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Abstract

Let the matching polynomial of a graph G be denoted by u(G,z). A graph G is
said to be f-super positive if u(G,0) # 0 and p(G \ v,60) = 0 for all v € V(G).
In particular, G is O-super positive if and only if G has a perfect matching. While
much is known about O-super positive graphs, almost nothing is known about 6-
super positive graphs for § # 0. This motivates us to investigate the structure of
f-super positive graphs in this paper. Though a O-super positive graph need not
contain any cycle, we show that a #-super positive graph with 6 # 0 must contain
a cycle. We introduce two important types of #-super positive graphs, namely 6-
elementary and #-base graphs. One of our main results is that any #-super positive
graph G can be constructed by adding certain type of edges to a disjoint union of
f-base graphs; moreover, these #-base graphs are uniquely determined by G. We
also give a characterization of #-elementary graphs: a graph G is #-elementary if and
only if the set of all its #-barrier sets form a partition of V(G). Here, f-elementary
graphs and 6-barrier sets can be regarded as #-analogue of elementary graphs and
Tutte sets in classical matching theory.

KEYWORDS: matching polynomial, Gallai-Edmonds decomposition, elementary graph,
barrier sets, extreme sets

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P37 1



1 Introduction

We begin by introducing matching polynomials with an interest in the multiplicities of
their roots. This will lead us to a recent extension of the celebrated Gallai-Edmonds
Strcuture Theorem by Chen and Ku [1] which will be useful later in our study of #-super
positive graphs. This result has been instrumental in recent investigations of the subject,
see [5, 6, 7, 8, 9, 10].

All the graphs in this paper are simple and finite. The vertex set and edge set of a
graph G will be denoted by V(G) and E(G), respectively.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a
vertex in common. The number of r-matchings in G will be denoted by p(G,r). We set
p(G,0) =1 and define the matching polynomial of G by

|n/2]
M(G’ :L‘) = Z (_l)rp(G7 r)$n_2r

r=0
where n = |V(G)|. We denote the multiplicity of 6 as a root of u(G, z) by mult(, G). Let
u € V(G), the graph obtained from G by deleting the vertex u and all edges that contain
w is denoted by G\ w. Inductively if uy, ..., ux € V(GQ), G\uy -+ ur, = (G\uq - - - up_1) \ t.
Note that the order in which the vertices are being deleted is not important, that is, if
i1, ...,0 is a permutation of 1,..., k, we have G\ uy - - - ux = G\ uq, - - - u;,. Furthermore,
if X = {uy,...,ux}, weset G\ X = G\ uy---up. If His a subgraph of G, by an
abuse of notation, we have G\ H = G \ V(H). For example, if p = vjvy...v, is a
path in G then G\ p = G \ vyvy---v,. If e is an edge of G, let G — e denote the
graph obtained from G by deleting the edge e from G. Inductively, if eq,...,ex € E(G),
G—e1-ep=(G—ey--ep_1)— €.

A graph G is said to have a perfect matching if it has an n/2-matching (n must be
even). This is equivalent to mult(0, G) = 0, that is, 0 is not a root of u(G, x). Recall that
in the literature mult(0, G) is also known as the deficiency of G which is the number of
vertices of G missed by some maximum matching.

The following are some basic properties of u(G, x).
Theorem 1.2. [2, Theorem 1.1 on p. 2]
(a) n(GUH,z) = (G, z)u(H, x) where G and H are disjoint graphs,
(b)) WG, z) = u(G—e,x) — u(G\ uv,z) if e = (u,v) is an edge of G,

(c) W(G,z) =axp(G\u,x) = >, , WG\ ui,z) where i ~u means i is adjacent to u,

(d) %M(G,x) = Z w(G\ i, z) where V(QG) is the vertex set of G.
iev(G)
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It is well known that all roots of u(G, z) are real. Throughout, let 6 be a real number.
The multiplicity of a matching polynomial root satisfies the the following interlacing

property:

Lemma 1.3. [2, Corollary 1.3 on p. 97] (Interlacing) Let G be a graph and v € V(G).
Let 0 be a real number. Then

mult(f,G) — 1 < mult(d, G \ u) < mult(d, G) + 1.

Lemma 1.3 suggests that given any real number 6, we can classify the vertices of a
graph according to an increase of 1 or a decrease of 1 or no change in the multiplicity of
0 upon deletion of a vertex.

Definition 1.4. [3, Section 3] For any u € V(G),
(a) wis f-essential if mult(d, G \ u) = mult(d, G) — 1,
(b) w is O-neutral if mult(d, G\ u) = mult(d, G),
(c) w is B-positive if mult(f, G \ u) = mult(d, G) + 1.

