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Abstract

Let the matching polynomial of a graph G be denoted by µ(G, x). A graph G is

said to be θ-super positive if µ(G, θ) 6= 0 and µ(G \ v, θ) = 0 for all v ∈ V (G).

In particular, G is 0-super positive if and only if G has a perfect matching. While

much is known about 0-super positive graphs, almost nothing is known about θ-

super positive graphs for θ 6= 0. This motivates us to investigate the structure of

θ-super positive graphs in this paper. Though a 0-super positive graph need not

contain any cycle, we show that a θ-super positive graph with θ 6= 0 must contain

a cycle. We introduce two important types of θ-super positive graphs, namely θ-

elementary and θ-base graphs. One of our main results is that any θ-super positive

graph G can be constructed by adding certain type of edges to a disjoint union of

θ-base graphs; moreover, these θ-base graphs are uniquely determined by G. We

also give a characterization of θ-elementary graphs: a graph G is θ-elementary if and

only if the set of all its θ-barrier sets form a partition of V (G). Here, θ-elementary

graphs and θ-barrier sets can be regarded as θ-analogue of elementary graphs and

Tutte sets in classical matching theory.

keywords: matching polynomial, Gallai-Edmonds decomposition, elementary graph,

barrier sets, extreme sets

the electronic journal of combinatorics 19 (2012), #P37 1



1 Introduction

We begin by introducing matching polynomials with an interest in the multiplicities of

their roots. This will lead us to a recent extension of the celebrated Gallai-Edmonds

Strcuture Theorem by Chen and Ku [1] which will be useful later in our study of θ-super

positive graphs. This result has been instrumental in recent investigations of the subject,

see [5, 6, 7, 8, 9, 10].

All the graphs in this paper are simple and finite. The vertex set and edge set of a

graph G will be denoted by V (G) and E(G), respectively.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a

vertex in common. The number of r-matchings in G will be denoted by p(G, r). We set

p(G, 0) = 1 and define the matching polynomial of G by

µ(G, x) =

bn/2c∑
r=0

(−1)rp(G, r)xn−2r

where n = |V (G)|. We denote the multiplicity of θ as a root of µ(G, x) by mult(θ,G). Let

u ∈ V (G), the graph obtained from G by deleting the vertex u and all edges that contain

u is denoted by G\u. Inductively if u1, . . . , uk ∈ V (G), G\u1 · · ·uk = (G\u1 · · ·uk−1)\uk.
Note that the order in which the vertices are being deleted is not important, that is, if

i1, . . . , ik is a permutation of 1, . . . , k, we have G\u1 · · ·uk = G\u11 · · ·uik . Furthermore,

if X = {u1, . . . , uk}, we set G \ X = G \ u1 · · ·uk. If H is a subgraph of G, by an

abuse of notation, we have G \ H = G \ V (H). For example, if p = v1v2 . . . vn is a

path in G then G \ p = G \ v1v2 · · · vn. If e is an edge of G, let G − e denote the

graph obtained from G by deleting the edge e from G. Inductively, if e1, . . . , ek ∈ E(G),

G− e1 · · · ek = (G− e1 · · · ek−1)− ek.
A graph G is said to have a perfect matching if it has an n/2-matching (n must be

even). This is equivalent to mult(0, G) = 0, that is, 0 is not a root of µ(G, x). Recall that

in the literature mult(0, G) is also known as the deficiency of G which is the number of

vertices of G missed by some maximum matching.

The following are some basic properties of µ(G, x).

Theorem 1.2. [2, Theorem 1.1 on p. 2]

(a) µ(G ∪H, x) = µ(G, x)µ(H, x) where G and H are disjoint graphs,

(b) µ(G, x) = µ(G− e, x)− µ(G \ uv, x) if e = (u, v) is an edge of G,

(c) µ(G, x) = xµ(G \ u, x)−
∑

i∼u µ(G \ ui, x) where i ∼ u means i is adjacent to u,

(d)
d

dx
µ(G, x) =

∑
i∈V (G)

µ(G \ i, x) where V (G) is the vertex set of G.
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It is well known that all roots of µ(G, x) are real. Throughout, let θ be a real number.

The multiplicity of a matching polynomial root satisfies the the following interlacing

property:

Lemma 1.3. [2, Corollary 1.3 on p. 97] (Interlacing) Let G be a graph and u ∈ V (G).

Let θ be a real number. Then

mult(θ,G)− 1 ≤ mult(θ,G \ u) ≤ mult(θ,G) + 1.

Lemma 1.3 suggests that given any real number θ, we can classify the vertices of a

graph according to an increase of 1 or a decrease of 1 or no change in the multiplicity of

θ upon deletion of a vertex.

Definition 1.4. [3, Section 3] For any u ∈ V (G),

(a) u is θ-essential if mult(θ,G \ u) = mult(θ,G)− 1,

(b) u is θ-neutral if mult(θ,G \ u) = mult(θ,G),

(c) u is θ-positive if mult(θ,G \ u) = mult(θ,G) + 1.

