
Efficient Oracles for Generating
Binary Bubble Languages

J. Sawada∗

School of Computer Science
University of Guelph, Canada

jsawada@uoguelph.ca

A. Williams†

School of Computer Science
University of Guelph, Canada

haron@uvic.ca

Submitted: Oct 14, 2010; Accepted: Feb 3, 2012; Published: Feb 23, 2012
Mathematics Subject Classification: 68W32, 05A99

Abstract

A simple meta-algorithm is provided to efficiently generate a wide variety of combi-
natorial objects that can be represented by binary strings with a fixed number of 1s. Such
objects include: k-ary Dyck words, connected unit interval graphs, binary strings lexico-
graphically larger than ω, those avoiding 10k for fixed k, reversible strings and feasible
solutions to knapsack problems. Each object requires only a very simple object-specific
subroutine (oracle) that plugs into the generic cool-lex framework introduced by Williams.
The result is that each object can be generated in amortized O(1)-time. Moreover, the
strings can be listed in either a conventional co-lexicographic order, or in the cool-lex Gray
code order.

Keywords: Bubble language, Gray code, cool-lex, unit interval graph, knapsack, reversible
strings, CAT algorithm, necklace, Lyndon word

1 Introduction

The exhaustive generation of combinatorial objects has become an important area of algorithmic
research and is a major theme in Knuth’s latest volume of The Art of Computer Programming [3,
4, 5]. In the amortized sense, the best performance one can achieve for a generation algorithm
∗Research supported by NSERC
†Research supported by Roncesvalles Post-doc

the electronic journal of combinatorics 19 (2012), #P42 1

is one that runs in Constant Amortized Time. Such an algorithm is said to be CAT. In addition
to performance, it is often desirable to have successive elements in a listing differ by only a
constant amount of change. Such algorithms are called combinatorial Gray codes; the objects
are said to be listed in Gray code order.

One of the major drawbacks in this research area is a shortage of general frameworks that
unite generation algorithms for a wide variety of objects. This is not unusual since focusing
on the specific properties of each object is often required to make an algorithm efficient. A
rare exception is the theory outlined in [7], which describes a large collection of binary bubble
languages that all share a common property (described in Section 2). Examples of bubble
languages include: combinations, necklaces, Lyndon words, Dyck words and connected unit
interval graphs. In each case, the binary strings representing the objects have a fixed density or
weight – the number of 1s in the strings are fixed. One of the primary results in that paper is
the development of a framework to exhaustively list the strings for any bubble language in Gray
code order. All that is needed for each bubble language is a unique subroutine that computes
the bubble lower bound described in Section 2. Using the framework, the strings can be output
in either a standard co-lexicographic order or in a newly defined cool-lex order.

This paper builds on the recursive cool-lex framework [7] by providing efficient object-specific
subroutines that we call oracles for the bubble languages listed in Section 2. For each such
object, excepting necklaces and Lyndon words, the result is a generation algorithm that runs
in constant amortized time. Efficient oracles for necklaces and Lyndon words are provided in
[10]; they are significantly more complex than the ones given in this paper. By applying the
cool-lex framework and the necklace oracle, an efficient construction of de Bruijn cycles for
fixed-weight binary strings is given in [8].

The remainder of the paper is organized as follows. In Section 2, bubble languages are defined
and examples are provided. In Section 3, we recall the recursive cool-lex framework from [7]
and add an alternate string representation (run-length blocks) that will be useful in some of our
oracles. In Section 4, we provide a generic oracle for any bubble language with a membership
tester. It is illustrated with necklaces and Lyndon words. In Section 5, we explicitly provide
efficient oracles for many fixed-density bubble languages. In most cases the oracles require only
several lines of code to implement and in all cases they immediately yield CAT algorithms for
their respective language. In Section 6 we outline how to obtain Gray codes for the objects in
constant amortized time when the density restriction is removed. We conclude the paper with
brief summary in Section 7.

the electronic journal of combinatorics 19 (2012), #P42 2

2 Bubble languages

A binary language L is said to be a bubble language if it satisfies one of the following proper-
ties [7]:

first-01: if α ∈ L, then swapping its first 01 (if it exists) to 10 yields another string in L, or
first-10: if α ∈ L, then swapping its first 10 (if it exists) to 01 yields another string in L.

