Properties of θ-super positive graphs

Cheng Yeaw Ku
Department of Mathematics, National University of Singapore, Singapore 117543
matkcy@nus.edu.sg
Kok Bin Wong
Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
kbwong@um.edu.my

Submitted: Sep 13, 2011; Accepted: Jan 26, 2012; Published: Feb 7, 2012
Mathematics Subject Classifications: 05C31, 05C70

Abstract

Let the matching polynomial of a graph G be denoted by $\mu(G, x)$. A graph G is said to be θ-super positive if $\mu(G, \theta) \neq 0$ and $\mu(G \backslash v, \theta)=0$ for all $v \in V(G)$. In particular, G is 0 -super positive if and only if G has a perfect matching. While much is known about 0 -super positive graphs, almost nothing is known about θ super positive graphs for $\theta \neq 0$. This motivates us to investigate the structure of θ-super positive graphs in this paper. Though a 0 -super positive graph need not contain any cycle, we show that a θ-super positive graph with $\theta \neq 0$ must contain a cycle. We introduce two important types of θ-super positive graphs, namely θ elementary and θ-base graphs. One of our main results is that any θ-super positive graph G can be constructed by adding certain type of edges to a disjoint union of θ-base graphs; moreover, these θ-base graphs are uniquely determined by G. We also give a characterization of θ-elementary graphs: a graph G is θ-elementary if and only if the set of all its θ-barrier sets form a partition of $V(G)$. Here, θ-elementary graphs and θ-barrier sets can be regarded as θ-analogue of elementary graphs and Tutte sets in classical matching theory.

KEYWORDS: matching polynomial, Gallai-Edmonds decomposition, elementary graph, barrier sets, extreme sets

1 Introduction

We begin by introducing matching polynomials with an interest in the multiplicities of their roots. This will lead us to a recent extension of the celebrated Gallai-Edmonds Strcuture Theorem by Chen and $\mathrm{Ku}[1]$ which will be useful later in our study of θ-super positive graphs. This result has been instrumental in recent investigations of the subject, see $[5,6,7,8,9,10]$.

All the graphs in this paper are simple and finite. The vertex set and edge set of a graph G will be denoted by $V(G)$ and $E(G)$, respectively.

Definition 1.1. An r-matching in a graph G is a set of r edges, no two of which have a vertex in common. The number of r-matchings in G will be denoted by $p(G, r)$. We set $p(G, 0)=1$ and define the matching polynomial of G by

$$
\mu(G, x)=\sum_{r=0}^{\lfloor n / 2\rfloor}(-1)^{r} p(G, r) x^{n-2 r}
$$

where $n=|V(G)|$. We denote the multiplicity of θ as a root of $\mu(G, x)$ by mult (θ, G). Let $u \in V(G)$, the graph obtained from G by deleting the vertex u and all edges that contain u is denoted by $G \backslash u$. Inductively if $u_{1}, \ldots, u_{k} \in V(G), G \backslash u_{1} \cdots u_{k}=\left(G \backslash u_{1} \cdots u_{k-1}\right) \backslash u_{k}$. Note that the order in which the vertices are being deleted is not important, that is, if i_{1}, \ldots, i_{k} is a permutation of $1, \ldots, k$, we have $G \backslash u_{1} \cdots u_{k}=G \backslash u_{1_{1}} \cdots u_{i_{k}}$. Furthermore, if $X=\left\{u_{1}, \ldots, u_{k}\right\}$, we set $G \backslash X=G \backslash u_{1} \cdots u_{k}$. If H is a subgraph of G, by an abuse of notation, we have $G \backslash H=G \backslash V(H)$. For example, if $p=v_{1} v_{2} \ldots v_{n}$ is a path in G then $G \backslash p=G \backslash v_{1} v_{2} \cdots v_{n}$. If e is an edge of G, let $G-e$ denote the graph obtained from G by deleting the edge e from G. Inductively, if $e_{1}, \ldots, e_{k} \in E(G)$, $G-e_{1} \cdots e_{k}=\left(G-e_{1} \cdots e_{k-1}\right)-e_{k}$.

A graph G is said to have a perfect matching if it has an $n / 2$-matching (n must be even). This is equivalent to $\operatorname{mult}(0, G)=0$, that is, 0 is not a root of $\mu(G, x)$. Recall that in the literature mult $(0, G)$ is also known as the deficiency of G which is the number of vertices of G missed by some maximum matching.

The following are some basic properties of $\mu(G, x)$.
Theorem 1.2. [2, Theorem 1.1 on p. 2]
(a) $\mu(G \cup H, x)=\mu(G, x) \mu(H, x)$ where G and H are disjoint graphs,
(b) $\mu(G, x)=\mu(G-e, x)-\mu(G \backslash u v, x)$ if $e=(u, v)$ is an edge of G,
(c) $\mu(G, x)=x \mu(G \backslash u, x)-\sum_{i \sim u} \mu(G \backslash u i, x)$ where $i \sim u$ means i is adjacent to u,
(d) $\frac{d}{d x} \mu(G, x)=\sum_{i \in V(G)} \mu(G \backslash i, x)$ where $V(G)$ is the vertex set of G.

It is well known that all roots of $\mu(G, x)$ are real. Throughout, let θ be a real number. The multiplicity of a matching polynomial root satisfies the the following interlacing property:

Lemma 1.3. [2, Corollary 1.3 on p. 97] (Interlacing) Let G be a graph and $u \in V(G)$. Let θ be a real number. Then

$$
\operatorname{mult}(\theta, G)-1 \leq \operatorname{mult}(\theta, G \backslash u) \leq \operatorname{mult}(\theta, G)+1
$$

Lemma 1.3 suggests that given any real number θ, we can classify the vertices of a graph according to an increase of 1 or a decrease of 1 or no change in the multiplicity of θ upon deletion of a vertex.

Definition 1.4. [3, Section 3] For any $u \in V(G)$,
(a) u is θ-essential if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)-1$,
(b) u is θ-neutral if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)$,
(c) u is θ-positive if $\operatorname{mult}(\theta, G \backslash u)=\operatorname{mult}(\theta, G)+1$.

Furthermore, if u is not θ-essential but it is adjacent to some θ-essential vertex, we say u is θ-special.