Furthermore, if u is not θ-essential but it is adjacent to some θ-essential vertex, we say u

is θ-special.

It turns out that θ-special vertices play an important role in the Gallai-Edmonds

Decomposition of a graph (see [1]). Godsil [3, Corollary 4.3] proved that a θ-special

vertex must be θ-positive. Note that if mult(θ,G) = 0 then for any u ∈ V (G), u is

either θ-neutral or θ-positive and no vertices in G can be θ-special. Now V (G) can be

partitioned into the following sets:

V (G) = Dθ(G) ∪ Aθ(G) ∪ Pθ(G) ∪Nθ(G),

where

Dθ(G) is the set of all θ-essential vertices in G,

Aθ(G) is the set of all θ-special vertices in G,

Nθ(G) is the set of all θ-neutral vertices in G,

Pθ(G) = Qθ(G) \ Aθ(G), where Qθ(G) is the set of all θ-positive vertices in G.

Note that there are no 0-neutral vertices. So N0(G) = ∅ and V (G) = D0(G) ∪ A0(G) ∪
P0(G).
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Definition 1.5. [3, Section 3] A graph G is said to be θ-critical if all vertices in G are

θ-essential and mult(θ,G) = 1.

The celebrated Gallai-Edmonds Structure Theorem describes the stability of a certain

canonical decomposition of V (G) with respect to the zero root of µ(G, x). In [1], Chen and

Ku extended the Gallai-Edmonds Structure Theorem to any root θ 6= 0, which consists

of the following two theorems:

Theorem 1.6. [1, Theorem 1.5] (θ-Stability Lemma) Let G be a graph with θ a root of

µ(G, x). If u ∈ Aθ(G) then

(i) Dθ(G \ u) = Dθ(G),

(ii) Pθ(G \ u) = Pθ(G),

(iii) Nθ(G \ u) = Nθ(G),

(iv) Aθ(G \ u) = Aθ(G) \ {u}.

Theorem 1.7. [1, Theorem 1.7] (θ-Gallai’s Lemma) If G is connected and every vertex

of G is θ-essential then mult(θ,G) = 1.

Theorem 1.6 asserts that the decomposition of V (G) into Dθ(G), Pθ(G), Nθ(G) and

Aθ(G) is stable upon deleting a θ-special vertex of G. We may delete every such vertex

one by one until there are no θ-special vertices left. Together with Theorem 1.7, it is not

hard to deduce the following whose proof is omitted.

Corollary 1.8.

(i) Aθ(G \Aθ(G)) = ∅, Dθ(G \Aθ(G)) = Dθ(G), Pθ(G \Aθ(G)) = Pθ(G), and Nθ(G \
Aθ(G)) = Nθ(G).

(ii) G \ Aθ(G) has exactly |Aθ(G)|+ mult(θ,G) θ-critical components.

(iii) If H is a component of G \ Aθ(G) then either H is θ-critical or mult(θ,H) = 0.

(iv) The subgraph induced by Dθ(G) consists of all the θ-critical components in G\Aθ(G).

This paper is devoted to the study of θ-super positive graphs. A graph is θ-super

positive if θ is not a root of µ(G, x) but is a root of µ(G \ v, x) for every v ∈ V (G). It is

worth noting that G is 0-super positive if and only if G has a perfect matching. While

much is known about graphs with a perfect matching, almost nothing is known about

θ-super positive graphs for θ 6= 0. This gives us a motivation to investigate the structure

of these graphs.

The outline of this paper is as follows:
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In Section 2, we show how to construct θ-super positive graphs from smaller θ-super

positive graphs (see Theorem 2.2). We prove that a tree is θ-super positive if and only if

θ = 0 and it has a perfect matching (see Theorem 2.4). Consequently, a θ-super positive

graph must contain a cycle when θ 6= 0. For a connected vertex transitive graph G, we

prove that it is θ-super positive for any root θ of µ(G\v, x) where v ∈ V (G) (see Theorem

2.8). Finally we prove that if G is θ-super positive, then Nθ(G \ v) = ∅ for all v ∈ V (G)

(see Theorem 2.9).

In Section 3, we introduce θ-elementary graphs. These are θ-super positive graphs

with Pθ(G \ v) = ∅ for all v ∈ V (G). We prove a characterization of θ-elementary graphs:

a graph G is θ-elementary if and only if the set of all θ-barrier sets form a partition of

V (G) (see Theorem 3.13).

In Section 4, we apply our results in Section 3 to prove that an n-cycle Cn is 1-

elementary if and only if n = 3k for some k ∈ N (see Theorem 4.4). Furthermore, we

prove that C3k has exactly 3 1-barrier sets (see Corollary 4.5).

