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Abstract

Let XG be the number of copies of G in the Erdős-Rényi binomial random graph
G(n, p). Janson, Oleszkiewicz and Ruciński proved that for every t > 1

exp{−Ot(M
∗
G ln(1/p))} 6 P {XG > tEXG} 6 exp{−Ωt(M

∗
G)},

where M∗G is a certain function of n and p. For G = K3 the logarithmic gap between
the bounds was closed by Chatterjee and, independently, DeMarco and Kahn. We
provide matching bounds for strictly balanced G, when EXG 6 lnn. Also, we
give matching bounds for C4, K4, and stars K1,k in a broader range of EXG. In
particular, this improves some results of Janson and Ruciński for which the so called
deletion method was used.

1 Introduction

For a fixed graph G, let XG be the number of copies of G in the random graph G(n, p)
(see, e.g., [5] for definition) and let µG = EXG. We consider the asymptotics of

− lnP {XG > tµG}

for fixed t > 1, as n→∞. In the sequel, we always assume that G has at least one edge.
We use the asymptotic notation O,Ω,Θ, o,�,� as it is defined in [5] with implicit

constants possibly depending on G. Subscripts added to these symbols indicate additional
parameters on which the implicit constants depend. We treat p as a function of n, and n
is assumed to be sufficiently large. The numbers of vertices and edges of a graph H are
denoted, respectively, by vH and eH .

Let ΨH = nvHpeH � µH , and ΦG = minH⊆G ΨH , where the minimum is taken over
subgraphs H with eH > 0. Let mG = maxH⊆G eH/vH be the maximum density of G.
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In the present paper we assume, for simplicity, that p > n−1/mG . This is equivalent to
ΦG > 1. Recall that n−1/mG is the threshold for the event {XG > 0}. See [6, Remark 8.1]
for an explanation of why we are not interested in p below the threshold.

Also, to avoid some trivialities, we assume that tµG is at most the number of copies
of G in Kn, since otherwise P {XG > tµG} = 0.

Janson, Oleszkiewicz and Ruciński [6] proved that for every t > 1

pOt(M∗G) 6 P {XG > tµG} 6 exp{−Ωt(M
∗
G)}. (1)

In (1), M∗
G is a function of n and p satisfying

M∗
G �

{
minH⊆G Ψ

1/α∗H
H , if p 6 n−1/∆G ,

n2p∆G , if p > n−1/∆G ,
(2)

where α∗H stands for the fractional independence number, defined as the maximum of∑
v αv over all assignments of nonnegative weights αv to the vertices satisfying αu+αv 6 1

for every edge uv ofH (see [6] for some properties of α∗H), while ∆G is the maximum degree.
For example, α∗K3

= 3/2, and M∗
K3
� n2p2 for all p.

One should bear in mind that the right-hand side of (2) is continuous as a function
of p, and takes a simple form napb with some constants a, b > 0 in each of a finite number
of intervals (see [6, Section 7] for a thorough analysis).

The logarithms of the upper and lower bounds in (1) differ by a multiplicative factor
ln(1/p). Recently Chatterjee [1] and, independently, DeMarco and Kahn [3] closed this
logarithmic gap for G = K3. Chatterjee proved that if p > Cn−1 lnn, where C is a
constant depending on t, then

P {XK3 > tµK3} = exp
{
−Θt

(
n2p2 ln(1/p)

)}
, (3)

which means that in this range of p the lower bound in (1) is sharp. Shorly after the
preprint of Chatterjee [1] was posted, a preprint by DeMarco and Kahn [3] appeared
on arXiv with an alternative proof of (3) for p > n−1 lnn. They also proved that if
n−1 6 p 6 n−1 lnn, then

P {XK3 > tµK3} = exp
{
−Θt

(
n3p3

)}
. (4)

Thus, in a small range above the threshold neither of the bounds in (1) is sharp. Asymp-
totics (3) and (4) can be combined into a single result:

P {XK3 > tµK3} = exp
{
−Θt

(
min

{
ΨK3 ,M

∗
K3

ln(1/p)
})}

. (5)

A graphG is called balanced if maxH⊆G eH/vH is attained byH = G, and, in particular,
strictly balanced, if it is attained by H = G only.

