\mathfrak{P}(1, C_{3k}) = \{\{1, 4, 7, \dots, 3k - 2\}, \{2, 5, 8, \dots, 3k - 1\}, \{3, 6, 9, \dots, 3k\}\}.$$

Proof. Note that $C_{3k} \setminus \{1, 4, 7, ..., 3k - 2\}$ is a disjoint union of k number of K_2 and K_2 is 1-critical. So $\{1, 4, 7, ..., 3k - 2\}$ is a 1-barrier set. Similarly $\{2, 5, 8, ..., 3k - 1\}$ and $\{3, 6, 9, ..., 3k\}$ are 1-barrier sets. It then follows from Theorem 4.4 and Theorem 3.13 that these are the only 1-barrier sets.

5 Decomposition of θ -super positive graphs

Definition 5.1. A set $X \subseteq V(G)$ with |X| > 1 is said to be *independent* in G if for all $u, v \in X$, u and v are not adjacent to each other. A graph G is said to be θ -base if it is θ -super positive and for all $S \in \mathfrak{P}(\theta, G)$, S is independent.

Note that the cycle C_{3k} is θ -base for $\theta = 1$. In fact a connected θ -base graph is θ -elementary.

Theorem 5.2. A connected θ -base graph is θ -elementary.

Proof. Let G be θ -base. Suppose it is not θ -elementary. Then $P_{\theta}(G \setminus v) \neq \emptyset$ for some $v \in V(G)$. By Lemma 2.7, $G \setminus v$ has at least one θ -essential vertex. Moreover, by Theorem 2.9, $N_{\theta}(G \setminus v) = \emptyset$.

If v is not a cut vertex of G, then there exists a path from $P_{\theta}(G \setminus v)$ to $D_{\theta}(G \setminus v)$, which implies that $A_{\theta}(G \setminus v) \neq \emptyset$. By Theorem 2.9 and Corollary 1.8, $(G \setminus v) \setminus A_{\theta}(G \setminus v)$ has a θ -super positive component, say H. Since $G \setminus v$ is connected, there exists $h \in V(H)$ that is adjacent to some element $w \in A_{\theta}(G \setminus v)$. Note that $\{h, w, v\}$ is a θ -extreme set in G. By Lemma 3.4, $\{h, w\}$ is a θ -extreme set in G. By Lemma 3.6, $\{h, w\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent.

If v is a cut vertex of G, then either $G \setminus v$ does not have any θ -super positive components or $G \setminus v$ contains a θ -super positive component (recall that $N_{\theta}(G \setminus v) = \emptyset$). In the former, $G \setminus v$ must contain a component H such that $A_{\theta}(H) \neq \emptyset$ and $P_{\theta}(H) \neq \emptyset$. Since H is connected, there is a vertex $h \in P_{\theta}(H)$ that is joined to some vertex $w \in A_{\theta}(H)$. Note that $\{h, w, v\}$ is a θ -extreme set in G. By Lemma 3.4, $\{h, w\}$ is a θ -extreme set in G. By Lemma 3.6, $\{h, w\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent. In the latter, some vertex in the θ -super positive component, say u, must be joined to v so that $\{u, v\}$ is a θ -extreme set in G. Again, by Lemma 3.6, $\{u, v\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent.

Hence
$$P_{\theta}(G \setminus v) = \emptyset$$
 for all $v \in V(G)$ and G is θ -elementary.

Note that the converse of Theorem 5.2 is not true. Let G be the graph in Figure 3. Note that $\{u_3, u_4\} \in \mathfrak{P}(1, G)$ but it is not independent.

Lemma 5.3. Let G be θ -super positive and $e = (u, v) \in E(G)$ such that $\{u, v\}$ is a θ -extreme set in G. Let G' be the graph obtained by removing the edge e from G. Then G' is θ -super positive.

Proof. Now mult $(\theta, G \setminus uv) = 2$. By part (b) of Theorem 1.2, $\mu(G, x) = \mu(G', x) - \mu(G \setminus uv, x)$. This implies that $\mu(G', \theta) = \mu(G, \theta) \neq 0$.

It is left to show that $\mu(G' \setminus w, \theta) = 0$ for all $w \in V(G')$. Clearly if w = u or v then $\mu(G' \setminus w, \theta) = \mu(G \setminus w, \theta) = 0$. Suppose $w \neq u, v$. By part (b) of Theorem 1.2 again, $\mu(G \setminus w, x) = \mu(G' \setminus w, x) - \mu(G \setminus wuv, x)$. By Lemma 1.3, $\operatorname{mult}(\theta, G \setminus uvw) \geq 1$. Therefore $\mu(G' \setminus w, \theta) = \mu(G \setminus w, \theta) = 0$. Hence G' is θ -super positive.