In Section 5, we introduce θ-base graphs which can be regarded as building blocks of

θ-super positive graphs. We prove a characterization of θ-super positive graphs, namely

a θ-super positive graph can be constructed from a disjoint union of θ-base graphs by

adding certain type of edges; moreover, these θ-base graphs are uniquely determined by

G (see Theorem 5.7 and Corollary 5.9).

2 θ-super positive graphs

Definition 2.1. A graph G is θ-super positive if θ is not a root of µ(G, x) and every

vertex of G is θ-positive.

By Lemma 1.3, this is equivalent to mult(θ,G) = 0 and mult(θ,G \ v) = 1 for all

v ∈ V (G). There are a lot of θ-super positive graphs. For instance the three cycle C3 and

the six cycle C6 are 1-super positive. In the next theorem, we will show how to construct

θ-super positive graphs from smaller θ-super positive graphs.

Theorem 2.2. Let G1 and G2 be two θ-super positive graphs and vi ∈ V (Gi) for i = 1, 2.

Let G be the graph obtained by adding the edge (v1, v2) to the union of G1 and G2. Then

G is θ-super positive.

Proof. Let e = (v1, v2). First we prove that µ(G, θ) 6= 0. By part (b) of Theorem 1.2, we

have µ(G, x) = µ(G− e, x)− µ(G \ v1v2, x). It then follows from part (a) of Theorem 1.2

that µ(G, x) = µ(G1, x)µ(G2, x)−µ(G1 \ v1, x)µ(G2 \ v2, x). Since G1 and G2 are θ-super

positive, µ(G, θ) = µ(G1, θ)µ(G2, θ) 6= 0.

It is left to prove that µ(G \ v, θ) = 0 for all v ∈ V (G). Let v ∈ V (G1). Suppose

v = v1. Then by part (a) of Theorem 1.2, µ(G \ v, x) = µ(G1 \ v1, x)µ(G2, x), and
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thus µ(G \ v, θ) = 0. Suppose v 6= v1. By part (b) of Theorem 1.2, µ(G \ v, x) =

µ((G\v)−e, x)−µ((G\v)\v1v2, x). Note that (G\v)−e = (G1\v)∪G2 and (G\v)\v1v2 =

(G1\vv1)∪(G2\v2). Hence µ(G\v, θ) = µ(G1\v, θ)µ(G2, θ)−µ(G1\vv1, θ)µ(G2\v2, θ) = 0

(part (a) of Theorem 1.2).

The case v ∈ V (G2) is proved similarly.

The graph G in Figure 1 is constructed by using Theorem 2.2, with G1 = C6 and

G2 = C3. Therefore it is 1-super positive graph.

It is clear that a 0-super positive need not contain any cycle. However, we will show

later that if G is θ-super positive and θ 6= 0, then it must contain a cycle (see Corollary

2.5). Note that any tree T with at least three vertices can be represented in the following

form (see Figure 2), where u is a vertex with n+ 1 neighbors v1, . . ., vn+1 such that all of

them except possibly v1 have degree 1 and T1 is a subtree of T that contains v1. Such a

representation of T is denoted by (T1, u; v1, . . . , vn+1).

Lemma 2.3. Let T be a tree with at least three vertices. Suppose T has a representation

(T1, u; v1, . . . , vn+1). Then θ is a root of µ(T, x) if and only if

(n− θ2)θn−1µ(T1, θ) + θnµ(T1 \ v1, θ) = 0.

Proof. By part (c) of Theorem 1.2, µ(T, θ) = θµ(T \u, θ)−
∑n+1

i=1 µ(T \uvi, θ) (see Figure

2), which implies (using part (a) of Theorem 1.2),

µ(T, θ) = (θ2 − n)θn−1µ(T1, θ)− θnµ(T1 \ v1, θ).

Hence the lemma holds.
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Theorem 2.4. Let T be a tree. Then T is θ-super positive if and only if θ = 0 and it has

a perfect matching.

Proof. Suppose T is θ-super positive and θ 6= 0. Then T must have at least three vertices.

By Lemma 2.3,

(n− θ2)θn−1µ(T1, θ) + θnµ(T1 \ v1, θ) 6= 0.

By part (a) of Theorem 1.2, 0 = µ(T \ u, θ) = θnµ(T1, θ) (see Figure 2). Therefore

µ(T1, θ) = 0 and µ(T1 \ v1, θ) 6= 0. Now µ(T \ vn+1, θ) = 0. By part (c) of of Theorem 1.2,

µ(T \vn+1, θ) = θµ(T \uvn+1, θ)−
∑n

i=1 µ(T \uvivn+1, θ) = θnµ(T1, θ)−(n−1)θn−2µ(T1, θ)−
θn−1µ(T1 \ v1, θ). This implies that µ(T1 \ v1, θ) = 0, a contradiction. Hence θ = 0. Since

0 is not a root of µ(T, x), T must have a perfect matching.

The converse is obvious.

A consequence of Theorem 2.4 is the following corollary.