The first result of this paper is the following theorem, which gives asymptotics analo-
gous to (4) for strictly balanced G, when ΨG is logarithmically small.
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Theorem 1. Let G be a strictly balanced graph. Then, for every t > 1 and ΨG 6 lnn,

P {XG > tµG} 6 exp{−Ωt(µG)}, (6)

and for ΨG 6 lna n, where a = α∗G/(α
∗
G − 1),

P {XG > tµG} > exp{−Ot(µG)}. (7)

Let us clarify the above restrictions on ΨG. The upper (respectively, lower) bound holds
for ΨG 6 B lnn (respectively, ΨG 6 B lna n) for any fixed B > 0, if we let the implicit
constants depend on B. Therefore, for simplicity, we take B = 1. For the upper bound (6)
the restriction ΨG 6 lnn seems to be a technical limitation. It is the cost we pay for the
simplicity of the proof. We hope that with more effort it can be relaxed to ΨG 6 lna n to
match the range of the validity of the lower bound. A suggestion how one could try to
obtain such a relaxation is outlined in Remark 3.

Remark 1. The lower bound (7) is obtained by extending the approach of DeMarco and
Kahn [3]. The bound holds much more generally, but in Theorem 1 we state it only
for the range where it is better than the lower bound in (1). In other words, inequality
ΨG 6 lna n is roughly equivalent to µG 6M∗

G ln(1/p) (see Remark 2).

Actually, in the proof of (7) we bound the tail P {XG > tµG} from below by the
probability that the number of copies is exactly dtµGe, and, moreover, these copies are
vertex-disjoint.

During his plenary lecture at the conference “Random Structures and Algorithms,
Atlanta, May 2011” J. Kahn presented a result (to appear in [2]) that for any clique
G = Kr asymptotics analogous to (5) hold, namely,

P {XKr > tµKr} = exp
{
−Θt

(
min{µKr ,M

∗
Kr

ln(1/p)}
)}
. (8)

In the same lecture the following conjecture of DeMarco and Kahn was stated:

Conjecture 1. If G is a graph and t > 1, then for every p

P {XG > tµG} = exp{−Θt(min{ΦG,M
∗
G ln(1/p)})}.

Moreover, in the aforementioned talk it was mentioned that for any graph G and any
subgraph H ⊆ G it is not hard to prove that

P {XG > 2µG} > exp {−O(µH)} , (9)

which is more general than (7). However, we do not know whether a proof of (9) in full
generality is going to be published soon. Therefore, acknowledging the origin of the idea,
we provide a proof of (7).

In this paper we also prove the asymptotics for G = K4, C4, and G = K1,k, k > 2,
thus supporting Conjecture 1. We still assume some conditions for p, but these are less
restrictive than the condition ΨG 6 lnn assumed in Theorem 1: the order of ΨG may
now be a power of n. Note that all these graphs are strictly balanced.
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Theorem 2. Let γ > 0 and t > 1.

(i) If p 6 n−4/5−γ, then

P {XC4 > tµC4} = exp
{
−Θt,γ

(
min

{
ΨC4 ,M

∗
C4

lnn
})}

.

(ii) If p 6 n−1/2−γ, then

P {XK4 > tµK4} = exp
{
−Θt,γ

(
min

{
ΨK4 ,M

∗
K4

lnn
})}

.

(iii) For every k > 2, if K = K1,k is the k-armed star and p 6 n−θ−γ, where θ =
1 + k−1 − k−2, then

P {XK > tµK} = exp {−Θt,γ (min {ΨK ,M
∗
K lnn})} .

Notice that the threshold for the existence of the star K1,k is p = n−1−k−1
.

Well before the asymptotics for triangles were found, Janson and Ruciński [8] improved
the upper bound in (1) in some range of p for graphs G = K4 and G = C4 by inserting
a factor ln1/2 n in the exponent. Assume that µC4 > C lnn for some large C > 0 and
p 6 n−2/3−γ. Then

P {XC4 > 2µC4} 6 exp{−Ωγ(M
∗
C4

ln1/2 n)}. (10)

If µK4 > C lnn and p 6 n−1/2−γ for some constant γ > 0, then

P {XK4 > 2µK4} 6 exp{−Ωγ(M
∗
K4

ln1/2 n)}. (11)

Although these inequalities are stated for t = 2, the proof in [8] can be easily extended to
all t > 1.