It turns out that θ-special vertices play an important role in the Gallai-Edmonds Decomposition of a graph (see [1]). Godsil [3, Corollary 4.3] proved that a θ-special vertex must be θ-positive. Note that if $\operatorname{mult}(\theta, G)=0$ then for any $u \in V(G), u$ is either θ-neutral or θ-positive and no vertices in G can be θ-special. Now $V(G)$ can be partitioned into the following sets:

$$
V(G)=D_{\theta}(G) \cup A_{\theta}(G) \cup P_{\theta}(G) \cup N_{\theta}(G)
$$

where
$D_{\theta}(G)$ is the set of all θ-essential vertices in G,
$A_{\theta}(G)$ is the set of all θ-special vertices in G,
$N_{\theta}(G)$ is the set of all θ-neutral vertices in G,
$P_{\theta}(G)=Q_{\theta}(G) \backslash A_{\theta}(G)$, where $Q_{\theta}(G)$ is the set of all θ-positive vertices in G.

Note that there are no 0-neutral vertices. So $N_{0}(G)=\varnothing$ and $V(G)=D_{0}(G) \cup A_{0}(G) \cup$ $P_{0}(G)$.

Definition 1.5. [3, Section 3] A graph G is said to be θ-critical if all vertices in G are θ-essential and $\operatorname{mult}(\theta, G)=1$.

The celebrated Gallai-Edmonds Structure Theorem describes the stability of a certain canonical decomposition of $V(G)$ with respect to the zero root of $\mu(G, x)$. In [1], Chen and Ku extended the Gallai-Edmonds Structure Theorem to any root $\theta \neq 0$, which consists of the following two theorems:

Theorem 1.6. [1, Theorem 1.5] (θ-Stability Lemma) Let G be a graph with θ a root of $\mu(G, x)$. If $u \in A_{\theta}(G)$ then
(i) $D_{\theta}(G \backslash u)=D_{\theta}(G)$,
(ii) $P_{\theta}(G \backslash u)=P_{\theta}(G)$,
(iii) $N_{\theta}(G \backslash u)=N_{\theta}(G)$,
(iv) $A_{\theta}(G \backslash u)=A_{\theta}(G) \backslash\{u\}$.

Theorem 1.7. [1, Theorem 1.7] (θ-Gallai's Lemma) If G is connected and every vertex of G is θ-essential then $\operatorname{mult}(\theta, G)=1$.

Theorem 1.6 asserts that the decomposition of $V(G)$ into $D_{\theta}(G), P_{\theta}(G), N_{\theta}(G)$ and $A_{\theta}(G)$ is stable upon deleting a θ-special vertex of G. We may delete every such vertex one by one until there are no θ-special vertices left. Together with Theorem 1.7, it is not hard to deduce the following whose proof is omitted.

Corollary 1.8.

(i) $A_{\theta}\left(G \backslash A_{\theta}(G)\right)=\varnothing, D_{\theta}\left(G \backslash A_{\theta}(G)\right)=D_{\theta}(G), P_{\theta}\left(G \backslash A_{\theta}(G)\right)=P_{\theta}(G)$, and $N_{\theta}(G \backslash$ $\left.A_{\theta}(G)\right)=N_{\theta}(G)$.
(ii) $G \backslash A_{\theta}(G)$ has exactly $\left|A_{\theta}(G)\right|+\operatorname{mult}(\theta, G) \theta$-critical components.
(iii) If H is a component of $G \backslash A_{\theta}(G)$ then either H is θ-critical or mult $(\theta, H)=0$.
(iv) The subgraph induced by $D_{\theta}(G)$ consists of all the θ-critical components in $G \backslash A_{\theta}(G)$.

This paper is devoted to the study of θ-super positive graphs. A graph is θ-super positive if θ is not a root of $\mu(G, x)$ but is a root of $\mu(G \backslash v, x)$ for every $v \in V(G)$. It is worth noting that G is 0 -super positive if and only if G has a perfect matching. While much is known about graphs with a perfect matching, almost nothing is known about θ-super positive graphs for $\theta \neq 0$. This gives us a motivation to investigate the structure of these graphs.

The outline of this paper is as follows:

In Section 2, we show how to construct θ-super positive graphs from smaller θ-super positive graphs (see Theorem 2.2). We prove that a tree is θ-super positive if and only if $\theta=0$ and it has a perfect matching (see Theorem 2.4). Consequently, a θ-super positive graph must contain a cycle when $\theta \neq 0$. For a connected vertex transitive graph G, we prove that it is θ-super positive for any root θ of $\mu(G \backslash v, x)$ where $v \in V(G)$ (see Theorem 2.8). Finally we prove that if G is θ-super positive, then $N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$ (see Theorem 2.9).

In Section 3, we introduce θ-elementary graphs. These are θ-super positive graphs with $P_{\theta}(G \backslash v)=\emptyset$ for all $v \in V(G)$. We prove a characterization of θ-elementary graphs: a graph G is θ-elementary if and only if the set of all θ-barrier sets form a partition of $V(G)$ (see Theorem 3.13).

In Section 4, we apply our results in Section 3 to prove that an n-cycle C_{n} is 1elementary if and only if $n=3 k$ for some $k \in \mathbb{N}$ (see Theorem 4.4). Furthermore, we prove that $C_{3 k}$ has exactly 3 1-barrier sets (see Corollary 4.5).

In Section 5, we introduce θ-base graphs which can be regarded as building blocks of θ-super positive graphs. We prove a characterization of θ-super positive graphs, namely a θ-super positive graph can be constructed from a disjoint union of θ-base graphs by adding certain type of edges; moreover, these θ-base graphs are uniquely determined by G (see Theorem 5.7 and Corollary 5.9).

2θ-super positive graphs

Definition 2.1. A graph G is θ-super positive if θ is not a root of $\mu(G, x)$ and every vertex of G is θ-positive.

By Lemma 1.3, this is equivalent to $\operatorname{mult}(\theta, G)=0$ and $\operatorname{mult}(\theta, G \backslash v)=1$ for all $v \in V(G)$. There are a lot of θ-super positive graphs. For instance the three cycle C_{3} and the six cycle C_{6} are 1-super positive. In the next theorem, we will show how to construct θ-super positive graphs from smaller θ-super positive graphs.

Theorem 2.2. Let G_{1} and G_{2} be two θ-super positive graphs and $v_{i} \in V\left(G_{i}\right)$ for $i=1,2$. Let G be the graph obtained by adding the edge $\left(v_{1}, v_{2}\right)$ to the union of G_{1} and G_{2}. Then G is θ-super positive.