Some interesting examples of bubble languages include:

first-01 bubble languages first-10 bubble languages
• combinations • combinations
• strings with forbidden 01k • strings with forbidden 10k

• strings with ≤ k inversions from 1∗0∗ • strings with ≤ k inversions from 0∗1∗

• strings with ≤ k transpositions from 1∗0∗ • strings with ≤ k transpositions from 0∗1∗

• strings ≥ some string ω • strings ≤ to some string ω
• strings > or ≥ their reversal • strings < or ≤ their reversal
• strings ≥ their complemented reversal • strings ≤ their complemented reversal
• necklaces (largest rotation) • necklaces (smallest rotation)
• aperiodic necklaces (largest rotation) • Lyndon words
• k-ary Dyck words
• ordered forests with ≤ k trees
• linear extensions of a B-poset
• connected unit interval graphs
• feasible solutions to 0-1 knapsack.

In [7], a framework is provided to generate any bubble language of strings with fixed-density
(the number of 1s is fixed). The elegance of the generic algorithm is its ability to switch between
languages by simply altering a function that computes the “bubble lower bound”. Given a string
α = 1s0tγ in a binary language L, the bubble lower bound is the smallest non-negative integer
j such that 1s−10t−j10jγ ∈ L. To be precise, we assume γ is empty or begins with 1, and t > 0.
These two restrictions ensure that α can be written uniquely as 1s0tγ.

Example. The following first-01 bubble language consists of all strings of length 7 and
density 3 that are greater than or equal to ω = 1001010. The strings are listed in co-lex
order as illustrated in Figure 1.

L = { 1110000, 1101000, 1011000, 1100100, 1010100, 1001100, 1100010,
1010010, 1001010, 1100001, 1010001 }

Consider the string α = 1100010 where s = 2, t = 3, and γ = 10. The bubble lower
bound for α is 1 since (i) 10010γ ≥ ω and (ii) 10001γ < ω.

The generic algorithm from the framework can list a bubble language’s strings in either co-lex
order or the cool-lex Gray code where successive strings differ by at most 2 swaps. However, the

the electronic journal of combinatorics 19 (2012), #P42 3

1110000

1101000
1010100
1001100
1100100
1010010
1001010
1100010
1010001
1100001
1110000

Post−orderPre−order

co−lex cool−lex
Gray code

1101000
1011000
1100100
1010100
1001100
1100010
1010010
1001010
1100001
1010001

1110000

1011000 1010100 1001100 1010010 1001010 1010001

11000011101000 1100100 1100010

1011000

Figure 1: Computation tree for strings of length 7 and density 3 that are greater than or equal to
ω = 1001010.

efficiency is dependent on the time required to determine the bubble lower bound for the specific
bubble language. As a first step, we provide a generic oracle that applies to any bubble language
L as long as it is provided with a membership tester that determines whether or not a given
α ∈ L. In other words, the problem of producing a Gray code for a bubble language is reduced
to providing a membership tester for it. As an application, we apply the generic oracle to fixed-
density necklaces and Lyndon words to obtain a O(n) amortized time generation algorithm for
these strings. For the remaining bubble languages outlined earlier in this section, we present
language specific O(1) time oracles except for the feasible solutions to the knapsack problem;
however, for this language a simple analysis shows that the oracle we provide is efficient in the
amortized sense. As a result each language can be generated in Constant Amortized Time: the
algorithms are CAT.

3 Recursive framework

Given a non-empty first-01 bubble language L consisting of strings with length n and density
d, the following recurrence can be used to produce its cool-lex Gray code [7]:

C(s, t, γ) =

{
C(s− 1, 1, 10t−1γ),C(s− 1, 2, 10t−2γ), . . . ,C(s− 1, t− j, 10jγ), 1s0tγ if s > 0
0tγ if s = 0

where j is the smallest non-negative integer such that 1s−10t−j10jγ ∈ L. In this recurrence
γ represents a fixed suffix and each recursive term prepends a string of the form 10i to γ. In
particular, C(d, n− d, ε) will produce the Gray code for L.

Observe that if the first line of the recurrence is altered so the last term 1s0tγ is moved to the
front, then we obtain co-lex order. As an illustration consider the computation tree in Figure 1
for strings with length n = 7 and density d = 3 that are greater than or equal to ω = 1001010.
Each node in the computation tree α = 1s0tγ corresponds to the string that gets output directly
from a recursive call to C(s, t, γ). By traversing the tree in post-order, we obtain the cool-lex
Gray code. If the tree is traversed in pre-order, we obtain co-lex order.

the electronic journal of combinatorics 19 (2012), #P42 4

procedure GenBubble(s, t: int)
int i, j

if s > 0 and t > 0 then
j := Oracle(s, t)
for i := t− 1 downto j do

Swap(as, as+t−i)
GenBubble(s− 1, t− i)
Swap(as, as+t−i)

Visit()
end.