Theorem 2.2 improves (10) for p 6 n−4/5−γ and Theorem 2.2 improves (11) for p 6
n−1/2−γ. Also, note that Theorem 2 assumes no restriction on p from below, except for
the universally assumed p > n−1/mG . Finally, observe that part (ii) of Theorem 2 is a
special case of (8).

The inequalities (10) and (11) were obtained by the so called deletion method. We
prove Theorem 2 using an older method of approximation by disjoint copies, originating
from Spencer [9] (see [7, Section 2.3.4]). However, in the proof of Theorem 2 for C4

and K4, we retain the ad hoc part of the original proof of (10) and (11) by Janson and
Ruciński [8], which involves a two-fold application of Chernoff’s bound and heavily relies
on the simplicity of C4 and K4.

2 The Proof of Theorem 1

The example of the triangle suggests that, roughly speaking, for small p the upper tail
of XG behaves as if the copies of G were disjoint. Recalling that n3p3 � µK3 , compare (4)
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with the following fact. Let De
G be the maximum number of edge-disjoint copies of G,

and let ϕ(ε) = (1 + ε) ln(1 + ε)− ε. Lemma 2.46 in [5] states that for every ε > 0

P {De
G > (1 + ε)µG} 6 exp{−µGϕ(ε)} (12)

6 exp

{
− ε2

2(1 + ε/3)
µG

}
. (13)

We proceed with some auxiliary facts. The advantage of using ΨG instead of µG is that
it satisfies the log-modularity property: if G1, G2 are graphs, then

ΨG1∪G2ΨG1∩G2 = ΨG1ΨG2 . (14)

Recall that for strictly balanced G we have mG = eG/vG, so the threshold for existence
of G is p = n−vG/eG .

Proposition 3. If a graph G is strictly balanced, then the following facts hold.

(i) G is connected.

(ii) If H is a proper subgraph of G and p > n−vG/eG, then

ΨH > nc, (15)

where c = c(H) = vH − eHvG/eG > 0.

(iii) There is a constant b ∈ (0, vG/eG) such that for p ∈ [n−vG/eG , n−b] and H ⊆ G with
vH > 0 we have

ΨG 6 ΨH . (16)

(iv) Let a > 0 be a constant. If p > n−vG/eG and ΨG 6 lna n, then

M∗
G � Ψ

1/α∗G
G .

Proof. (i) If G were not connected, then it would have a connected component as dense
as G itself, contradicting the fact that G is strictly balanced.

(ii) To prove (15), note that the condition p > n−vG/eG implies

ΨH = nvHpeH > nvH−eHvG/eG .

Since G is strictly balanced, we have eG/vG > eH/vH , which is equivalent to the inequality
vH − eHvG/eG > 0.

(iii) Inequality (16) follows from (ii) with b = (vG −minH(G c(H))/eG:

ΨG = nvGpeG 6 nvG−beG 6 nc(H) 6 ΨH , H ( G.

(iv) Clearly ΨG 6 lna n implies p� n−1/∆G . Therefore by (2)

M∗
G � min

H⊆G
Ψ

1/α∗G
G .
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Let H be a proper subgraph of G. We have ΨH > nc from (ii). It follows that

Ψ
1/α∗H
H > nc/α

∗
H � (lnn)a/α

∗
G > Ψ

1/α∗G
G .

Proof of (6). Let FG = {F = G1 ∪ G2 : 0 < eG1∩G2 < eG} be the set of all unlabeled
graphs obtained by taking a union of two distinct copies of G with at least one common
edge. For example FK3 = {K−4 }, where K−4 is K4 with one edge removed. Recall that De

G

is the maximum number of edge-disjoint copies of G in G(n, p). Obviously, either XF > 1
for some F ∈ FG or De

G = XG, therefore

P {XG > tµG} 6 P {De
G > tµG}+

∑
F∈FG

P {XF > 1} . (17)

Clearly, it suffices to show that all probabilities on the right-hand side of (17) are bounded
by exp {−Ωt(µG)} . Applying (13) with ε = t− 1, we get

P {De
G > tµG} 6 exp {−Ωt(µG)} .

We bound the remaining terms in (17) using Markov’s inequality:

P {XF > 1} 6 µF 6 ΨF .

If F = G1 ∪G2 ∈ FG and H = G1 ∩G2, then, by the log-modularity (14), ΨF = Ψ2
G/ΨH .