Furthermore, if u is not #-essential but it is adjacent to some #-essential vertex, we say u
is #-special.

It turns out that f-special vertices play an important role in the Gallai-Edmonds
Decomposition of a graph (see [1]). Godsil [3, Corollary 4.3] proved that a 6-special
vertex must be @-positive. Note that if mult(f,G) = 0 then for any u € V(G), u is
either #-neutral or #-positive and no vertices in G can be @-special. Now V(G) can be
partitioned into the following sets:

VI(G) = Dy(G) U Ag(G) U Py(G) U No(G),
where
Dy(G) is the set of all #-essential vertices in G,
Ay(G) is the set of all §-special vertices in G,
Ny(G) is the set of all #-neutral vertices in G,
Py(G) = Qp(G) \ Ap(G), where Qy(G) is the set of all f-positive vertices in G.

Note that there are no 0-neutral vertices. So No(G) = @ and V(G) = Dy(G) U Ap(G) U
Py(G).
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Definition 1.5. [3, Section 3] A graph G is said to be f-critical if all vertices in G are
f-essential and mult(d, G) = 1.

The celebrated Gallai-Edmonds Structure Theorem describes the stability of a certain
canonical decomposition of V' (G) with respect to the zero root of (G, x). In [1], Chen and
Ku extended the Gallai-Edmonds Structure Theorem to any root 6 # 0, which consists
of the following two theorems:

Theorem 1.6. [1, Theorem 1.5] (f-Stability Lemma) Let G be a graph with 6 a root of
w(G,z). If u € Ag(G) then

(1) Do(G \ u) = Dy(G),
(i) Fo(G\ u) = Py(G),
(1ir) No(G\ u) = No(G),
(i) Ag(G\ u) = Ap(G) \ {u}.

Theorem 1.7. [1, Theorem 1.7] (6-Gallai’s Lemma) If G is connected and every vertex
of G is 8-essential then mult(d, G) = 1.

Theorem 1.6 asserts that the decomposition of V(G) into Dy(G), Py(G), Ng(G) and
Ay(Q) is stable upon deleting a f-special vertex of G. We may delete every such vertex
one by one until there are no 6-special vertices left. Together with Theorem 1.7, it is not
hard to deduce the following whose proof is omitted.

Corollary 1.8.

(i) Ap(G\ Ag(G)) = @, Do(G\ Ag(G)) = Do(G), Py(G\ Ag(G)) = Pp(G), and No(G \
Ap(G)) = No(G).

(1)) G\ Ap(G) has exactly |Ap(G)| + mult(0, G) 0-critical components.
(1i) If H is a component of G\ Ag(G) then either H is 0-critical or mult(0, H) = 0.
(iv) The subgraph induced by Dy(G) consists of all the 0-critical components in G\ Ag(G).

This paper is devoted to the study of f-super positive graphs. A graph is #-super
positive if € is not a root of u(G,z) but is a root of u(G \ v, z) for every v € V(G). It is
worth noting that G is 0-super positive if and only if G has a perfect matching. While
much is known about graphs with a perfect matching, almost nothing is known about
f-super positive graphs for # # 0. This gives us a motivation to investigate the structure
of these graphs.

The outline of this paper is as follows:
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In Section 2, we show how to construct #-super positive graphs from smaller #-super
positive graphs (see Theorem 2.2). We prove that a tree is f-super positive if and only if
0 = 0 and it has a perfect matching (see Theorem 2.4). Consequently, a #-super positive
graph must contain a cycle when 6 # 0. For a connected vertex transitive graph G, we
prove that it is f-super positive for any root 6 of u(G\ v, z) where v € V(G) (see Theorem
2.8). Finally we prove that if G is f-super positive, then Ny(G \ v) = @ for all v € V(G)
(see Theorem 2.9).

In Section 3, we introduce #-elementary graphs. These are #-super positive graphs
with Py(G\v) = () for all v € V(G). We prove a characterization of f-elementary graphs:
a graph G is f-elementary if and only if the set of all #-barrier sets form a partition of
V(G) (see Theorem 3.13).

In Section 4, we apply our results in Section 3 to prove that an n-cycle C, is 1-
elementary if and only if n = 3k for some k € N (see Theorem 4.4). Furthermore, we
prove that Cs has exactly 3 1-barrier sets (see Corollary 4.5).