Figure 2: Simple recursive algorithm to list all strings in the bubble language L in cool-lex Gray code
order.

The simple recursive algorithm GenBubble(s, t) shown in Figure 2 produces the cool-lex Gray
code for a given first-01 bubble language L. The string α = a1 · · · an that is visited during
each recursive call is initialized to 1d0n−d and is maintained globally. The function Oracle(s, t)
determines the oracle lower bound of the current string α = 1s0tγ and it takes s and t as
parameters for efficiency. For each iteration of the for loop, α is updated by swapping the 1 in
position s and the 0 in position s + t − i. This single swap effectively prepends the string 10i

to γ as described in the recurrence. Observe that recursive calls are only made if t > 0, so there
is no need to call an oracle if t = 0. This allows for this special case to be omitted from all
the oracles described later in this paper. The initial call is GenBubble(d, n− d). To output the
strings in co-lex order move the function Visit() from the end of the function GenBubble(s, t)
to the beginning.

To produce the cool-lex Gray code for a first-10 bubble language simply complement the 0s
and 1s in the recurence. Algorithmically this means initializing α := 0n−d1d and calling Gen-
Bubble(n− d, d).

Since every recursive call of GenBubble(s, t) visits a string in L, we obtain the following
theorem:

THEOREM 1 [7] If the total amount of computation required by all calls to Oracle(s, t) for
a given bubble language L is proportional to the number of strings in L, then the algorithm
GenBubble(s, t) will generate all strings in L in O(1) amortized time.

The main focus of this paper is to apply this theorem by finding O(1) time oracles for a va-
riety of different bubble languages. For fixed-density binary strings with no restrictions (i.e.,
combinations) the oracle simply returns 0; however most bubble languages will require some
additional data structure information in order to obtain an efficient oracle. A common struc-
ture is outlined in the next subsection which will also enable us to produce alternate output
representations efficiently.

the electronic journal of combinatorics 19 (2012), #P42 5

3.1 Run-length blocks

A more compact representation for a binary string is its run-length encoding. In particular,
a binary string can be represented by a series blocks which are maximal substrings of the
form 1∗0∗. Each block Bi is composed of two integers (si, ti) representing the number of
1s and 0s respectively. For example, the string 00011010100011001 can be represented by
B6B5B4B3B2B1 = (0, 3)(2, 1)(1, 1)(1, 3)(2, 2)(1, 0) where s6 = 0 and t6 = 3.

To maintain this run-length representation within GenBubble(s, t), let the blocks be stored in
Bc · · ·B1 where c denotes the number of blocks required to represent α. InitiallyB1 = (d, n−d)
and c = 1 since the first string is 1d0n−d. Observe that the values for sc and tc equal s and t
respectively at the start of each recursive call. There are two cases for updating the blocks. If
i = 0 and c > 1 then a 1 is moved from the leading block (sc, tc) to the block c − 1: sc−1 is
incremented and sc is decremented. Otherwise, a new block of the form 10i is created: Bc splits
into the two blocks Bc+1 = (sc − 1, tc − i) and Bc = (1, i). After making the recursive call
these actions must be undone to restore the blocks for the next iteration of the for loop. These
updates can be accomplished by inserting the following code fragments:

Insert before recursive call Insert after recursive call

if i = 0 and c > 1 then if i = 0 and (c > 2 or B1 6= (1, 0)) then
sc−1 := sc−1 + 1 sc−1 := sc−1 − 1
sc := s− 1 sc := s

else else
Bc := (1, i) Bc−1 := (s, t)
Bc+1 := (s− 1, t− i) c := c− 1
c := c+ 1

Besides giving a compact representation of the current string, this extra data structure will be
critical to the efficiency for some of the oracles described in the following section.