By Proposition 3.(ii) we have that ΨH > nc for some constant c > 0. Moreover, by the
assumption, ΨG 6 lnn. Therefore

ln ΨF 6 2 ln lnn− c lnn = −Ω(lnn).

Finally, since µG 6 ΨG 6 lnn, we get

P {XF > 1} 6 ΨF 6 exp{−Ω(lnn)} 6 exp {−Ω(µG)} .

Proof of (7). Let N(F,H) be the number of copies of a graph H in another graph F .
Let xG stand for a union of x vertex-disjoint copies of G. Let

Dv
G = max {x : G(n, p) contains xG}

be the size of a largest collection of vertex disjoint copies. Writing x = dtµGe, we have

P {XG > tµG} > P {XG = Dv
G = x} . (18)

Let G be the set of all copies of G in Kn. Consider the family

F = {S ⊂ G : |S| = x, copies in S are vertex disjoint}.
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For every S ∈ F, we define events

RS = {S is the set of all copies of G in G(n, p)},

QS = {every copy S ∈ S appears in G(n, p)}.

By Proposition 3.(i), G is connected, so the events {RS}S∈F are mutually exclusive.
Therefore

P {XG = Dv
G = x} =

∑
S∈F

P {RS} . (19)

Let aut(G) stand for the number of automorphisms of G. Then

|F| = (n)vGx
aut(G)xx!

>
(n)vGx

aut(G)xxx
.

Using a standard inequality (n)m > (n/e)m, we get

|F| > nvGx

evGx aut(G)xxx
=
nvGx

xx
exp{−Θ(x)}. (20)

Note that
P {RS} = P {RS |QS}P {QS} = P {RS |QS} peGx. (21)

Also, by symmetry the probability q := P {RS |QS} is independent of S. Therefore from
(19), (20), and (21) we infer that

P {XG = Dv
G = x} > (nvGpeG)xq

xx
exp{−Θ(x)}. (22)

By the assumption that p > n−1/mG , we have ΨG = nvGpeG � x/t, so (22) implies

P {XG = Dv
G = x} > q exp{−Θt(ΨG)}. (23)

Fix S ∈ F and let F = ∪S∈SS. Let GS(n, p) be the random graph G(n, p) conditioned
on QS , i.e., the random graph obtained by adding to F each of the remaining

(
n
2

)
− eGx

edges with probability p, independently of others. We have

q = P
{ ⋂
G′∈G\S

{G′ * GS(n, p)}
}
. (24)

Notice that each of the events {G′ * GS(n, p)} is decreasing. Therefore the right-hand
side of (24) can be bounded using the FKG inequality (see, e.g., [5, Theorem 2.12]; the set
Γ to which this theorem refers is E(Kn) \ E(F ) in the present context). Thus we obtain

q >
∏

G′∈G\S

P {G′ * GS(n, p)} . (25)
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Given H ( G, the number of copies G′ ∈ G \ S whose intersection with F is a copy of H

is at most N(F,H)(n− vH)vG−vH = N(xG,H)
(n)vG
(n)vH

. The probability that such a copy G′

does not exist in GS(n, p) is

1− peG−eH > exp

{
− peG−eH

1− peG−eH

}
> exp

{
−cp

peG

peH

}
,

where cp = 1/(1− p). Hence (25) implies

q >
∏
H(G

∏
G′∩F∼=H

exp

{
−cp

peG

peH

}
>
∏
H(G

exp

{
−cpN(xG,H) · (n)vGp

eG

(n)vHp
eH

}
. (26)

The assumption ΨG 6 lna n is equivalent to

p 6 n−1/mG(lnn)a/eG . (27)

By (27), we have p = o(1), therefore cp → 1. Also, (n)vGp
eG � ΨG and (n)vHp

eH � ΨH .
Hence (26) gives that

q > exp

{
−Θ

(
ΨG max

H(G

N(xG,H)

ΨH

)}
. (28)

If H is empty (i.e., has no vertices), then N(xG,H) = 1 = ΨH . Hence the maximum
in (28) is at least 1. Therefore from (18), (23), and (28) we get

P {XG > tµG} > exp

{
−Ot

(
ΨG max

H(G

N(xG,H)

ΨH

)}
. (29)