Proof. Let $e=\left(v_{1}, v_{2}\right)$. First we prove that $\mu(G, \theta) \neq 0$. By part (b) of Theorem 1.2, we have $\mu(G, x)=\mu(G-e, x)-\mu\left(G \backslash v_{1} v_{2}, x\right)$. It then follows from part (a) of Theorem 1.2 that $\mu(G, x)=\mu\left(G_{1}, x\right) \mu\left(G_{2}, x\right)-\mu\left(G_{1} \backslash v_{1}, x\right) \mu\left(G_{2} \backslash v_{2}, x\right)$. Since G_{1} and G_{2} are θ-super positive, $\mu(G, \theta)=\mu\left(G_{1}, \theta\right) \mu\left(G_{2}, \theta\right) \neq 0$.

It is left to prove that $\mu(G \backslash v, \theta)=0$ for all $v \in V(G)$. Let $v \in V\left(G_{1}\right)$. Suppose $v=v_{1}$. Then by part (a) of Theorem 1.2, $\mu(G \backslash v, x)=\mu\left(G_{1} \backslash v_{1}, x\right) \mu\left(G_{2}, x\right)$, and
thus $\mu(G \backslash v, \theta)=0$. Suppose $v \neq v_{1}$. By part (b) of Theorem 1.2, $\mu(G \backslash v, x)=$ $\mu((G \backslash v)-e, x)-\mu\left((G \backslash v) \backslash v_{1} v_{2}, x\right)$. Note that $(G \backslash v)-e=\left(G_{1} \backslash v\right) \cup G_{2}$ and $(G \backslash v) \backslash v_{1} v_{2}=$ $\left(G_{1} \backslash v v_{1}\right) \cup\left(G_{2} \backslash v_{2}\right)$. Hence $\mu(G \backslash v, \theta)=\mu\left(G_{1} \backslash v, \theta\right) \mu\left(G_{2}, \theta\right)-\mu\left(G_{1} \backslash v v_{1}, \theta\right) \mu\left(G_{2} \backslash v_{2}, \theta\right)=0$ (part (a) of Theorem 1.2).

The case $v \in V\left(G_{2}\right)$ is proved similarly.
The graph G in Figure 1 is constructed by using Theorem 2.2, with $G_{1}=C_{6}$ and $G_{2}=C_{3}$. Therefore it is 1-super positive graph.

Figure 1.

It is clear that a 0 -super positive need not contain any cycle. However, we will show later that if G is θ-super positive and $\theta \neq 0$, then it must contain a cycle (see Corollary 2.5). Note that any tree T with at least three vertices can be represented in the following form (see Figure 2), where u is a vertex with $n+1$ neighbors v_{1}, \ldots, v_{n+1} such that all of them except possibly v_{1} have degree 1 and T_{1} is a subtree of T that contains v_{1}. Such a representation of T is denoted by $\left(T_{1}, u ; v_{1}, \ldots, v_{n+1}\right)$.

Figure 2.

Lemma 2.3. Let T be a tree with at least three vertices. Suppose T has a representation $\left(T_{1}, u ; v_{1}, \ldots, v_{n+1}\right)$. Then θ is a root of $\mu(T, x)$ if and only if

$$
\left(n-\theta^{2}\right) \theta^{n-1} \mu\left(T_{1}, \theta\right)+\theta^{n} \mu\left(T_{1} \backslash v_{1}, \theta\right)=0
$$

Proof. By part (c) of Theorem 1.2, $\mu(T, \theta)=\theta \mu(T \backslash u, \theta)-\sum_{i=1}^{n+1} \mu\left(T \backslash u v_{i}, \theta\right)$ (see Figure 2), which implies (using part (a) of Theorem 1.2),

$$
\mu(T, \theta)=\left(\theta^{2}-n\right) \theta^{n-1} \mu\left(T_{1}, \theta\right)-\theta^{n} \mu\left(T_{1} \backslash v_{1}, \theta\right)
$$

Hence the lemma holds.

Theorem 2.4. Let T be a tree. Then T is θ-super positive if and only if $\theta=0$ and it has a perfect matching.

Proof. Suppose T is θ-super positive and $\theta \neq 0$. Then T must have at least three vertices. By Lemma 2.3,

$$
\left(n-\theta^{2}\right) \theta^{n-1} \mu\left(T_{1}, \theta\right)+\theta^{n} \mu\left(T_{1} \backslash v_{1}, \theta\right) \neq 0
$$

By part (a) of Theorem 1.2, $0=\mu(T \backslash u, \theta)=\theta^{n} \mu\left(T_{1}, \theta\right)$ (see Figure 2). Therefore $\mu\left(T_{1}, \theta\right)=0$ and $\mu\left(T_{1} \backslash v_{1}, \theta\right) \neq 0$. Now $\mu\left(T \backslash v_{n+1}, \theta\right)=0$. By part (c) of of Theorem 1.2, $\mu\left(T \backslash v_{n+1}, \theta\right)=\theta \mu\left(T \backslash u v_{n+1}, \theta\right)-\sum_{i=1}^{n} \mu\left(T \backslash u v_{i} v_{n+1}, \theta\right)=\theta^{n} \mu\left(T_{1}, \theta\right)-(n-1) \theta^{n-2} \mu\left(T_{1}, \theta\right)-$ $\theta^{n-1} \mu\left(T_{1} \backslash v_{1}, \theta\right)$. This implies that $\mu\left(T_{1} \backslash v_{1}, \theta\right)=0$, a contradiction. Hence $\theta=0$. Since 0 is not a root of $\mu(T, x), T$ must have a perfect matching.

The converse is obvious.
A consequence of Theorem 2.4 is the following corollary.
Corollary 2.5. If G is θ-super positive for some $\theta \neq 0$, then G must contain a cycle.
We shall need the following lemmas.
Lemma 2.6. [4, Theorem 6.3](Heilmann-Lieb Identity) Let $u, v \in V(G)$. Then

$$
\mu(G \backslash u, x) \mu(G \backslash v, x)-\mu(G, x) \mu(G \backslash u v)=\sum_{p \in \mathcal{P}(u, v)} \mu(G \backslash p, x)^{2},
$$

where $\mathcal{P}(u, v)$ is the set of all the paths from u to v in G.
Lemma 2.7. [3, Lemma 3.1] Suppose mult $(\theta, G)>0$. Then G contains at least one θ-essential vertex.