In Section 5, we introduce #-base graphs which can be regarded as building blocks of
f-super positive graphs. We prove a characterization of #-super positive graphs, namely
a f-super positive graph can be constructed from a disjoint union of #-base graphs by
adding certain type of edges; moreover, these #-base graphs are uniquely determined by
G (see Theorem 5.7 and Corollary 5.9).

2 f-super positive graphs

Definition 2.1. A graph G is 0-super positive if 6 is not a root of u(G,z) and every
vertex of GG is #-positive.

By Lemma 1.3, this is equivalent to mult(f,G) = 0 and mult(6,G \ v) = 1 for all
v € V(G). There are a lot of #-super positive graphs. For instance the three cycle C'3 and
the six cycle Cs are 1-super positive. In the next theorem, we will show how to construct
f-super positive graphs from smaller #-super positive graphs.

Theorem 2.2. Let Gy and Gy be two 0-super positive graphs and v; € V(G;) fori=1,2.
Let G be the graph obtained by adding the edge (v1,v9) to the union of Gy and Gy. Then
G is 0-super positive.

Proof. Let e = (vq,v2). First we prove that u(G,0) # 0. By part (b) of Theorem 1.2, we
have u(G,z) = p(G — e, x) — (G \ v1v9, ). It then follows from part (a) of Theorem 1.2
that u(G,z) = u(Gy, ) u(Ga, x) — p(Gh \ vi, ) pu(Ga \ v2, ). Since G and G are §-super
positive, (G, 0) = u(Gy, 0)u(G2,6) # 0.

It is left to prove that pu(G \ v,0) = 0 for all v € V(G). Let v € V(G;). Suppose
v = v1. Then by part (a) of Theorem 1.2, u(G \ v,z) = pu(Gy \ v1,2)u(Ge,x), and
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thus u(G \ v,0) = 0. Suppose v # v;. By part (b) of Theorem 1.2, u(G \ v,x) =
uw((G\v)—e, z)—p((G\v)\vive, ). Note that (G\v)—e = (G1\v)UGs and (G\v)\v1vs =
(G1\vv1)U(G2\vg). Hence pu(G\v,0) = (G \v, 0)u(Ga, 0) — u(G1 \vvr, 0) (G \va, 0) = 0
(part (a) of Theorem 1.2).

The case v € V(G3) is proved similarly. O

The graph G in Figure 1 is constructed by using Theorem 2.2, with G; = Cj and
G5 = (3. Therefore it is 1-super positive graph.

Figure 1.

It is clear that a O-super positive need not contain any cycle. However, we will show
later that if G is f-super positive and 6 # 0, then it must contain a cycle (see Corollary
2.5). Note that any tree T" with at least three vertices can be represented in the following
form (see Figure 2), where u is a vertex with n+ 1 neighbors vy, ..., v,41 such that all of
them except possibly v; have degree 1 and T} is a subtree of T' that contains v;. Such a
representation of 7' is denoted by (T, w; v, ..., Vpt1).

Figure 2.

Lemma 2.3. Let T be a tree with at least three vertices. Suppose T has a representation
(T, u;v1,. .., Vn11). Then 6 is a root of w(T, x) if and only if

(n — 020" (T, 0) + 0" u(Ty \ v1,0) = 0.

Proof. By part (c) of Theorem 1.2, (T, 6) = Opu(T \ u,0) — S0 (T \ uvy, 0) (see Figure
2), which implies (using part (a) of Theorem 1.2),

W(T,0) = (0 = n)0" ' 1(Th, 0) — 0" u(Th \ vy, 0).

Hence the lemma holds. [
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Theorem 2.4. Let T be a tree. Then T s 0-super positive if and only if 6 = 0 and it has
a perfect matching.

Proof. Suppose T is 6-super positive and 6 # 0. Then T must have at least three vertices.
By Lemma 2.3,
(n — 020" (T, 0) + 0" u(Ty \ vy, 0) # 0.

By part (a) of Theorem 1.2, 0 = pu(T \ u,0) = 0"u(T1,60) (see Figure 2). Therefore
w(Ty,0) =0 and (77 \ vy, 0) # 0. Now pu(T\ vn41,60) = 0. By part (c) of of Theorem 1.2,
M(T\vn+17 8) = ON(T\UUH-FD 0) _Z?:l M(T\uvivwﬁ-l? 9) = Hn:l/“(Tlv 0)_(71_1)0”72”(1—‘17 9)_
0" 1 (Ty \ vy, 0). This implies that p(T} \ vi,0) = 0, a contradiction. Hence § = 0. Since
0 is not a root of u(7,x), T must have a perfect matching,.