To finish the proof, it is enough to show that for H ( G we have N(xG,H) = Ot(ΨH).
Indeed, then ΨG � µG and (29) imply (7). As we have seen, if H is the empty graph, then
N(xG,H) = ΨH . Let us further assume that vH > 0. By (27) and Proposition 3.(iii), the
inequality ΨG 6 ΨH holds for n large enough, i.e., ΨG = O(ΨH). If H is connected, then
any copy of H counted in N(xG,H) must lie entirely in one of the x copies of G. Hence
N(xG,H) = xN(G,H) �t ΨG = Ot(ΨH). If H is not connected, then let H1, . . . , Hc be
the connected components of H. Since each component Hi has xN(G,Hi) copies in xG,

N(xG,H) 6 xc
c∏
i=1

N(G,Hi) �t Ψc
G.

On the other hand, by log-modularity, ΨH =
∏

i ΨHi
= Ω(Ψc

G) and therefore N(xG,H) =
Ot(ΨH).
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3 The Proof of Theorem 2

Note that the conditions on p imply ln(1/p) � lnn. Therefore, in view of Remark 1, the
lower bounds are given by (1) and (7). So it remains to prove the upper bounds.

The proof is presented as follows. We start with an argument, which works for any
graph G. Then we finish the proof for G = C4. Since the proof for G = K4 is very similar,
we just mention the differences. Finally, we point out the changes that need to be made
to the proof for C4 in order to prove the result for stars K1,k.

Let L be the random intersection graph, the vertices of which are the copies of G in
G(n, p) and two vertices are connected by an edge if the corresponding copies have an
edge in common. An easy graph-theoretic result, appearing implicitly in Spencer [9] (see,
e.g., Janson [4] for the proof) states that for any graph L

vL 6 αL + 2βL∆L, (30)

where αL is the independence number of L, βL is the size of a largest induced matching
in L, and, recall, ∆L is the maximum degree of L.

In our setting, vL = XG and αL = De
G, while βL 6

∑
F∈FG

De
F , where FG is the set of

all graphs formed by a union of two distinct edge-intersecting copies of G, as defined in
the proof of Theorem 1.

For fixed vertices u and v, let Xuv
G be the number of copies of G containing the edge uv.

Then ∆L 6 eG maxuvX
uv
G , where the maximum is taken over all edges of Kn. Clearly, the

distribution of Xuv
G does not depend on uv. Therefore, when the choice of uv does not

matter, we write X
(2)
G instead.

In view of the observations above, (30) implies

XG 6 De
G +

∑
F∈FG

De
F · 2eG max

uv
Xuv
G . (31)

Let δ be such that t = 1 + δ(1 + 2eG|FG|). Then, by (31), for every d > 0,

P{XG > tµG} 6 P {De
G > (1 + δ)µG}

+
∑
F∈FG

P
{
De
F >

δµG
d

}
+

(
n

2

)
P
{
X

(2)
G > d

}
. (32)

Proof of Theorem 2.2. From [6] we know that

M∗
C4
� n2p2 = Ψ

1/2
C4
. (33)

Hence our aim is to prove that the right-hand side of (32) is bounded by

exp
{
−Ωδ,γ

(
min

{
ΨC4 ,Ψ

1/2
C4

lnn
})}

.

By inequality (13), the first term in (32) is at most

exp{−Ωδ(µC4)} 6 exp{−Ωδ(min{ΨC4 ,Ψ
1/2
C4

lnn})}.
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To bound the second term in (32), we apply the following slightly weaker but more
convenient form of (12). Noting that ϕ(ε) > (1 + ε) ln 1+ε

e
and using a substitute x =

(1 + ε)µG, we get an inequality

P {De
G > x} 6 exp

{
−x ln

x

eµG

}
, e = 2.71 . . . . (34)

Hence, for F ∈ FC4 , by (34),

P
{
De
F >

δµC4

d

}
6 exp

{
−δµC4

d
ln
δµC4

edµF

}
.

Put
d = max{lnn,Ψ1/2

C4
} = max

{
lnn, n2p2

}
.