3.2 Shifts and swaps

In addition to outputting the Gray code as a sequence of strings or blocks, it is also possible to
output the strings as a sequence of left-shifts of a single bit, or as a sequence of the 1 or 2 swaps
that are required to go from one string to the next [7]. An example of these various outputs is
given in Table 1. To output these shifts or swaps using only a constant amount of extra time,
two extra global variables to and from must be maintained. The value for from is initialized
to d+ 1 and the variables are updated as follows:

the electronic journal of combinatorics 19 (2012), #P42 6

Strings Blocks Left Shifts Swaps
1 0 1 1 0 0 0 (1,1) (2,3) shift(4,2) swap(2,4)
1 1 0 1 0 0 0 (2,1) (1,3) shift(3,2) swap(2,3)
1 0 1 0 1 0 0 (1,1) (1,1) (1,2) shift(5,2) swap(4,5) and swap(2,3)
1 0 0 1 1 0 0 (1,2) (2,2) shift(4,2) swap(3,4)
1 1 0 0 1 0 0 (2,2) (1,2) shift(4,2) swap(2,4)
1 0 1 0 0 1 0 (1,1) (1,2) (1,1) shift(6,2) swap(5,6) and swap(2,3)
1 0 0 1 0 1 0 (1,2) (1,1) (1,1) shift(4,2) swap(3,4)
1 1 0 0 0 1 0 (2,3) (1,1) shift(4,2) swap(2,4)
1 0 1 0 0 0 1 (1,1) (1,3) (1,0) shift(7,2) swap(6,7) and swap(2,3)
1 1 0 0 0 0 1 (2,4) (1,0) shift(3,2) swap(2,3)
1 1 1 0 0 0 0 (3,4) shift(7,3) swap(3,7)

Table 1: Different outputs available to Visit(c) for the cool-lex Gray code of binary strings of length 7
and density 3 that are greater than or equal to ω = 1001010. The shifts and swaps are relative to the
previous string in the Gray code cyclicly.

Insert before recursive call Insert after recursive call

if i < t− 1 then from := s+ t− i from := s+ t− i
to := s to := s

To output the sequence of left-shifts, the function Visit() can print “shift(from, to)” indicating
that the bit in position from gets shifted into position to. To output the swaps a global counter
total is maintained to indicate how many strings have already been generated. This allows us to
test for a special case when considering the first string. Using this extra variable along with the
run-length block data structure, the following code fragment will output the sequence of swaps:

if ato = 1 or total = 0 then Print(“ swap(to, from) ”)
else if ato+1 = 1 then Print(“ swap(from− 1, from) and swap(to, to+ sc−1) ”)
else Print(“ swap(from− 1, from)”).

4 A generic oracle

In this section we provide a generic oracle that can be applied to any bubble language L provided
there is a membership tester Member(L, α) that determines whether or not α ∈ L. Then we
provide a short analysis that shows if the tester requires O(m) time, then the language can be
generated in O(m) amortized time. As an example, we apply the generic oracle to necklaces
and Lyndon words.

The basic idea behind the generic approach is to test each possible value j to determine the
smallest value such that 1s−10t−j10jγ ∈ L. Two strategies are: (1) start at j = 0 and increment

the electronic journal of combinatorics 19 (2012), #P42 7

j until we find a string in L or (2) start at j = t − 1 and decrement j until we find a string
that does not belong to L. Depending on the language, one method may be more efficient than
the other. However from an analytical standpoint we choose the second method since every
successful membership test can be accounted to a unique string in the language. Pseudocode
for this generic oracle can be described as follows:

procedure Oracle(s, t: int)
int j

j := t− 1
while j ≥ 0 and Member(L, 1s−10t−j10jγ) do j := j − 1
return j + 1

end.

Note that the string 1s−10t−j10jγ can be obtained from the current string α = 1s0tγ in constant
time by swapping the bits in positions s and s+ t− j.

THEOREM 2 If Member(L, α) is a membership tester that runs in O(m) time for a given
bubble language L, then L can be generated in cool-lex Gray code order or colex order in
O(m) amortized time.

PROOF: Since each recursive call to Gen(s, t) visits a string in the language, we must show that
the total number of membership tests is proportional to the number of strings visited. Clearly
each call to the oracle will have at most one unsuccessful test which can be mapped to the string
α visited during the recursive call in which the oracle was called. Additionally, each successful
membership test also corresponds to a unique string in the language – one that gets generated
within the for loop of the current recursive call. Thus, for each string visited, we have accounted
at most O(m) work from all oracle calls which implies a O(m) amortized algorithm. 2

4.1 Necklaces and Lyndon words

Necklaces are often described as the lexicographically smallest string in an equivalence class
of strings under rotation. Using this representation, aperiodic necklaces are known as Lyndon
words. Fixed-density necklaces and Lyndon words are both 10-bubble languages. Using the
lexicographically largest element as representative, the fixed-density necklaces and aperiodic
necklaces are both 01-bubble languages. We will focus on the lexicographically smallest string
as representative.