The converse is obvious. [

A consequence of Theorem 2.4 is the following corollary.
Corollary 2.5. If G is 0-super positive for some 6 # 0, then G must contain a cycle.
We shall need the following lemmas.

Lemma 2.6. [4, Theorem 6.3](Heilmann-Lieb Identity) Let u,v € V(G). Then

p(G\ w, ) (G \ v, ) — (G a)u(G\ww) = Y (G \ p,x)?,

pEP (u,v)
where P(u,v) is the set of all the paths from u to v in G.

Lemma 2.7. [3, Lemma 3.1] Suppose mult(0,G) > 0. Then G contains at least one
0-essential verter.

Theorem 2.8. Let G be connected, vertex transitive and z € V(G). If 0 is a root of
w(G\ z,x) then G is 0-super positive.

Proof. Since G\ z is isomorphic to G\ y for all y € V(G), p(G\ z,2) = u(G \ y, x) for all
y € V(G). Somult(d,G \ z) = mult(f, G \ y). This implies that 6 is a root of u(G \ y, x)
for all y.

Now it remains to show that u(G,0) # 0. Suppose the contrary. Then by Lemma 2.7,
G has at least one f-essential vertex. Since G is vertex transitive, all vertices in G are
O-essential. By Theorem 1.7, mult(6, G) = 1. But then mult(6, G\ z) = 0, a contradiction.
Hence u(G,0) # 0 and G is f-super positive. ]

However, a 6-super positive graph is not necessarily vertex transitive (see Figure 1).
Furthermore a 6-super positive graph is not necessary connected, for the union of two C;
is 1-super positive.
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Theorem 2.9. Let G be 6-super positive. Then No(G\ v) =@ for allv € V(G).
Proof. Suppose Ny(G \ v) # @ for some v € V(G). Let u € Ny(G \ v). By Lemma 2.6,

G\, 2)u(G\ v,2) — p(Go)(G \uw) = D u(G\p,x)*.
pEP(u,v)
Note that the multiplicity of 8 as a root of u(G\ u, z)u(G\ v, x) is 2, while the multiplicity
of 8 as a root of u(G,z)u(G \ vu,z) is 1 since u is f-neutral in G \ v. Therefore the
multiplicity of 8 as a root of the polynomial on the left-hand side of the equation is at
least 1. But the multiplicity of 8 as a root of the polynomial on the right-hand side of
the equation is even and so, in comparison with the left-hand side, it must be at least
2. This forces the multiplicity of 6 as a root of u(G,x)u(G \ vu,x) to be at least 2, a
contradiction. Hence Ny(G \ v) = @ for all v € V(G). O

Now we know that for a #-super positive graph G, Ny(G \ v) = @ for all v € V(G).
So it is quite natural to ask whether Pp(G \ v) = @ for all v € V(G). Well, this is not
true in general (see Figure 1). This motivates us to study the #-super positive graph G,
for which Py(G \ v) = @ for all v € V(G). We proceed to do this in the next section.

3 fO-elementary graphs

Definition 3.1. A graph G is said to be #-elementary if it is -super positive and Py(G '\
v) = @ for all v € V(G).

The graph G in Figure 3 is 1-elementary. Not every #-positive graph is #-elementary.
For instance, the graph in Figure 1 is not 1-elementary.

U1 (5

Us Ue

Figure 3.

Theorem 3.2. A graph G is 0-elementary if and only if mult(0, G) = 0 and Py(G \ v) U
No(G\v) =@ forallv e V(G).

Proof. Suppose mult(6,G) = 0 and Fp(G \ v) U Ny(G \ v) = @ for all v € V(G). For
each v € V(G), G \ v must consist entirely of f-essential and #-special vertices and must
have at least one f-essential vertex; therefore mult(f, G \ v) = 1. Therefore G is #-super

positive and it is f-elementary.
The other implication follows from Theorem 2.9. O
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It turns out that the notion of a 0-elementary graph coincide with the classical notion
of an elementary graph. Properties of elementary graphs can be found in Section 5.1 on
p. 145 of [11].

The number of #-critical components in G is denoted by ¢y(G).

Definition 3.3. A 6-barrier set is defined to be a set X C V(G) for which ¢y(G \ X) =
mult(d, G) + | X].

A f-extreme set in G is defined to be a set X C V(G) for which mult(d,G \ X) =
mult(d, G) + | X|.

f-barrier sets and f-extreme sets can be regarded as #-analogue of Tutte sets and
extreme sets in classical matching theory. Properties of #-barrier sets and #-extreme sets
have been studied by Ku and Wong [5]. In particular, the following results are needed.