Corollary 2.5. If G is θ-super positive for some θ 6= 0, then G must contain a cycle.

We shall need the following lemmas.

Lemma 2.6. [4, Theorem 6.3](Heilmann-Lieb Identity) Let u, v ∈ V (G). Then

µ(G \ u, x)µ(G \ v, x)− µ(G, x)µ(G \ uv) =
∑

p∈P(u,v)

µ(G \ p, x)2,

where P(u, v) is the set of all the paths from u to v in G.

Lemma 2.7. [3, Lemma 3.1] Suppose mult(θ,G) > 0. Then G contains at least one

θ-essential vertex.

Theorem 2.8. Let G be connected, vertex transitive and z ∈ V (G). If θ is a root of

µ(G \ z, x) then G is θ-super positive.

Proof. Since G \ z is isomorphic to G \ y for all y ∈ V (G), µ(G \ z, x) = µ(G \ y, x) for all

y ∈ V (G). So mult(θ,G \ z) = mult(θ,G \ y). This implies that θ is a root of µ(G \ y, x)

for all y.

Now it remains to show that µ(G, θ) 6= 0. Suppose the contrary. Then by Lemma 2.7,

G has at least one θ-essential vertex. Since G is vertex transitive, all vertices in G are

θ-essential. By Theorem 1.7, mult(θ,G) = 1. But then mult(θ,G\z) = 0, a contradiction.

Hence µ(G, θ) 6= 0 and G is θ-super positive.

However, a θ-super positive graph is not necessarily vertex transitive (see Figure 1).

Furthermore a θ-super positive graph is not necessary connected, for the union of two C3

is 1-super positive.
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Theorem 2.9. Let G be θ-super positive. Then Nθ(G \ v) = ∅ for all v ∈ V (G).

Proof. Suppose Nθ(G \ v) 6= ∅ for some v ∈ V (G). Let u ∈ Nθ(G \ v). By Lemma 2.6,

µ(G \ u, x)µ(G \ v, x)− µ(G, x)µ(G \ uv) =
∑

p∈P(u,v)

µ(G \ p, x)2.

Note that the multiplicity of θ as a root of µ(G\u, x)µ(G\v, x) is 2, while the multiplicity

of θ as a root of µ(G, x)µ(G \ vu, x) is 1 since u is θ-neutral in G \ v. Therefore the

multiplicity of θ as a root of the polynomial on the left-hand side of the equation is at

least 1. But the multiplicity of θ as a root of the polynomial on the right-hand side of

the equation is even and so, in comparison with the left-hand side, it must be at least

2. This forces the multiplicity of θ as a root of µ(G, x)µ(G \ vu, x) to be at least 2, a

contradiction. Hence Nθ(G \ v) = ∅ for all v ∈ V (G).

Now we know that for a θ-super positive graph G, Nθ(G \ v) = ∅ for all v ∈ V (G).

So it is quite natural to ask whether Pθ(G \ v) = ∅ for all v ∈ V (G). Well, this is not

true in general (see Figure 1). This motivates us to study the θ-super positive graph G,

for which Pθ(G \ v) = ∅ for all v ∈ V (G). We proceed to do this in the next section.

3 θ-elementary graphs

Definition 3.1. A graph G is said to be θ-elementary if it is θ-super positive and Pθ(G \
v) = ∅ for all v ∈ V (G).

The graph G in Figure 3 is 1-elementary. Not every θ-positive graph is θ-elementary.

For instance, the graph in Figure 1 is not 1-elementary.

Theorem 3.2. A graph G is θ-elementary if and only if mult(θ,G) = 0 and Pθ(G \ v) ∪
Nθ(G \ v) = ∅ for all v ∈ V (G).

Proof. Suppose mult(θ,G) = 0 and Pθ(G \ v) ∪ Nθ(G \ v) = ∅ for all v ∈ V (G). For

each v ∈ V (G), G \ v must consist entirely of θ-essential and θ-special vertices and must

have at least one θ-essential vertex; therefore mult(θ,G \ v) = 1. Therefore G is θ-super

positive and it is θ-elementary.

The other implication follows from Theorem 2.9.
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It turns out that the notion of a 0-elementary graph coincide with the classical notion

of an elementary graph. Properties of elementary graphs can be found in Section 5.1 on

p. 145 of [11].

The number of θ-critical components in G is denoted by cθ(G).

Definition 3.3. A θ-barrier set is defined to be a set X ⊆ V (G) for which cθ(G \X) =

mult(θ,G) + |X|.
A θ-extreme set in G is defined to be a set X ⊆ V (G) for which mult(θ,G \ X) =

mult(θ,G) + |X|.

θ-barrier sets and θ-extreme sets can be regarded as θ-analogue of Tutte sets and

extreme sets in classical matching theory. Properties of θ-barrier sets and θ-extreme sets

have been studied by Ku and Wong [5]. In particular, the following results are needed.