Note that after removing an edge from G as in Lemma 5.3, $\mathfrak{P}(\theta, G') \neq \mathfrak{P}(\theta, G)$ in general. In Figure 5, $\mathfrak{P}(1, G) = \{\{1, 4, 7\}, \{5, 8\}, \{6, 9\}, \{2\}, \{3\}\}\}$. After removing the edge (1, 4) from G, the resulting graph $G' = C_9$. By Corollary 4.5, $\mathfrak{P}(1, G') = \{\{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}\}$.

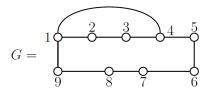


Figure 5.

We shall need the following lemma.

Lemma 5.4. [3, Corollary 2.5] For any root θ of $\mu(G, x)$ and a path p in G,

$$\operatorname{mult}(\theta, G \setminus p) \ge \operatorname{mult}(\theta, G) - 1.$$

Lemma 5.5. Let G be θ -super positive and $e_1 = (u, v) \in E(G)$ with $\{u, v\}$ is a θ -extreme set. Let $G' = G - e_1$ and $e_2 = (w, z) \in E(G')$. Then $\{w, z\}$ is a θ -extreme set in G' if and only if it is a θ -extreme set in G.

Proof. Case 1. Suppose e_1 and e_2 have a vertex in common, say w = u. Then $G' \setminus wz = G \setminus wz$.

- (\Rightarrow) Suppose $\{w, z\}$ is a θ-extreme set in G'. By Lemma 5.3, $\operatorname{mult}(\theta, G') = 0$. Therefore $\operatorname{mult}(\theta, G \setminus wz) = \operatorname{mult}(\theta, G' \setminus wz) = 2$ and $\{w, z\}$ is a θ-extreme set in G.
 - (\Leftarrow) The converse is proved similarly.

Case 2. Suppose e_1 and e_2 have no vertex in common. By part (b) of Theorem 1.2,

$$\mu(G \setminus wz, x) = \mu(G' \setminus wz, x) - \mu(G \setminus wzuv, x).$$

- (⇒) Suppose $\{w, z\}$ is a θ-extreme set in G'. Then $\operatorname{mult}(\theta, G' \setminus wz) = 2$. Now $\operatorname{mult}(\theta, G \setminus uv) = 2$ and by Lemma 5.4, $\operatorname{mult}(\theta, G \setminus uvwz) \geq 1$. So we conclude that $\operatorname{mult}(\theta, G \setminus wz) \geq 1$. On the other hand, $N_{\theta}(G \setminus w) = \emptyset$ (Theorem 2.9). Therefore either $\operatorname{mult}(\theta, G \setminus wz) = 0$ or 2. Hence the latter holds and $\{w, z\}$ is a θ-extreme set in G.
- (\Leftarrow) Suppose $\{w, z\}$ is a θ -extreme set in G. Then $\operatorname{mult}(\theta, G \setminus wz) = 2$. As before we have $\operatorname{mult}(\theta, G \setminus uvwz) \geq 1$. So we conclude that $\operatorname{mult}(\theta, G' \setminus wz) \geq 1$. On the other hand, by Lemma 5.3, G' is θ -super positive. Therefore $N_{\theta}(G' \setminus w) = \emptyset$ (Theorem 2.9), and then either $\operatorname{mult}(\theta, G' \setminus wz) = 0$ or 2. Hence the latter holds and $\{w, z\}$ is a θ -extreme set in G'.

Definition 5.6. Let G be θ -super positive. An edge $e = (u, v) \in E(G)$ is said to be θ -extreme in G if $\{u, v\}$ is a θ -extreme set.

The process described in Lemma 5.3, can be iterated. Let $Y_0 = \{e_1, e_2, \ldots, e_k\} \subseteq E(G)$ be the set of all θ -extreme edges. Let $G_1 = G - e_1$. Then G_1 is θ -super positive (Lemma 5.3). Let Y_1 be the set of all θ -extreme edges in G_1 . Then by Lemma 5.5, $Y_1 = Y_0 \setminus \{e_1\}$. Now let $G_2 = G_1 - e_2$. By applying Lemma 5.3 and Lemma 5.5, we see that G_2 is θ -super positive and the set of all θ -extreme edges in G_2 is $Y_2 = Y_0 \setminus \{e_1, e_2\}$. By continuing this process, after k steps, we see that $G_k = G - e_1e_2 \ldots e_k$ is θ -super positive and the set of all θ -extreme edges in G_k is $Y_k = \emptyset$. We claim that G_k is a disjoint union of θ -base graphs. Suppose the contrary. Let H be a component of G_k that is not θ -base. Since G_k is θ -super positive, by part (a) of Theorem 1.2, we deduce that H is θ -super positive. Therefore there is a $S \in \mathfrak{P}(\theta, H)$ for which S is not independent. Let $e = (u, v) \in E(H)$ with $\{u, v\} \subseteq S$. By Lemma 3.7 and Lemma 3.4, $\{u, v\}$ is a θ -extreme set in H. This means that e is θ -extreme in H, and by part (a) of Theorem 1.2, e is θ -extreme in G_k , contrary to the fact that $Y_k = \emptyset$. Hence H is θ -base and we have proved the following theorem.