Lemma 3.4. [5, Lemma 2.4] A subset of a 0-extreme set is a 0-extreme set.

Lemma 3.5. [5, Lemma 2.5] If X is a 0-barrier set in G and Y C X then X \Y is a
0-barrier set in G \'Y.

Lemma 3.6. [5, Lemma 2.6] Fvery 0-extreme set in G lies in a 0-barrier set in G.

Lemma 3.7. [5, Lemma 2.7] Let X be a -barrier set in G. Then X is a §-extreme set
in G.

Lemma 3.8. [5, Lemma 3.1] If X is a 0-barrier set in G then X C Ayp(G) U Py(G).
Lemma 3.9. [5, Theorem 3.5] Let X be a 0-barrier set in G. Then Ap(G) C X.

Lemma 3.10. Let G be a graph. If X is a 0-barrier set in G, x € X and Pp(G\ z) = &,
then Ap(G\ z) = X \ {z}.

Proof. By Lemma 3.5, X \ {z} is a @-barrier set in G \ . By Lemma 3.8, X \ {z} C
Ag(G\ z) U Py(G \ ). Therefore X \ {z} C Ap(G \ x). It then follows from Lemma 3.9
that Ap(G\ z) = X \ {z}. O

Definition 3.11. We define B(0, G) to be the set of all the f-barrier sets in G.

Note that in Figure 3, P(1,G) = {{u1}, {ua}, {us, us},{us}, {ug}}. Now Lemma 3.12
follows from part (c) of Theorem 1.2.

Lemma 3.12. Suppose G is 0-super positive. Then for eachv € V(QG) there is au € V(Q)
with (u,v) € E(G) and mult(,G \ uwv) = 0.

Theorem 3.13. A graph G is 0-elementary if and only if B(0, G) is a partition of V(G).
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Proof. Let B(0,G) = {S4,..., Sk}

(=) Suppose G is f-elementary. Then for each v € V(G), {v} is a f-extreme set. By
Lemma 3.6, it is contained in some 6-barrier set. Therefore V(G) = S; U --- U Sg. It
remains to prove that S; NS; = @ for i # j. Suppose the contrary. Let z € S; N .S;. By
Lemma 3.10, S; \ {z} = Ag(G \ z) = S; \ {z} and so S; = S;, a contradiction. Hence
SiNS; = o for i # j and P(0, G) is a partition of V(G).

(<) Suppose P(0,G) is a partition of V(G). Let v € V(G). Then v € S; for some 6-
barrier set S;. By Lemma 3.8, v € Ap(G)UPy(G). Therefore V(G) C Ap(G)U Py(G). This
implies that mult(f, G) = 0, for otherwise Dy(G) # @ by Lemma 2.7. Hence Ay(G) = @
and V(G) = Py(G), i.e., G is f-super positive. It remains to show that Py(G \ v) = @ for
all v € V(G). Suppose the contrary. Then Py(G \ vy) # @ for some vy € V(G). We may
assume vy € S;. By Corollary 1.8, (G'\ vp) \ Ag(G \ v9) has a component H for which
mult(f, H) = 0. By Theorem 2.9, Np(G \ v9) = &. So we conclude that H is f-super
positive. Let w € H. By Lemma 3.12, there is a z € V(H) with (w,z) € E(H) and
mult(d, H \ wz) = 0. By part (a) of Theorem 1.2, and, (ii) and (iii) of Corollary 1.8,
mult(6, (G \ vo) \ Ag(G \ o)) \ wz) =1+ |Ag(G \ vo)|.

On the other hand, by Lemma 3.5, S; \ {vg} is a @-barrier set in G \ vg. So by Lemma
3.9, Ag(G\vy) C S1\{vo}. By Lemma 3.5 again, S\ ({vo} U Ag(G\ vp)) is a f-barrier set
in (G \ vo) \ Ao(G \ v9). Note that w is f-positive in G \ vy (by Corollary 1.8). Therefore
{w, v} is an f-extreme set in G. By Lemma 3.6, {w, vy} is contained in some #-barrier
set in G. Since P(0, G) is a partition of V(G) and vy € S1, we must have {w, v} C 5.
Note also z is f-positive in G \ vy (recall that H is @-super positive). Using a similar
argument, we can show that {z,uv9} € S;. By Lemma 3.4 and Lemma 3.7, we conclude
that {w,z} € S1\ ({vo} U Ag(G \ vp)) is a f-extreme set in (G \ vg) \ Ag(G \ vp). This
implies that mult(0, (G \ vo) \ Ae(G \ vp)) \ wz) = 34 |A(G \ vp)|, contradicting the last
sentence of the preceding paragraph. Hence Py(G \ v) = @ for all v € V(G) and G is
f-elementary. O

Lemma 3.14. Suppose G is O-elementary. Then for each @ # X C S € B(0,G),
Ag(G\ X) =S\ X and Py(G\ X)UNy(G\ X) = @.