Lemma 3.4. [5, Lemma 2.4] A subset of a θ-extreme set is a θ-extreme set.

Lemma 3.5. [5, Lemma 2.5] If X is a θ-barrier set in G and Y ⊆ X then X \ Y is a

θ-barrier set in G \ Y .

Lemma 3.6. [5, Lemma 2.6] Every θ-extreme set in G lies in a θ-barrier set in G.

Lemma 3.7. [5, Lemma 2.7] Let X be a θ-barrier set in G. Then X is a θ-extreme set

in G.

Lemma 3.8. [5, Lemma 3.1] If X is a θ-barrier set in G then X ⊆ Aθ(G) ∪ Pθ(G).

Lemma 3.9. [5, Theorem 3.5] Let X be a θ-barrier set in G. Then Aθ(G) ⊆ X.

Lemma 3.10. Let G be a graph. If X is a θ-barrier set in G, x ∈ X and Pθ(G \ x) = ∅,

then Aθ(G \ x) = X \ {x}.

Proof. By Lemma 3.5, X \ {x} is a θ-barrier set in G \ x. By Lemma 3.8, X \ {x} ⊆
Aθ(G \ x) ∪ Pθ(G \ x). Therefore X \ {x} ⊆ Aθ(G \ x). It then follows from Lemma 3.9

that Aθ(G \ x) = X \ {x}.

Definition 3.11. We define P(θ,G) to be the set of all the θ-barrier sets in G.

Note that in Figure 3, P(1, G) = {{u1}, {u2}, {u3, u4}, {u5}, {u6}}. Now Lemma 3.12

follows from part (c) of Theorem 1.2.

Lemma 3.12. Suppose G is θ-super positive. Then for each v ∈ V (G) there is a u ∈ V (G)

with (u, v) ∈ E(G) and mult(θ,G \ uv) = 0.

Theorem 3.13. A graph G is θ-elementary if and only if P(θ,G) is a partition of V (G).
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Proof. Let P(θ,G) = {S1, . . . , Sk}.
(⇒) Suppose G is θ-elementary. Then for each v ∈ V (G), {v} is a θ-extreme set. By

Lemma 3.6, it is contained in some θ-barrier set. Therefore V (G) = S1 ∪ · · · ∪ Sk. It

remains to prove that Si ∩ Sj = ∅ for i 6= j. Suppose the contrary. Let x ∈ Si ∩ Sj. By

Lemma 3.10, Si \ {x} = Aθ(G \ x) = Sj \ {x} and so Si = Sj, a contradiction. Hence

Si ∩ Sj = ∅ for i 6= j and P(θ,G) is a partition of V (G).

(⇐) Suppose P(θ,G) is a partition of V (G). Let v ∈ V (G). Then v ∈ Si for some θ-

barrier set Si. By Lemma 3.8, v ∈ Aθ(G)∪Pθ(G). Therefore V (G) ⊆ Aθ(G)∪Pθ(G). This

implies that mult(θ,G) = 0, for otherwise Dθ(G) 6= ∅ by Lemma 2.7. Hence Aθ(G) = ∅
and V (G) = Pθ(G), i.e., G is θ-super positive. It remains to show that Pθ(G \ v) = ∅ for

all v ∈ V (G). Suppose the contrary. Then Pθ(G \ v0) 6= ∅ for some v0 ∈ V (G). We may

assume v0 ∈ S1. By Corollary 1.8, (G \ v0) \ Aθ(G \ v0) has a component H for which

mult(θ,H) = 0. By Theorem 2.9, Nθ(G \ v0) = ∅. So we conclude that H is θ-super

positive. Let w ∈ H. By Lemma 3.12, there is a z ∈ V (H) with (w, z) ∈ E(H) and

mult(θ,H \ wz) = 0. By part (a) of Theorem 1.2, and, (ii) and (iii) of Corollary 1.8,

mult(θ, ((G \ v0) \ Aθ(G \ v0)) \ wz) = 1 + |Aθ(G \ v0)|.
On the other hand, by Lemma 3.5, S1 \ {v0} is a θ-barrier set in G \ v0. So by Lemma

3.9, Aθ(G\v0) ⊆ S1 \{v0}. By Lemma 3.5 again, S1 \ ({v0}∪Aθ(G\v0)) is a θ-barrier set

in (G \ v0) \Aθ(G \ v0). Note that w is θ-positive in G \ v0 (by Corollary 1.8). Therefore

{w, v0} is an θ-extreme set in G. By Lemma 3.6, {w, v0} is contained in some θ-barrier

set in G. Since P(θ,G) is a partition of V (G) and v0 ∈ S1, we must have {w, v0} ⊆ S1.