Theorem 5.7. Let G be θ -super positive. Then G can be decomposed into a disjoint union of θ -base graphs by deleting its θ -extreme edges. Furthermore, the decomposition is unique, i.e. the θ -base graphs are uniquely determined by G.

The proof of the next lemma is similar to Lemma 5.3, and is thus omitted.

Lemma 5.8. Let G be θ -super positive and $\{u, v\}$ is a θ -extreme set with $e = (u, v) \notin E(G)$. Let G' be the graph obtained by adding the edge e to G. Then G' is θ -super positive.

Using the process described in Lemma 5.8, we can construct θ -super positive graph from θ -base graphs. Together with Theorem 5.7, we see that every θ -super positive can be constructed from θ -base graphs.

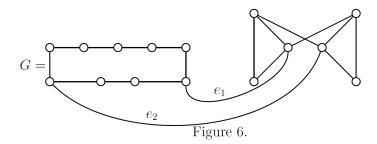
Corollary 5.9. A graph is θ -super positive if and only if it can be constructed from θ -base graphs.

In the next theorem, we shall extend Theorem 2.2.

Theorem 5.10. Let G_1 and G_2 be two θ -super positive graphs and $S_i \in \mathfrak{P}(\theta, G_i)$ for i = 1, 2. Let G be the graph obtained by adding the edges e_1, e_2, \ldots, e_m to the union of G_1 and G_2 , where each e_j contains a point in S_1 and S_2 . Then G is θ -super positive.

Proof. We shall prove by induction on m. If m=1, we are done by Theorem 2.2. Suppose $m \geq 2$. Assume that it is true for m-1. Let G' be the graph obtained by adding the edges $e_1, e_2, \ldots, e_{m-1}$ to the union of G_1 and G_2 . By induction G' is θ -super positive. Let $e_m = (v_1, v_2)$ where $v_i \in S_i$. Note that the number of θ -critical components in $G' \setminus (S_1 \cup S_2)$ is $c_{\theta}(G' \setminus (S_1 \cup S_2)) = c_{\theta}(G_1 \setminus S_1) + c_{\theta}(G_2 \setminus S_2) = |S_1| + |S_2|$. So $S_1 \cup S_2$ is a θ -barrier set in G'. By Lemma 3.7 and Lemma 3.4, $\{v_1, v_2\}$ is a θ -extreme set in G'. Therefore by Lemma 5.8, G is θ -super positive.

In Figure 6, the graph G is obtained from two 1-base graphs by adding edges e_1 and e_2 .



Acknowledgment

We would like to thank the anonymous referee for the comments that helped us make several improvements to this paper.

References

- [1] W. Chen and C. Y. Ku, An analogue of the Gallai-Edmonds structure theorem for nonzero roots of the matching polynomial, *Journal of Combinatorial Theory Series B* **100** (2010), 119–127.
- [2] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York (1993).
- [3] C. D. Godsil, Algebraic matching theory, The Electronic Journal of Combinatorics 2 (1995), # R8.

- [4] O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer system, *Commun. Math. Physics* **25** (1972), 190–232.
- [5] C. Y. Ku and K. B. Wong, Extensions of barrier sets to nonzero roots of the matching polynomial, *Discrete Mathematics* **310** (2010), 3544–3550.
- [6] C. Y. Ku and K. B. Wong, Gallai-Edmonds structure theorem for weighted matching polynomial, available at http://arxiv.org/abs/1006.1028.
- [7] C. Y. Ku and K. B. Wong, Generalized D-graphs for nonzero roots of the matching polynomial, *Discrete Mathematics* **311** (2011), 2174–2186.
- [8] C. Y. Ku and K. B. Wong, Generalizing Tutte's theorem and saturated non-factorizable graphs, submitted.
- [9] C. Y. Ku and K. B. Wong, Maximum multiplicity of a root of the matching polynomial of a tree and minimum path cover, *The Electronic Journal of Combinatorics* **16** (2009), #R81.
- [10] C. Y. Ku and K. B. Wong, Maximum multiplicity of matching polynomial roots and minimum path cover in general graph, *The Electronic Journal of Combinatorics* **18** (2011), #P38.
- [11] L. Lovász and M. D. Plummer, *Matching Theory*, Elsevier Science Publishers, Budapest (1986).