Then

P
{
De
F >

δµC4

d

}
6 exp

{
−Ωδ

(
min

{
ΨC4

lnn
,Ψ

1/2
C4

}
ln

ΨC4

dΨF

)}
. (35)

It remains to check that the logarithmic factor in (35) is of order lnn. Note that by
log-modularity (14), ΨC4/ΨF = ΨH/ΨC4 , where H is the intersection of the two copies
of C4 that make up F . Hence, it suffices to show that ΨH/(dΨC4) = Ω(nc) for some c > 0,
probably depending on γ. Consider two cases.

Case (i): ΨC4 6 ln2 n. Then d = lnn. By Proposition 3.(ii), we have that ΨH is at
least some positive power of n. Therefore

ΨH

dΨC4

>
ΨH

ln3 n
= Ω(nc), c > 0.

Case (ii): ΨC4 > ln2 n. Then d = Ψ
1/2
C4

, and so

ΨH

dΨC4

=
ΨH

Ψ
3/2
C4

= nvH−6peH−6. (36)

Restriction p 6 n−4/5−γ implies that the right-hand side of (36) is at least nb(H) with

b(H) = vH − 6 + (4/5 + γ)(6− eH). (37)

Note that H is a proper subgraph with at least one edge. Observe that b(H) > b(H ′),
where H ′ is a proper subgraph of G on vH vertices and with maximum number of edges.
Checking that H ′ = K2, P3, P4 give corresponding values b(H ′) = 5γ, 1/5 + 4γ, 2/5 + 3γ,
we obtain that ΨH/(dΨC4) > nc, where c = min {5γ, 2/5 + 3γ} > 0, thus concluding
Case (ii).

Concerning the third term in (32), we use the proof from [8, Example 6.3] which, by
a double application of the Chernoff bound, shows that for every m > 0,

P
{
X

(2)
C4

> d
}
6 exp

{
−m ln

(
m

2enp

)}
+ exp

{
−d

2
ln

(
d

em2p

)}
. (38)
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Recall that d = max{lnn,Ψ1/2
C4
}. Set m = d lnn. Hence

d = max{lnn, n2p2}, and m = max
{

ln2 n, n2p2 lnn
}
.

Note that in (38) the logarithmic factor in the first term is Ω(1), while the one in the
second term is Ωγ(lnn). This is indeed so, since

m

np
= max

{
ln2 n

np
, np lnn

}
> ln3/2 n, and

d

m2p
=

1

dp ln2 n
> min

{
1

p ln3 n
,

1

n2p3 ln2 n

}
> min

{
n4/5+γ

ln3 n
,
n2/5+3γ

ln2 n

}
.

Thus, (38) implies that

P
{
X

(2)
C4

> d
}
6 exp

{
−Ωγ

(
max

{
ln2 n,Ψ

1/2
C4

lnn
})}

.

We can ignore the factor
(
n
2

)
in (32), since it contributes to the exponent only an additive

term O(lnn). This completes the proof, since

max{ln2 n,Ψ
1/2
C4

lnn} > min{ΨC4 ,Ψ
1/2
C4

lnn}.

Proof of Theorem 2.2. The proof is very similar to that of Theorem 2.2. One needs to
replace n2p2 by n2p3 in (33), and peH−6 by peH−9 in (36). Also we use the restriction
p 6 n−1/2−γ, so (37) becomes b(H) = vH − 6 + (1/2 + γ)(9− eH). In the present proof we
need to check b(H ′) > 0 for H ′ = K2, K3, K

−
4 . The proof from [8, Example 6.2] gives that

P
{
X

(2)
K4

> d
}
6 exp

{
−m ln

(
m

enp2

)}
+ exp

{
−d ln

(
2d

em2p

)}
. (39)

Just like in the proof for C4, we set d = max
{

lnn,Ψ
1/2
K4

}
and m = d lnn, so

d = max
{

lnn, n2p3
}

and m = max
{

ln2 n, n2p3 lnn
}
.

Further, we note that the logarithmic factors in the exponents of (39) are Ω(1) and
Ωγ(lnn), respectively, because

m

np2
= max

{
ln2 n

np2
, np lnn

}
>

(
ln3 n

p

)1/2

> ln3/2 n,

and
d

m2p
=

1

dp ln2 n
> min

{
1

p ln3 n
,

1

n2p4 ln2 n

}
> min

{
n1/2+γ

ln3 n
,
n4γ

ln2 n

}
.

Finally, we finish the proof precisely as in the case G = C4.
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Proof of Theorem 2.2. From [6, Corollary 1.8] we know that in the given range of p we

have M∗
K � Ψ

1/k
K .