Proof. Let x € X. Then Py(G\z) = @. By Theorem 2.9, Ny(G\z) = @. Now by Lemma
3.10, S\ {z} = Ap(G \ x) so that X \ {z} C S\ {2} = Ay(G \ z). By Theorem 1.6, we
conclude that Ap(G\ X) =5\ X and P(G\ X)UNy(G\ X) = @. O

Corollary 3.15. Suppose G is 0-elementary. Let S C V(G). Then S € P(0,G) if and
only if G\ S has exactly |S| components and each is 0-critical.

Proof. Suppose G\ S has exactly |S| components and each is #-critical. Then ¢y(G\ S) =
|S| and S is a #-barrier set in G. Hence S € B(0, G).
The other implication follows from Lemma 3.14 and Corollary 1.8. O]
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4 1l-elementary cycles

We shall need the following lemmas.

Lemma 4.1. [10, Corollary 4.4] Suppose G has a Hamiltonian path P and 0 is a root of
w(G, ). Then every vertex of G which is not 0-essential must be 0-special.

Lemma 4.2. Let p, be a path with n > 1 vertices. Then
1, ifn=0or1 mod 6;
pw(pn,1) =49 -1, ifn=3o0r4 mod 6;
0, otherwise.
Proof. Note that for t > 2, u(pi,x) = xp(pi—1,z) — u(pi—a, ) (part (c) of Theorem
1.2), where we define p(pg,z) = 1. Therefore u(p;, 1) = p(pi—1,1) — p(pi—2,1). Now

w(p1,1) = 1. So, u(p2, 1) = 0, and recursively we have pu(ps, 1) = —1, u(ps, 1) = —1 and
w(ps, 1) = 0. By induction the lemma holds. O

Lemma 4.3. Let C,, be a cycle with n > 3 vertices. Then
1, ifn=1orb5 mod 6;
—1, ifn=2o0or4 mod 6;
2, ifn=0 mod 6;
-2, ifn=3 mod 6.

,U(Cm 1) =

Proof. By part (c¢) of Theorem 1.2, u(Cy,, 1) = p(pp-1,1) —2p(pn_2,1). The lemma follows
from Lemma 4.2. O

Theorem 4.4. A cycle C,, is 1-elementary if and only if n = 3k for some k € N.

Proof. (=) Suppose C,, is l-elementary. Then for any v € V(C,), C, \ v = p,_1. By
Lemma 4.2, mult(1,p,—1) > 0 if and only if n —1 =2 or 5 mod 6. Thus n = 3k for some
k e N.

(<) Suppose n = 3k for some k € N. By Lemma 4.3, mult(1,C,) = 0. Note that 3k =3
or 6 mod 6. Therefore 3k — 1 = 2 or 5 mod 6, and by Lemma 4.2 and Lemma 1.3,
mult(1, C,, \ v) = mult(1,p,—1) = 1 for all v € V(C,). Thus C, is 1-super positive. By
Lemma 4.1, P, (C,, \ v) = @ for all v € V(C,,). Hence C,, is 1-elementary. O

For our next result, let us denote the vertices of C3 by 1,2,3,...,3k (see Figure 4).

Figure 4.

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P37 11



Corollary 4.5. (s has exactly 3 1-barrier sets, that is
B(1,Cs) = {{1,4,7,...,3k —2},{2,5,8,...,3k —1},{3,6,9,...,3k}}.

Proof. Note that Cs3; \ {1,4,7,...,3k — 2} is a disjoint union of k£ number of Ky and K,
is 1-critical. So {1,4,7,...,3k — 2} is a 1-barrier set. Similarly {2,5,8,...,3k — 1} and
{3,6,9,...,3k} are 1-barrier sets. It then follows from Theorem 4.4 and Theorem 3.13
that these are the only 1-barrier sets. O]

5 Decomposition of #-super positive graphs

Definition 5.1. A set X C V(G) with |X| > 1 is said to be independent in G if for all
u,v € X, u and v are not adjacent to each other. A graph G is said to be 6-base if it is
O-super positive and for all S € B(0,G), S is independent.