Note also z is θ-positive in G \ v0 (recall that H is θ-super positive). Using a similar

argument, we can show that {z, v0} ⊆ S1. By Lemma 3.4 and Lemma 3.7, we conclude

that {w, z} ⊆ S1 \ ({v0} ∪ Aθ(G \ v0)) is a θ-extreme set in (G \ v0) \ Aθ(G \ v0). This

implies that mult(θ, ((G \ v0) \Aθ(G \ v0)) \wz) = 3 + |Aθ(G \ v0)|, contradicting the last

sentence of the preceding paragraph. Hence Pθ(G \ v) = ∅ for all v ∈ V (G) and G is

θ-elementary.

Lemma 3.14. Suppose G is θ-elementary. Then for each ∅ 6= X ⊆ S ∈ P(θ,G),

Aθ(G \X) = S \X and Pθ(G \X) ∪Nθ(G \X) = ∅.

Proof. Let x ∈ X. Then Pθ(G\x) = ∅. By Theorem 2.9, Nθ(G\x) = ∅. Now by Lemma

3.10, S \ {x} = Aθ(G \ x) so that X \ {x} ⊆ S \ {x} = Aθ(G \ x). By Theorem 1.6, we

conclude that Aθ(G \X) = S \X and Pθ(G \X) ∪Nθ(G \X) = ∅.

Corollary 3.15. Suppose G is θ-elementary. Let S ⊆ V (G). Then S ∈ P(θ,G) if and

only if G \ S has exactly |S| components and each is θ-critical.

Proof. Suppose G\S has exactly |S| components and each is θ-critical. Then cθ(G\S) =

|S| and S is a θ-barrier set in G. Hence S ∈ P(θ,G).

The other implication follows from Lemma 3.14 and Corollary 1.8.
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4 1-elementary cycles

We shall need the following lemmas.

Lemma 4.1. [10, Corollary 4.4] Suppose G has a Hamiltonian path P and θ is a root of

µ(G, x). Then every vertex of G which is not θ-essential must be θ-special.

Lemma 4.2. Let pn be a path with n ≥ 1 vertices. Then

µ(pn, 1) =


1, if n ≡ 0 or 1 mod 6;

−1, if n ≡ 3 or 4 mod 6;

0, otherwise.

Proof. Note that for t ≥ 2, µ(pt, x) = xµ(pt−1, x) − µ(pt−2, x) (part (c) of Theorem

1.2), where we define µ(p0, x) = 1. Therefore µ(pt, 1) = µ(pt−1, 1) − µ(pt−2, 1). Now

µ(p1, 1) = 1. So, µ(p2, 1) = 0, and recursively we have µ(p3, 1) = −1, µ(p4, 1) = −1 and

µ(p5, 1) = 0. By induction the lemma holds.

Lemma 4.3. Let Cn be a cycle with n ≥ 3 vertices. Then

µ(Cn, 1) =


1, if n ≡ 1 or 5 mod 6;

−1, if n ≡ 2 or 4 mod 6;

2, if n ≡ 0 mod 6;

−2, if n ≡ 3 mod 6.

Proof. By part (c) of Theorem 1.2, µ(Cn, 1) = µ(pn−1, 1)−2µ(pn−2, 1). The lemma follows

from Lemma 4.2.

Theorem 4.4. A cycle Cn is 1-elementary if and only if n = 3k for some k ∈ N.

Proof. (⇒) Suppose Cn is 1-elementary. Then for any v ∈ V (Cn), Cn \ v = pn−1. By

Lemma 4.2, mult(1, pn−1) > 0 if and only if n− 1 ≡ 2 or 5 mod 6. Thus n = 3k for some

k ∈ N.

(⇐) Suppose n = 3k for some k ∈ N. By Lemma 4.3, mult(1, Cn) = 0. Note that 3k ≡ 3

or 6 mod 6. Therefore 3k − 1 ≡ 2 or 5 mod 6, and by Lemma 4.2 and Lemma 1.3,

mult(1, Cn \ v) = mult(1, pn−1) = 1 for all v ∈ V (Cn). Thus Cn is 1-super positive. By

Lemma 4.1, P1(Cn \ v) = ∅ for all v ∈ V (Cn). Hence Cn is 1-elementary.

For our next result, let us denote the vertices of C3k by 1, 2, 3, . . . , 3k (see Figure 4).
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Corollary 4.5. C3k has exactly 3 1-barrier sets, that is

P(1, C3k) = {{1, 4, 7, . . . , 3k − 2}, {2, 5, 8, . . . , 3k − 1}, {3, 6, 9, . . . , 3k}}.

Proof. Note that C3k \ {1, 4, 7, . . . , 3k − 2} is a disjoint union of k number of K2 and K2

is 1-critical. So {1, 4, 7, . . . , 3k − 2} is a 1-barrier set. Similarly {2, 5, 8, . . . , 3k − 1} and

{3, 6, 9, . . . , 3k} are 1-barrier sets. It then follows from Theorem 4.4 and Theorem 3.13

that these are the only 1-barrier sets.