The argument is, again, similar to that of Theorem 2.2. At the appropriate step we

set d = max
{

lnn,Ψ
(k−1)/k
K

}
. Then we apply (34) to obtain a bound analogous to (35).

To show that ΨH/(dΨK) = Ω(nc), we notice that the intersection H of two distinct copies
of K is a star with at most k − 1 arms and use the condition p 6 n−θ−γ.

Further we observe, that the number of k-stars containing a particular edge uv is(
deg(u)
k−1

)
+
(

deg(v)
k−1

)
. Therefore, writing Bi(n, p) for a binomial random variable, we get that

P
{
X

(2)
K > d

}
6 2P

{(
Bi(n− 2, p)

k − 1

)
> d/2

}
.

Then the Chernoff bound yields

P
{
X

(2)
K > d

}
6 exp

{
−Ω

(
d1/(k−1) ln

d1/(k−1)

enp

)}
. (40)

It is easy to check that the logarithmic factor in the exponent in (40) is Ω(lnn), whence
the order of the exponent is

max
{

(lnn)1+ 1
k−1 ,Ψ

1/k
K lnn

}
> min

{
ΨK ,Ψ

1/k
K lnn

}
� min {ΨK ,M

∗
K lnn} .

4 Further Remarks

Remark 2. Let G be strictly balanced. From the proof of (7) one can see that a lower
bound exp {−Θt(µG)} holds, as long as ΨG = minH⊆G ΨH and vGtµG 6 n. However, this
bound is better than the lower bound in (1) only when ΨG 6 lna n. More precisely, if
ΨG 6 lna n, then

ΨG = Ot(M
∗
G ln(1/p)), (41)

while if ΨG � lna n, then
ΨG �M∗

G ln(1/p). (42)

Let us prove (41) and (42). The restriction vGtµG 6 n implies

p = Ot(n
−(vG−1)/eG). (43)

The assumption p > n−1/mG and (43) clearly imply ln(1/p) �t lnn. So it is enough to
prove (41) and (42) with lnn instead of ln(1/p).

The assumption ΨG 6 lna n is equivalent to ΨG 6 Ψ
1/α∗G
G lnn. On the other hand, by

Proposition 3.(iv), Ψ
1/α∗G
G �M∗

G, so (41) holds.
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Since 1/∆G 6 vG/(2eG) 6 (vG − 1)/eG, inequality (43) gives that p =
Ot(n

−1/∆G). Hence from (2) we have that

M∗
G �t min

H⊆G
Ψ

1/α∗H
H .

Thus, the right-hand side of (42) is Ot

(
Ψ

1/α∗G
G lnn

)
. Since ΨG � lna n is equivalent to

ΨG � Ψ
1/α∗G
G lnn, we conclude that (42) holds.

Remark 3. Let L be the intersection graph of copies of G, as defined in the proof of
Theorem 2. In the proof of the upper bound in Theorem 1, we implicitly use the trivial
fact that if L has no edges, then the largest independent set in L is the whole vertex set.
This implies the inequality (17). However, one can get a stronger conclusion by using
the fact that if edges are few, then L has a large independent set. Indeed, by Turán’s
Theorem applied to the complement of L we get that

De
G >

X2
G

XG + 2
∑

F∈FG
XF

.

This gives an inequality

P {XG > tµG} 6 P {De
G > (1 + ε)µG}+

∑
F∈FG

P {XF > εµG} ,

with properly chosen ε = ε(t) > 0. Therefore it is of interest to find out in which range
of p the inequality

P {XF > εµG} 6 exp {−Ωε(µG)} (44)

holds, since this might extend the upper bound in Theorem 1 to larger p (hopefully, up to
n−1/mG(lnn)a/eG). As we have seen in the proof of Theorem 1, if ΨG 6 lnn, then (44) is
given by Markov’s inequality. It is plausible that a stronger inequality might hold. Note
that since ΨG is less than a power of lnn, we have µF � 1. In particular, p is below the
threshold of the existence of F .

Added in proof. After the first version of the present paper was submitted, L. Warnke
kindly pointed out to the author that (6) is implied by Corollary 5.1 in [10]. The latter
corollary is based on the polynomial concentration technique, a powerful tool which we
do not use in our proof.
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