Note that the cycle U5 is 6-base for §# = 1. In fact a connected 6-base graph is
f-elementary.

Theorem 5.2. A connected 0-base graph is 0-elementary.

Proof. Let G be #-base. Suppose it is not #-elementary. Then Py(G \ v) # & for some
v € V(G). By Lemma 2.7, G\ v has at least one f-essential vertex. Moreover, by Theorem
2.9, Ny(G\v) = @.

If v is not a cut vertex of G, then there exists a path from Pp(G \ v) to Dp(G \ v),
which implies that Ag(G \ v) # @. By Theorem 2.9 and Corollary 1.8, (G'\ v) \ 4y(G \ v)
has a f-super positive component, say H. Since G \ v is connected, there exists h € V(H)
that is adjacent to some element w € Ay(G \ v). Note that {h,w,v} is a f-extreme set in
G. By Lemma 3.4, {h,w} is a f-extreme set in G. By Lemma 3.6, {h,w} is contained in
some S € P(0,G), contrary to the fact that S is independent.

If v is a cut vertex of G, then either G\ v does not have any #-super positive components
or G\ v contains a #-super positive component (recall that Ny(G\v) = @). In the former,
G \ v must contain a component H such that Ay(H) # 0 and Py(H) # 0. Since H is
connected, there is a vertex h € Pp(H) that is joined to some vertex w € Ayg(H). Note
that {h,w,v} is a f-extreme set in G. By Lemma 3.4, {h,w} is a f-extreme set in G.
By Lemma 3.6, {h,w} is contained in some S € B(¢, G), contrary to the fact that S is
independent. In the latter, some vertex in the #-super positive component, say u, must
be joined to v so that {u,v} is a f-extreme set in G. Again, by Lemma 3.6, {u,v} is
contained in some S € PB(#, G), contrary to the fact that S is independent.

Hence Pp(G \ v) = @ for all v € V(G) and G is #-elementary. O

Note that the converse of Theorem 5.2 is not true. Let G be the graph in Figure 3.
Note that {us,us} € P(1, G) but it is not independent.
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Lemma 5.3. Let G be 0-super positive and e = (u,v) € E(G) such that {u,v} is a 6-
extreme set in G. Let G' be the graph obtained by removing the edge e from G. Then G’
1s 0-super positive.

Proof. Now mult(#, G \ uv) = 2. By part (b) of Theorem 1.2, u(G,z) = p(G',z) — u(G \
wv, z). This implies that u(G’,0) = u(G,0) # 0.

It is left to show that u(G'\ w,8) = 0 for all w € V(G’). Clearly if w = u or v then
w(G'\ w,0) = (G \ w,0) = 0. Suppose w # u,v. By part (b) of Theorem 1.2 again,
w(G\w,x) = u(G'\w, ) — pu(G\wuv, z). By Lemma 1.3, mult(f, G\ uvw) > 1. Therefore
WG\ w,0) = pu(G\ w,0) =0. Hence G’ is f-super positive. O

Note that after removing an edge from G as in Lemma 5.3, B(0,G") # PB(0,G)
in general. In Figure 5, P(1,G) = {{1,4,7},{5,8},{6,9},{2},{3}}. After removing
the edge (1,4) from G, the resulting graph G’ = Cy. By Corollary 4.5, P(1,G’) =
{{1,4,7},{2,5,8},{3,6,9}}.

Oro
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O O
L L/
7

9 8

Figure 5.
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We shall need the following lemma.

Lemma 5.4. [3, Corollary 2.5] For any root 0 of u(G,x) and a path p in G,
mult(0, G \ p) > mult(d,G) — 1.

Lemma 5.5. Let G be 0-super positive and ey = (u,v) € E(G) with {u,v} is a 0-extreme
set. Let G' = G — ey and ex = (w,2) € E(G'). Then {w, z} is a 0-extreme set in G’ if
and only if it is a O-extreme set in G.

Proof. Case 1. Suppose e; and es have a vertex in common, say w = u. Then G’ \ wz =
G\ wz.

(=) Suppose {w, z} is a f-extreme set in G'. By Lemma 5.3, mult(#, G’) = 0. There-
fore mult(0, G \ wz) = mult(0, G' \ wz) = 2 and {w, z} is a f-extreme set in G.