Theorem 2.8. Let G be connected, vertex transitive and $z \in V(G)$. If θ is a root of $\mu(G \backslash z, x)$ then G is θ-super positive.

Proof. Since $G \backslash z$ is isomorphic to $G \backslash y$ for all $y \in V(G), \mu(G \backslash z, x)=\mu(G \backslash y, x)$ for all $y \in V(G)$. So mult $(\theta, G \backslash z)=\operatorname{mult}(\theta, G \backslash y)$. This implies that θ is a root of $\mu(G \backslash y, x)$ for all y.

Now it remains to show that $\mu(G, \theta) \neq 0$. Suppose the contrary. Then by Lemma 2.7, G has at least one θ-essential vertex. Since G is vertex transitive, all vertices in G are θ-essential. By Theorem 1.7, mult $(\theta, G)=1$. But then $\operatorname{mult}(\theta, G \backslash z)=0$, a contradiction. Hence $\mu(G, \theta) \neq 0$ and G is θ-super positive.

However, a θ-super positive graph is not necessarily vertex transitive (see Figure 1). Furthermore a θ-super positive graph is not necessary connected, for the union of two C_{3} is 1 -super positive.

Theorem 2.9. Let G be θ-super positive. Then $N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$.
Proof. Suppose $N_{\theta}(G \backslash v) \neq \varnothing$ for some $v \in V(G)$. Let $u \in N_{\theta}(G \backslash v)$. By Lemma 2.6,

$$
\mu(G \backslash u, x) \mu(G \backslash v, x)-\mu(G, x) \mu(G \backslash u v)=\sum_{p \in \mathcal{P}(u, v)} \mu(G \backslash p, x)^{2}
$$

Note that the multiplicity of θ as a root of $\mu(G \backslash u, x) \mu(G \backslash v, x)$ is 2 , while the multiplicity of θ as a root of $\mu(G, x) \mu(G \backslash v u, x)$ is 1 since u is θ-neutral in $G \backslash v$. Therefore the multiplicity of θ as a root of the polynomial on the left-hand side of the equation is at least 1 . But the multiplicity of θ as a root of the polynomial on the right-hand side of the equation is even and so, in comparison with the left-hand side, it must be at least 2. This forces the multiplicity of θ as a root of $\mu(G, x) \mu(G \backslash v u, x)$ to be at least 2 , a contradiction. Hence $N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$.

Now we know that for a θ-super positive graph $G, N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$. So it is quite natural to ask whether $P_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$. Well, this is not true in general (see Figure 1). This motivates us to study the θ-super positive graph G, for which $P_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$. We proceed to do this in the next section.

3θ-elementary graphs

Definition 3.1. A graph G is said to be θ-elementary if it is θ-super positive and $P_{\theta}(G \backslash$ $v)=\varnothing$ for all $v \in V(G)$.

The graph G in Figure 3 is 1 -elementary. Not every θ-positive graph is θ-elementary. For instance, the graph in Figure 1 is not 1-elementary.

Figure 3.

Theorem 3.2. A graph G is θ-elementary if and only if $\operatorname{mult}(\theta, G)=0$ and $P_{\theta}(G \backslash v) \cup$ $N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$.

Proof. Suppose $\operatorname{mult}(\theta, G)=0$ and $P_{\theta}(G \backslash v) \cup N_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$. For each $v \in V(G), G \backslash v$ must consist entirely of θ-essential and θ-special vertices and must have at least one θ-essential vertex; therefore $\operatorname{mult}(\theta, G \backslash v)=1$. Therefore G is θ-super positive and it is θ-elementary.

The other implication follows from Theorem 2.9.

It turns out that the notion of a 0-elementary graph coincide with the classical notion of an elementary graph. Properties of elementary graphs can be found in Section 5.1 on p. 145 of [11].

The number of θ-critical components in G is denoted by $c_{\theta}(G)$.
Definition 3.3. A θ-barrier set is defined to be a set $X \subseteq V(G)$ for which $c_{\theta}(G \backslash X)=$ $\operatorname{mult}(\theta, G)+|X|$.

A θ-extreme set in G is defined to be a set $X \subseteq V(G)$ for which mult $(\theta, G \backslash X)=$ $\operatorname{mult}(\theta, G)+|X|$.
θ-barrier sets and θ-extreme sets can be regarded as θ-analogue of Tutte sets and extreme sets in classical matching theory. Properties of θ-barrier sets and θ-extreme sets have been studied by Ku and Wong [5]. In particular, the following results are needed.

Lemma 3.4. [5, Lemma 2.4] A subset of a θ-extreme set is a θ-extreme set.
Lemma 3.5. [5, Lemma 2.5] If X is a θ-barrier set in G and $Y \subseteq X$ then $X \backslash Y$ is a θ-barrier set in $G \backslash Y$.

Lemma 3.6. [5, Lemma 2.6] Every θ-extreme set in G lies in a θ-barrier set in G.
Lemma 3.7. [5, Lemma 2.7] Let X be a θ-barrier set in G. Then X is a θ-extreme set in G.

Lemma 3.8. [5, Lemma 3.1] If X is a θ-barrier set in G then $X \subseteq A_{\theta}(G) \cup P_{\theta}(G)$.
Lemma 3.9. [5, Theorem 3.5] Let X be a θ-barrier set in G. Then $A_{\theta}(G) \subseteq X$.
Lemma 3.10. Let G be a graph. If X is a θ-barrier set in $G, x \in X$ and $P_{\theta}(G \backslash x)=\varnothing$, then $A_{\theta}(G \backslash x)=X \backslash\{x\}$.

Proof. By Lemma 3.5, $X \backslash\{x\}$ is a θ-barrier set in $G \backslash x$. By Lemma 3.8, $X \backslash\{x\} \subseteq$ $A_{\theta}(G \backslash x) \cup P_{\theta}(G \backslash x)$. Therefore $X \backslash\{x\} \subseteq A_{\theta}(G \backslash x)$. It then follows from Lemma 3.9 that $A_{\theta}(G \backslash x)=X \backslash\{x\}$.

Definition 3.11. We define $\mathfrak{P}(\theta, G)$ to be the set of all the θ-barrier sets in G.
Note that in Figure 3, $\mathfrak{P}(1, G)=\left\{\left\{u_{1}\right\},\left\{u_{2}\right\},\left\{u_{3}, u_{4}\right\},\left\{u_{5}\right\},\left\{u_{6}\right\}\right\}$. Now Lemma 3.12 follows from part (c) of Theorem 1.2.