5 Decomposition of θ-super positive graphs

Definition 5.1. A set X ⊆ V (G) with |X| > 1 is said to be independent in G if for all

u, v ∈ X, u and v are not adjacent to each other. A graph G is said to be θ-base if it is

θ-super positive and for all S ∈ P(θ,G), S is independent.

Note that the cycle C3k is θ-base for θ = 1. In fact a connected θ-base graph is

θ-elementary.

Theorem 5.2. A connected θ-base graph is θ-elementary.

Proof. Let G be θ-base. Suppose it is not θ-elementary. Then Pθ(G \ v) 6= ∅ for some

v ∈ V (G). By Lemma 2.7, G\v has at least one θ-essential vertex. Moreover, by Theorem

2.9, Nθ(G \ v) = ∅.

If v is not a cut vertex of G, then there exists a path from Pθ(G \ v) to Dθ(G \ v),

which implies that Aθ(G \ v) 6= ∅. By Theorem 2.9 and Corollary 1.8, (G \ v) \Aθ(G \ v)

has a θ-super positive component, say H. Since G\ v is connected, there exists h ∈ V (H)

that is adjacent to some element w ∈ Aθ(G \ v). Note that {h,w, v} is a θ-extreme set in

G. By Lemma 3.4, {h,w} is a θ-extreme set in G. By Lemma 3.6, {h,w} is contained in

some S ∈ P(θ,G), contrary to the fact that S is independent.

If v is a cut vertex of G, then either G\v does not have any θ-super positive components

or G\v contains a θ-super positive component (recall that Nθ(G\v) = ∅). In the former,

G \ v must contain a component H such that Aθ(H) 6= ∅ and Pθ(H) 6= ∅. Since H is

connected, there is a vertex h ∈ Pθ(H) that is joined to some vertex w ∈ Aθ(H). Note

that {h,w, v} is a θ-extreme set in G. By Lemma 3.4, {h,w} is a θ-extreme set in G.

By Lemma 3.6, {h,w} is contained in some S ∈ P(θ,G), contrary to the fact that S is

independent. In the latter, some vertex in the θ-super positive component, say u, must

be joined to v so that {u, v} is a θ-extreme set in G. Again, by Lemma 3.6, {u, v} is

contained in some S ∈ P(θ,G), contrary to the fact that S is independent.

Hence Pθ(G \ v) = ∅ for all v ∈ V (G) and G is θ-elementary.

Note that the converse of Theorem 5.2 is not true. Let G be the graph in Figure 3.

Note that {u3, u4} ∈ P(1, G) but it is not independent.
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Lemma 5.3. Let G be θ-super positive and e = (u, v) ∈ E(G) such that {u, v} is a θ-

extreme set in G. Let G′ be the graph obtained by removing the edge e from G. Then G′

is θ-super positive.

Proof. Now mult(θ,G \ uv) = 2. By part (b) of Theorem 1.2, µ(G, x) = µ(G′, x)− µ(G \
uv, x). This implies that µ(G′, θ) = µ(G, θ) 6= 0.

It is left to show that µ(G′ \ w, θ) = 0 for all w ∈ V (G′). Clearly if w = u or v then

µ(G′ \ w, θ) = µ(G \ w, θ) = 0. Suppose w 6= u, v. By part (b) of Theorem 1.2 again,

µ(G\w, x) = µ(G′\w, x)−µ(G\wuv, x). By Lemma 1.3, mult(θ,G\uvw) ≥ 1. Therefore

µ(G′ \ w, θ) = µ(G \ w, θ) = 0. Hence G′ is θ-super positive.

Note that after removing an edge from G as in Lemma 5.3, P(θ,G′) 6= P(θ,G)

in general. In Figure 5, P(1, G) = {{1, 4, 7}, {5, 8}, {6, 9}, {2}, {3}}. After removing

the edge (1, 4) from G, the resulting graph G′ = C9. By Corollary 4.5, P(1, G′) =

{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}.

We shall need the following lemma.

Lemma 5.4. [3, Corollary 2.5] For any root θ of µ(G, x) and a path p in G,

mult(θ,G \ p) ≥ mult(θ,G)− 1.

Lemma 5.5. Let G be θ-super positive and e1 = (u, v) ∈ E(G) with {u, v} is a θ-extreme

set. Let G′ = G − e1 and e2 = (w, z) ∈ E(G′). Then {w, z} is a θ-extreme set in G′ if

and only if it is a θ-extreme set in G.

Proof. Case 1. Suppose e1 and e2 have a vertex in common, say w = u. Then G′ \wz =

G \ wz.

(⇒) Suppose {w, z} is a θ-extreme set in G′. By Lemma 5.3, mult(θ,G′) = 0. There-

fore mult(θ,G \ wz) = mult(θ,G′ \ wz) = 2 and {w, z} is a θ-extreme set in G.

(⇐) The converse is proved similarly.