(<) The converse is proved similarly.
Case 2. Suppose e; and ey have no vertex in common. By part (b) of Theorem 1.2,

w(G\wz,x) = u(G"'\ wz,z) — p(G\ wzuv, ).
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(=) Suppose {w,z} is a f-extreme set in G'. Then mult(d, G’ \ wz) = 2. Now
mult(f, G \ uwv) = 2 and by Lemma 5.4, mult(d,G \ uvwz) > 1. So we conclude that
mult(d, G \ wz) > 1. On the other hand, Np(G \ w) = @ (Theorem 2.9). Therefore either
mult(f, G\ wz) = 0 or 2. Hence the latter holds and {w, z} is a f-extreme set in G.

(<) Suppose {w, z} is a f-extreme set in G. Then mult(d, G \ wz) = 2. As before
we have mult(f, G \ vvwz) > 1. So we conclude that mult(f, G’ \ wz) > 1. On the other
hand, by Lemma 5.3, G’ is f-super positive. Therefore Ny(G’ \ w) = @ (Theorem 2.9),
and then either mult(d, G'\ wz) = 0 or 2. Hence the latter holds and {w, 2z} is a f-extreme
set in G'. O

Definition 5.6. Let G be f-super positive. An edge e = (u,v) € E(G) is said to be
0-extreme in G if {u,v} is a f-extreme set.

The process described in Lemma 5.3, can be iterated. Let Yy = {eq, e, ..., ex} C E(G)
be the set of all #-extreme edges. Let G; = G — e;. Then G is 6-super positive (Lemma
5.3). Let Y] be the set of all f-extreme edges in G;. Then by Lemma 5.5, Y7 =Y, \ {e1}.
Now let Go = G1 —e5. By applying Lemma 5.3 and Lemma 5.5, we see that G5 is 6-super
positive and the set of all f-extreme edges in Gy is Ys = Y \ {e1, e2}. By continuing this
process, after k steps, we see that G, = G — ejey ... ¢, is f-super positive and the set
of all f-extreme edges in Gy, is Y, = @. We claim that G} is a disjoint union of #-base
graphs. Suppose the contrary. Let H be a component of Gy that is not #-base. Since
Gy, is f-super positive, by part (a) of Theorem 1.2, we deduce that H is #-super positive.
Therefore there is a S € PB(0, H) for which S is not independent. Let e = (u,v) € E(H)
with {u,v} C S. By Lemma 3.7 and Lemma 3.4, {u,v} is a f-extreme set in H. This
means that e is f-extreme in H, and by part (a) of Theorem 1.2, e is f-extreme in Gy,
contrary to the fact that Y, = &. Hence H is 6-base and we have proved the following
theorem.

Theorem 5.7. Let G be 0-super positive. Then G can be decomposed into a disjoint
union of 0-base graphs by deleting its 0-extreme edges. Furthermore, the decomposition is
unique, i.e. the 6-base graphs are uniquely determined by G.

The proof of the next lemma is similar to Lemma 5.3, and is thus omitted.

Lemma 5.8. Let G be 0-super positive and {u,v} is a 0-extreme set with e = (u,v) ¢
E(G). Let G’ be the graph obtained by adding the edge e to G. Then G’ is 0-super positive.

Using the process described in Lemma 5.8, we can construct #-super positive graph
from 6-base graphs. Together with Theorem 5.7, we see that every -super positive can
be constructed from 6-base graphs.

Corollary 5.9. A graph is 0-super positive if and only if it can be constructed from 0-base
graphs.
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In the next theorem, we shall extend Theorem 2.2.

Theorem 5.10. Let Gy and Go be two O-super positive graphs and S; € B(0,G;) for
1=1,2. Let G be the graph obtained by adding the edges ey, es, ..., e, to the union of Gy
and G5, where each e; contains a point in Sy and Sy. Then G is 0-super positive.

Proof. We shall prove by induction on m. If m = 1, we are done by Theorem 2.2. Suppose
m > 2. Assume that it is true for m — 1. Let G’ be the graph obtained by adding the
edges ey, €s,...,€,_1 to the union of G; and GG5. By induction G’ is #-super positive. Let
em = (v1,v2) where v; € S;. Note that the number of f-critical components in G"\ (S;U.Sz)
is cp(G'\ (S1USs)) = co(Gy \ S1) + co(Ga \ S2) = |S1]| + |S2]. So S; U S, is a f-barrier
set in G'. By Lemma 3.7 and Lemma 3.4, {vy, v} is a f-extreme set in G’. Therefore by
Lemma 5.8, GG is #-super positive. O

In Figure 6, the graph G is obtained from two 1-base graphs by adding edges e; and
€9.

Figure 6.
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