Lemma 3.12. Suppose G is θ-super positive. Then for each $v \in V(G)$ there is a $u \in V(G)$ with $(u, v) \in E(G)$ and $\operatorname{mult}(\theta, G \backslash u v)=0$.

Theorem 3.13. A graph G is θ-elementary if and only if $\mathfrak{P}(\theta, G)$ is a partition of $V(G)$.

Proof. Let $\mathfrak{P}(\theta, G)=\left\{S_{1}, \ldots, S_{k}\right\}$.
(\Rightarrow) Suppose G is θ-elementary. Then for each $v \in V(G),\{v\}$ is a θ-extreme set. By Lemma 3.6, it is contained in some θ-barrier set. Therefore $V(G)=S_{1} \cup \cdots \cup S_{k}$. It remains to prove that $S_{i} \cap S_{j}=\varnothing$ for $i \neq j$. Suppose the contrary. Let $x \in S_{i} \cap S_{j}$. By Lemma 3.10, $S_{i} \backslash\{x\}=A_{\theta}(G \backslash x)=S_{j} \backslash\{x\}$ and so $S_{i}=S_{j}$, a contradiction. Hence $S_{i} \cap S_{j}=\varnothing$ for $i \neq j$ and $\mathfrak{P}(\theta, G)$ is a partition of $V(G)$.
(\Leftarrow) Suppose $\mathfrak{P}(\theta, G)$ is a partition of $V(G)$. Let $v \in V(G)$. Then $v \in S_{i}$ for some θ barrier set S_{i}. By Lemma 3.8, $v \in A_{\theta}(G) \cup P_{\theta}(G)$. Therefore $V(G) \subseteq A_{\theta}(G) \cup P_{\theta}(G)$. This implies that $\operatorname{mult}(\theta, G)=0$, for otherwise $D_{\theta}(G) \neq \varnothing$ by Lemma 2.7. Hence $A_{\theta}(G)=\varnothing$ and $V(G)=P_{\theta}(G)$, i.e., G is θ-super positive. It remains to show that $P_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$. Suppose the contrary. Then $P_{\theta}\left(G \backslash v_{0}\right) \neq \varnothing$ for some $v_{0} \in V(G)$. We may assume $v_{0} \in S_{1}$. By Corollary 1.8, $\left(G \backslash v_{0}\right) \backslash A_{\theta}\left(G \backslash v_{0}\right)$ has a component H for which $\operatorname{mult}(\theta, H)=0$. By Theorem 2.9, $N_{\theta}\left(G \backslash v_{0}\right)=\varnothing$. So we conclude that H is θ-super positive. Let $w \in H$. By Lemma 3.12, there is a $z \in V(H)$ with $(w, z) \in E(H)$ and $\operatorname{mult}(\theta, H \backslash w z)=0$. By part (a) of Theorem 1.2, and, (ii) and (iii) of Corollary 1.8, $\operatorname{mult}\left(\theta,\left(\left(G \backslash v_{0}\right) \backslash A_{\theta}\left(G \backslash v_{0}\right)\right) \backslash w z\right)=1+\left|A_{\theta}\left(G \backslash v_{0}\right)\right|$.

On the other hand, by Lemma 3.5, $S_{1} \backslash\left\{v_{0}\right\}$ is a θ-barrier set in $G \backslash v_{0}$. So by Lemma 3.9, $A_{\theta}\left(G \backslash v_{0}\right) \subseteq S_{1} \backslash\left\{v_{0}\right\}$. By Lemma 3.5 again, $S_{1} \backslash\left(\left\{v_{0}\right\} \cup A_{\theta}\left(G \backslash v_{0}\right)\right)$ is a θ-barrier set in $\left(G \backslash v_{0}\right) \backslash A_{\theta}\left(G \backslash v_{0}\right)$. Note that w is θ-positive in $G \backslash v_{0}$ (by Corollary 1.8). Therefore $\left\{w, v_{0}\right\}$ is an θ-extreme set in G. By Lemma 3.6, $\left\{w, v_{0}\right\}$ is contained in some θ-barrier set in G. Since $\mathfrak{P}(\theta, G)$ is a partition of $V(G)$ and $v_{0} \in S_{1}$, we must have $\left\{w, v_{0}\right\} \subseteq S_{1}$. Note also z is θ-positive in $G \backslash v_{0}$ (recall that H is θ-super positive). Using a similar argument, we can show that $\left\{z, v_{0}\right\} \subseteq S_{1}$. By Lemma 3.4 and Lemma 3.7, we conclude that $\{w, z\} \subseteq S_{1} \backslash\left(\left\{v_{0}\right\} \cup A_{\theta}\left(G \backslash v_{0}\right)\right)$ is a θ-extreme set in $\left(G \backslash v_{0}\right) \backslash A_{\theta}\left(G \backslash v_{0}\right)$. This implies that mult $\left(\theta,\left(\left(G \backslash v_{0}\right) \backslash A_{\theta}\left(G \backslash v_{0}\right)\right) \backslash w z\right)=3+\left|A_{\theta}\left(G \backslash v_{0}\right)\right|$, contradicting the last sentence of the preceding paragraph. Hence $P_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$ and G is θ-elementary.

Lemma 3.14. Suppose G is θ-elementary. Then for each $\varnothing \neq X \subseteq S \in \mathfrak{P}(\theta, G)$, $A_{\theta}(G \backslash X)=S \backslash X$ and $P_{\theta}(G \backslash X) \cup N_{\theta}(G \backslash X)=\varnothing$.

Proof. Let $x \in X$. Then $P_{\theta}(G \backslash x)=\varnothing$. By Theorem 2.9, $N_{\theta}(G \backslash x)=\varnothing$. Now by Lemma 3.10, $S \backslash\{x\}=A_{\theta}(G \backslash x)$ so that $X \backslash\{x\} \subseteq S \backslash\{x\}=A_{\theta}(G \backslash x)$. By Theorem 1.6, we conclude that $A_{\theta}(G \backslash X)=S \backslash X$ and $P_{\theta}(G \backslash X) \cup N_{\theta}(G \backslash X)=\varnothing$.

Corollary 3.15. Suppose G is θ-elementary. Let $S \subseteq V(G)$. Then $S \in \mathfrak{P}(\theta, G)$ if and only if $G \backslash S$ has exactly $|S|$ components and each is θ-critical.