Case 2. Suppose e1 and e2 have no vertex in common. By part (b) of Theorem 1.2,

µ(G \ wz, x) = µ(G′ \ wz, x)− µ(G \ wzuv, x).
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(⇒) Suppose {w, z} is a θ-extreme set in G′. Then mult(θ,G′ \ wz) = 2. Now

mult(θ,G \ uv) = 2 and by Lemma 5.4, mult(θ,G \ uvwz) ≥ 1. So we conclude that

mult(θ,G \wz) ≥ 1. On the other hand, Nθ(G \w) = ∅ (Theorem 2.9). Therefore either

mult(θ,G \ wz) = 0 or 2. Hence the latter holds and {w, z} is a θ-extreme set in G.

(⇐) Suppose {w, z} is a θ-extreme set in G. Then mult(θ,G \ wz) = 2. As before

we have mult(θ,G \ uvwz) ≥ 1. So we conclude that mult(θ,G′ \ wz) ≥ 1. On the other

hand, by Lemma 5.3, G′ is θ-super positive. Therefore Nθ(G
′ \ w) = ∅ (Theorem 2.9),

and then either mult(θ,G′\wz) = 0 or 2. Hence the latter holds and {w, z} is a θ-extreme

set in G′.

Definition 5.6. Let G be θ-super positive. An edge e = (u, v) ∈ E(G) is said to be

θ-extreme in G if {u, v} is a θ-extreme set.

The process described in Lemma 5.3, can be iterated. Let Y0 = {e1, e2, . . . , ek} ⊆ E(G)

be the set of all θ-extreme edges. Let G1 = G− e1. Then G1 is θ-super positive (Lemma

5.3). Let Y1 be the set of all θ-extreme edges in G1. Then by Lemma 5.5, Y1 = Y0 \ {e1}.
Now let G2 = G1− e2. By applying Lemma 5.3 and Lemma 5.5, we see that G2 is θ-super

positive and the set of all θ-extreme edges in G2 is Y2 = Y0 \ {e1, e2}. By continuing this

process, after k steps, we see that Gk = G − e1e2 . . . ek is θ-super positive and the set

of all θ-extreme edges in Gk is Yk = ∅. We claim that Gk is a disjoint union of θ-base

graphs. Suppose the contrary. Let H be a component of Gk that is not θ-base. Since

Gk is θ-super positive, by part (a) of Theorem 1.2, we deduce that H is θ-super positive.

Therefore there is a S ∈ P(θ,H) for which S is not independent. Let e = (u, v) ∈ E(H)

with {u, v} ⊆ S. By Lemma 3.7 and Lemma 3.4, {u, v} is a θ-extreme set in H. This

means that e is θ-extreme in H, and by part (a) of Theorem 1.2, e is θ-extreme in Gk,

contrary to the fact that Yk = ∅. Hence H is θ-base and we have proved the following

theorem.

Theorem 5.7. Let G be θ-super positive. Then G can be decomposed into a disjoint

union of θ-base graphs by deleting its θ-extreme edges. Furthermore, the decomposition is

unique, i.e. the θ-base graphs are uniquely determined by G.

The proof of the next lemma is similar to Lemma 5.3, and is thus omitted.

Lemma 5.8. Let G be θ-super positive and {u, v} is a θ-extreme set with e = (u, v) /∈
E(G). Let G′ be the graph obtained by adding the edge e to G. Then G′ is θ-super positive.

Using the process described in Lemma 5.8, we can construct θ-super positive graph

from θ-base graphs. Together with Theorem 5.7, we see that every θ-super positive can

be constructed from θ-base graphs.

Corollary 5.9. A graph is θ-super positive if and only if it can be constructed from θ-base

graphs.

the electronic journal of combinatorics 19 (2012), #P37 14



In the next theorem, we shall extend Theorem 2.2.

Theorem 5.10. Let G1 and G2 be two θ-super positive graphs and Si ∈ P(θ,Gi) for

i = 1, 2. Let G be the graph obtained by adding the edges e1, e2, . . . , em to the union of G1

and G2, where each ej contains a point in S1 and S2. Then G is θ-super positive.

Proof. We shall prove by induction on m. If m = 1, we are done by Theorem 2.2. Suppose

m ≥ 2. Assume that it is true for m − 1. Let G′ be the graph obtained by adding the

edges e1, e2, . . . , em−1 to the union of G1 and G2. By induction G′ is θ-super positive. Let

em = (v1, v2) where vi ∈ Si. Note that the number of θ-critical components in G′\(S1∪S2)

is cθ(G
′ \ (S1 ∪ S2)) = cθ(G1 \ S1) + cθ(G2 \ S2) = |S1| + |S2|. So S1 ∪ S2 is a θ-barrier

set in G′. By Lemma 3.7 and Lemma 3.4, {v1, v2} is a θ-extreme set in G′. Therefore by

Lemma 5.8, G is θ-super positive.

In Figure 6, the graph G is obtained from two 1-base graphs by adding edges e1 and

e2.
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