Proof. Suppose $G \backslash S$ has exactly $|S|$ components and each is θ-critical. Then $c_{\theta}(G \backslash S)=$ $|S|$ and S is a θ-barrier set in G. Hence $S \in \mathfrak{P}(\theta, G)$.

The other implication follows from Lemma 3.14 and Corollary 1.8.

4 1-elementary cycles

We shall need the following lemmas.
Lemma 4.1. [10, Corollary 4.4] Suppose G has a Hamiltonian path P and θ is a root of $\mu(G, x)$. Then every vertex of G which is not θ-essential must be θ-special.
Lemma 4.2. Let p_{n} be a path with $n \geq 1$ vertices. Then

$$
\mu\left(p_{n}, 1\right)= \begin{cases}1, & \text { if } n \equiv 0 \text { or } 1 \quad \bmod 6 \\ -1, & \text { if } n \equiv 3 \text { or } 4 \quad \bmod 6 \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Note that for $t \geq 2, \mu\left(p_{t}, x\right)=x \mu\left(p_{t-1}, x\right)-\mu\left(p_{t-2}, x\right)$ (part (c) of Theorem 1.2), where we define $\mu\left(p_{0}, x\right)=1$. Therefore $\mu\left(p_{t}, 1\right)=\mu\left(p_{t-1}, 1\right)-\mu\left(p_{t-2}, 1\right)$. Now $\mu\left(p_{1}, 1\right)=1$. So, $\mu\left(p_{2}, 1\right)=0$, and recursively we have $\mu\left(p_{3}, 1\right)=-1, \mu\left(p_{4}, 1\right)=-1$ and $\mu\left(p_{5}, 1\right)=0$. By induction the lemma holds.
Lemma 4.3. Let C_{n} be a cycle with $n \geq 3$ vertices. Then

$$
\mu\left(C_{n}, 1\right)= \begin{cases}1, & \text { if } n \equiv 1 \text { or } 5 \bmod 6 \\ -1, & \text { if } n \equiv 2 \text { or } 4 \bmod 6 \\ 2, & \text { if } n \equiv 0 \bmod 6 \\ -2, & \text { if } n \equiv 3 \bmod 6\end{cases}
$$

Proof. By part (c) of Theorem 1.2, $\mu\left(C_{n}, 1\right)=\mu\left(p_{n-1}, 1\right)-2 \mu\left(p_{n-2}, 1\right)$. The lemma follows from Lemma 4.2.
Theorem 4.4. A cycle C_{n} is 1-elementary if and only if $n=3 k$ for some $k \in \mathbb{N}$.
Proof. (\Rightarrow) Suppose C_{n} is 1-elementary. Then for any $v \in V\left(C_{n}\right), C_{n} \backslash v=p_{n-1}$. By Lemma 4.2, $\operatorname{mult}\left(1, p_{n-1}\right)>0$ if and only if $n-1 \equiv 2$ or $5 \bmod 6$. Thus $n=3 k$ for some $k \in \mathbb{N}$.
(\Leftarrow) Suppose $n=3 k$ for some $k \in \mathbb{N}$. By Lemma 4.3, mult $\left(1, C_{n}\right)=0$. Note that $3 k \equiv 3$ or $6 \bmod 6$. Therefore $3 k-1 \equiv 2$ or $5 \bmod 6$, and by Lemma 4.2 and Lemma 1.3, $\operatorname{mult}\left(1, C_{n} \backslash v\right)=\operatorname{mult}\left(1, p_{n-1}\right)=1$ for all $v \in V\left(C_{n}\right)$. Thus C_{n} is 1 -super positive. By Lemma 4.1, $P_{1}\left(C_{n} \backslash v\right)=\varnothing$ for all $v \in V\left(C_{n}\right)$. Hence C_{n} is 1-elementary.

For our next result, let us denote the vertices of $C_{3 k}$ by $1,2,3, \ldots, 3 k$ (see Figure 4).

Figure 4.

Corollary 4.5. $C_{3 k}$ has exactly 3 1-barrier sets, that is

$$
\mathfrak{P}\left(1, C_{3 k}\right)=\{\{1,4,7, \ldots, 3 k-2\},\{2,5,8, \ldots, 3 k-1\},\{3,6,9, \ldots, 3 k\}\} .
$$

Proof. Note that $C_{3 k} \backslash\{1,4,7, \ldots, 3 k-2\}$ is a disjoint union of k number of K_{2} and K_{2} is 1 -critical. So $\{1,4,7, \ldots, 3 k-2\}$ is a 1 -barrier set. Similarly $\{2,5,8, \ldots, 3 k-1\}$ and $\{3,6,9, \ldots, 3 k\}$ are 1 -barrier sets. It then follows from Theorem 4.4 and Theorem 3.13 that these are the only 1 -barrier sets.

5 Decomposition of θ-super positive graphs

Definition 5.1. A set $X \subseteq V(G)$ with $|X|>1$ is said to be independent in G if for all $u, v \in X, u$ and v are not adjacent to each other. A graph G is said to be θ-base if it is θ-super positive and for all $S \in \mathfrak{P}(\theta, G), S$ is independent.

Note that the cycle $C_{3 k}$ is θ-base for $\theta=1$. In fact a connected θ-base graph is θ-elementary.

Theorem 5.2. A connected θ-base graph is θ-elementary.
Proof. Let G be θ-base. Suppose it is not θ-elementary. Then $P_{\theta}(G \backslash v) \neq \varnothing$ for some $v \in V(G)$. By Lemma 2.7, $G \backslash v$ has at least one θ-essential vertex. Moreover, by Theorem $2.9, N_{\theta}(G \backslash v)=\varnothing$.

If v is not a cut vertex of G, then there exists a path from $P_{\theta}(G \backslash v)$ to $D_{\theta}(G \backslash v)$, which implies that $A_{\theta}(G \backslash v) \neq \varnothing$. By Theorem 2.9 and Corollary 1.8, $(G \backslash v) \backslash A_{\theta}(G \backslash v)$ has a θ-super positive component, say H. Since $G \backslash v$ is connected, there exists $h \in V(H)$ that is adjacent to some element $w \in A_{\theta}(G \backslash v)$. Note that $\{h, w, v\}$ is a θ-extreme set in G. By Lemma 3.4, $\{h, w\}$ is a θ-extreme set in G. By Lemma 3.6, $\{h, w\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent.

If v is a cut vertex of G, then either $G \backslash v$ does not have any θ-super positive components or $G \backslash v$ contains a θ-super positive component (recall that $N_{\theta}(G \backslash v)=\varnothing$). In the former, $G \backslash v$ must contain a component H such that $A_{\theta}(H) \neq \emptyset$ and $P_{\theta}(H) \neq \emptyset$. Since H is connected, there is a vertex $h \in P_{\theta}(H)$ that is joined to some vertex $w \in A_{\theta}(H)$. Note that $\{h, w, v\}$ is a θ-extreme set in G. By Lemma 3.4, $\{h, w\}$ is a θ-extreme set in G. By Lemma 3.6, $\{h, w\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent. In the latter, some vertex in the θ-super positive component, say u, must be joined to v so that $\{u, v\}$ is a θ-extreme set in G. Again, by Lemma 3.6, $\{u, v\}$ is contained in some $S \in \mathfrak{P}(\theta, G)$, contrary to the fact that S is independent.

Hence $P_{\theta}(G \backslash v)=\varnothing$ for all $v \in V(G)$ and G is θ-elementary.
Note that the converse of Theorem 5.2 is not true. Let G be the graph in Figure 3. Note that $\left\{u_{3}, u_{4}\right\} \in \mathfrak{P}(1, G)$ but it is not independent.

Lemma 5.3. Let G be θ-super positive and $e=(u, v) \in E(G)$ such that $\{u, v\}$ is a θ extreme set in G. Let G^{\prime} be the graph obtained by removing the edge e from G. Then G^{\prime} is θ-super positive.

Proof. Now mult $(\theta, G \backslash u v)=2$. By part (b) of Theorem 1.2, $\mu(G, x)=\mu\left(G^{\prime}, x\right)-\mu(G \backslash$ $u v, x)$. This implies that $\mu\left(G^{\prime}, \theta\right)=\mu(G, \theta) \neq 0$.

It is left to show that $\mu\left(G^{\prime} \backslash w, \theta\right)=0$ for all $w \in V\left(G^{\prime}\right)$. Clearly if $w=u$ or v then $\mu\left(G^{\prime} \backslash w, \theta\right)=\mu(G \backslash w, \theta)=0$. Suppose $w \neq u, v$. By part (b) of Theorem 1.2 again, $\mu(G \backslash w, x)=\mu\left(G^{\prime} \backslash w, x\right)-\mu(G \backslash w u v, x)$. By Lemma 1.3, mult $(\theta, G \backslash u v w) \geq 1$. Therefore $\mu\left(G^{\prime} \backslash w, \theta\right)=\mu(G \backslash w, \theta)=0$. Hence G^{\prime} is θ-super positive.

Note that after removing an edge from G as in Lemma 5.3, $\mathfrak{P}\left(\theta, G^{\prime}\right) \neq \mathfrak{P}(\theta, G)$ in general. In Figure $5, \mathfrak{P}(1, G)=\{\{1,4,7\},\{5,8\},\{6,9\},\{2\},\{3\}\}$. After removing the edge $(1,4)$ from G, the resulting graph $G^{\prime}=C_{9}$. By Corollary 4.5, $\mathfrak{P}\left(1, G^{\prime}\right)=$ $\{\{1,4,7\},\{2,5,8\},\{3,6,9\}\}$.

Figure 5.

We shall need the following lemma.
Lemma 5.4. [3, Corollary 2.5] For any root θ of $\mu(G, x)$ and a path p in G,

$$
\operatorname{mult}(\theta, G \backslash p) \geq \operatorname{mult}(\theta, G)-1
$$

Lemma 5.5. Let G be θ-super positive and $e_{1}=(u, v) \in E(G)$ with $\{u, v\}$ is a θ-extreme set. Let $G^{\prime}=G-e_{1}$ and $e_{2}=(w, z) \in E\left(G^{\prime}\right)$. Then $\{w, z\}$ is a θ-extreme set in G^{\prime} if and only if it is a θ-extreme set in G.

Proof. Case 1. Suppose e_{1} and e_{2} have a vertex in common, say $w=u$. Then $G^{\prime} \backslash w z=$ $G \backslash w z$.
(\Rightarrow) Suppose $\{w, z\}$ is a θ-extreme set in G^{\prime}. By Lemma 5.3 , mult $\left(\theta, G^{\prime}\right)=0$. Therefore $\operatorname{mult}(\theta, G \backslash w z)=\operatorname{mult}\left(\theta, G^{\prime} \backslash w z\right)=2$ and $\{w, z\}$ is a θ-extreme set in G.
(\Leftarrow) The converse is proved similarly.
Case 2. Suppose e_{1} and e_{2} have no vertex in common. By part (b) of Theorem 1.2,

$$
\mu(G \backslash w z, x)=\mu\left(G^{\prime} \backslash w z, x\right)-\mu(G \backslash w z u v, x)
$$

(\Rightarrow) Suppose $\{w, z\}$ is a θ-extreme set in G^{\prime}. Then $\operatorname{mult}\left(\theta, G^{\prime} \backslash w z\right)=2$. Now $\operatorname{mult}(\theta, G \backslash u v)=2$ and by Lemma $5.4, \operatorname{mult}(\theta, G \backslash u v w z) \geq 1$. So we conclude that $\operatorname{mult}(\theta, G \backslash w z) \geq 1$. On the other hand, $N_{\theta}(G \backslash w)=\varnothing$ (Theorem 2.9). Therefore either $\operatorname{mult}(\theta, G \backslash w z)=0$ or 2 . Hence the latter holds and $\{w, z\}$ is a θ-extreme set in G.
(\Leftarrow) Suppose $\{w, z\}$ is a θ-extreme set in G. Then $\operatorname{mult}(\theta, G \backslash w z)=2$. As before we have $\operatorname{mult}(\theta, G \backslash u v w z) \geq 1$. So we conclude that $\operatorname{mult}\left(\theta, G^{\prime} \backslash w z\right) \geq 1$. On the other hand, by Lemma 5.3, G^{\prime} is θ-super positive. Therefore $N_{\theta}\left(G^{\prime} \backslash w\right)=\varnothing$ (Theorem 2.9), and then either mult $\left(\theta, G^{\prime} \backslash w z\right)=0$ or 2 . Hence the latter holds and $\{w, z\}$ is a θ-extreme set in G^{\prime}.

Definition 5.6. Let G be θ-super positive. An edge $e=(u, v) \in E(G)$ is said to be θ-extreme in G if $\{u, v\}$ is a θ-extreme set.

The process described in Lemma 5.3, can be iterated. Let $Y_{0}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \subseteq E(G)$ be the set of all θ-extreme edges. Let $G_{1}=G-e_{1}$. Then G_{1} is θ-super positive (Lemma 5.3). Let Y_{1} be the set of all θ-extreme edges in G_{1}. Then by Lemma 5.5, $Y_{1}=Y_{0} \backslash\left\{e_{1}\right\}$. Now let $G_{2}=G_{1}-e_{2}$. By applying Lemma 5.3 and Lemma 5.5 , we see that G_{2} is θ-super positive and the set of all θ-extreme edges in G_{2} is $Y_{2}=Y_{0} \backslash\left\{e_{1}, e_{2}\right\}$. By continuing this process, after k steps, we see that $G_{k}=G-e_{1} e_{2} \ldots e_{k}$ is θ-super positive and the set of all θ-extreme edges in G_{k} is $Y_{k}=\varnothing$. We claim that G_{k} is a disjoint union of θ-base graphs. Suppose the contrary. Let H be a component of G_{k} that is not θ-base. Since G_{k} is θ-super positive, by part (a) of Theorem 1.2 , we deduce that H is θ-super positive. Therefore there is a $S \in \mathfrak{P}(\theta, H)$ for which S is not independent. Let $e=(u, v) \in E(H)$ with $\{u, v\} \subseteq S$. By Lemma 3.7 and Lemma 3.4, $\{u, v\}$ is a θ-extreme set in H. This means that e is θ-extreme in H, and by part (a) of Theorem $1.2, e$ is θ-extreme in G_{k}, contrary to the fact that $Y_{k}=\varnothing$. Hence H is θ-base and we have proved the following theorem.

Theorem 5.7. Let G be θ-super positive. Then G can be decomposed into a disjoint union of θ-base graphs by deleting its θ-extreme edges. Furthermore, the decomposition is unique, i.e. the θ-base graphs are uniquely determined by G.

The proof of the next lemma is similar to Lemma 5.3, and is thus omitted.
Lemma 5.8. Let G be θ-super positive and $\{u, v\}$ is a θ-extreme set with $e=(u, v) \notin$ $E(G)$. Let G^{\prime} be the graph obtained by adding the edge e to G. Then G^{\prime} is θ-super positive.

Using the process described in Lemma 5.8, we can construct θ-super positive graph from θ-base graphs. Together with Theorem 5.7, we see that every θ-super positive can be constructed from θ-base graphs.

Corollary 5.9. A graph is θ-super positive if and only if it can be constructed from θ-base graphs.

In the next theorem, we shall extend Theorem 2.2.
Theorem 5.10. Let G_{1} and G_{2} be two θ-super positive graphs and $S_{i} \in \mathfrak{P}\left(\theta, G_{i}\right)$ for $i=1,2$. Let G be the graph obtained by adding the edges $e_{1}, e_{2}, \ldots, e_{m}$ to the union of G_{1} and G_{2}, where each e_{j} contains a point in S_{1} and S_{2}. Then G is θ-super positive.

Proof. We shall prove by induction on m. If $m=1$, we are done by Theorem 2.2. Suppose $m \geq 2$. Assume that it is true for $m-1$. Let G^{\prime} be the graph obtained by adding the edges $e_{1}, e_{2}, \ldots, e_{m-1}$ to the union of G_{1} and G_{2}. By induction G^{\prime} is θ-super positive. Let $e_{m}=\left(v_{1}, v_{2}\right)$ where $v_{i} \in S_{i}$. Note that the number of θ-critical components in $G^{\prime} \backslash\left(S_{1} \cup S_{2}\right)$ is $c_{\theta}\left(G^{\prime} \backslash\left(S_{1} \cup S_{2}\right)\right)=c_{\theta}\left(G_{1} \backslash S_{1}\right)+c_{\theta}\left(G_{2} \backslash S_{2}\right)=\left|S_{1}\right|+\left|S_{2}\right|$. So $S_{1} \cup S_{2}$ is a θ-barrier set in G^{\prime}. By Lemma 3.7 and Lemma 3.4, $\left\{v_{1}, v_{2}\right\}$ is a θ-extreme set in G^{\prime}. Therefore by Lemma 5.8, G is θ-super positive.

In Figure 6, the graph G is obtained from two 1-base graphs by adding edges e_{1} and e_{2}.

Figure 6.

Acknowledgment

We would like to thank the anonymous referee for the comments that helped us make several improvements to this paper.

References

[1] W. Chen and C. Y. Ku, An analogue of the Gallai-Edmonds structure theorem for nonzero roots of the matching polynomial, Journal of Combinatorial Theory Series B 100 (2010), 119-127.
[2] C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York (1993).
[3] C. D. Godsil, Algebraic matching theory, The Electronic Journal of Combinatorics 2 (1995), \# R8.
[4] O. J. Heilmann and E. H. Lieb, Theory of monomer-dimer system, Commun. Math. Physics 25 (1972), 190-232.
[5] C. Y. Ku and K. B. Wong, Extensions of barrier sets to nonzero roots of the matching polynomial, Discrete Mathematics 310 (2010), 3544-3550.
[6] C. Y. Ku and K. B. Wong, Gallai-Edmonds structure theorem for weighted matching polynomial, available at http://arxiv.org/abs/1006.1028.
[7] C. Y. Ku and K. B. Wong, Generalized D-graphs for nonzero roots of the matching polynomial, Discrete Mathematics 311 (2011), 2174-2186.
[8] C. Y. Ku and K. B. Wong, Generalizing Tutte's theorem and saturated nonfactorizable graphs, submitted.
[9] C. Y. Ku and K. B. Wong, Maximum multiplicity of a root of the matching polynomial of a tree and minimum path cover, The Electronic Journal of Combinatorics 16 (2009), \#R81.
[10] C. Y. Ku and K. B. Wong, Maximum multiplicity of matching polynomial roots and minimum path cover in general graph, The Electronic Journal of Combinatorics 18 (2011), \#P38.
[11] L. Lovász and M. D. Plummer, Matching Theory, Elsevier Science Publishers, Budapest (1986).