The construction of a constant time oracle for fixed-densiy necklaces and Lyndon words appears
to be a very challenging task and we leave it as an open problem. Instead, in Figure 3 we present
a Θ(m) membership tester based on the work of Duval [1]. The tester starts by concatenating
two copies of the input string α together and then requires at most a linear scan of the resulting
string.

the electronic journal of combinatorics 19 (2012), #P42 8

function Member(L, α) returns boolean
int i, p

for i := 1 to n do an+i := ai
a2n+1 := −1
i := 2
p := 1
while ai−p ≤ ai do

if ai−p < ai then p := i
i := i+ 1

if i ≤ 2n then return FALSE
if p < n and L = LYNDON WORDS then return FALSE
return TRUE

end.

Figure 3: A (combined) membership tester derived from [1] to determine whether or not α is a
necklace or a Lyndon word.

COROLLARY 1 Fixed-density necklaces and Lyndon words can be generated in either co-lex
or cool-lex Gray code order in O(n) amortized time.

Gray codes for fixed-density necklaces have previously been discovered by Wang and Sav-
age [16] and Ueda [13]; however, these algorithms do not use the lexicographic smallest repre-
sentative and hence do not apply to Lyndon words. Furthermore, their Gray codes are not cyclic.
A recent result [10] provides a more efficient oracle than the one given here which results in a
CAT algorithm.

5 Efficient oracles

In this section we detail oracles for the bubble languages listed in Section 1 (except necklaces
and Lyndon words). For most languages, extra information needs to be maintained within the
recursive framework to obtain an efficient oracle. The information specific to a given language
is detailed in the relevant subsection and in each case the information can be maintained in
O(1) time. In some cases the oracles will apply to two related languages. For instance, all
strings with forbidden substring 01k is a first-10 bubble language and all strings with forbidden
substring 10k is a first-01 bubble language. The oracle for each language is the same, but the
initialization for the algorithm must reflect the correct initial string as noted in Section 3.

Important Assumptions: By the nature of the recurrence in GenBubble(s, t), assume that γ
is either empty or begins with 1 (for first-01 bubble languages). Also the cases when s = 0
or t = 0 are already handled by GenBubble(s, t) and hence these cases do not need to be
considered by the oracles. Additionally, assume that the languages in question are non-empty
since an initial call to GenBubble(s, t) will always produce the string 1d0n−d.

the electronic journal of combinatorics 19 (2012), #P42 9

5.1 k-ary trees (k-ary Dyck words)

A k-ary Dyck word with density d is a binary string with d 1s and d(k − 1) 0s such that every
prefix has ≤ k − 1 0s for every 1. When k = 2 this means that no prefix has more 0s than 1s.
k-ary Dyck words are known to be equivalent to k-ay trees with k internal nodes. In the case
when k = 2, Dyck words are equivalent to many structures counted by the Catalan numbers
including balanced parentheses strings [12]. Dyck words are a first-01 bubble language.

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ is a Dyck
word given that 1s0tγ is a Dyck word. In other words we want to find the smallest non-negative
j such that: t − j ≤ (s − 1)(k − 1). Thus, the oracle for Dyck words returns max(0, t − (s −
1)(k − 1)).

COROLLARY 2 k-ary Dyck words can be generated in either co-lex or cool-lex Gray code order
in O(1) amortized time.

5.2 Ordered forests with ≤ k trees

A prefix is balanced if it contains the same number of 1s as 0s. Balanced parentheses strings
with ≤ k balanced (non-empty) prefixes represent ordered forests with ≤ k trees and form
a first-01 bubble language. To construct an efficient oracle for ordered forests, we maintain
an extra parameter bal that indicates the number of non-empty balanced prefixes in α. This
parameter can be updated by replacing the recursive call in GenBubble(s, t) with:

if s− 1 = t− i then GenBubble(s− 1, t− i, bal + 1)
else GenBubble(s− 1, t− i, bal)

Initially, α = 1d0d so the initial call is GenBubble(d, d, 1).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ is a balanced
parentheses string with at most k balanced prefixes given that 0s1tγ is a balanced parentheses
string with bal balanced prefixes. The oracle for k-ary Dyck words when k = 2 gives an initial
lower bound of max(0, t − s + 1). To make sure the number of allowable balanced prefixes is
not violated, consider two special cases when bal = k. If s = t and s > 1 then a new balanced
prefix is introduced when j = 1. Thus, the oracle returns 2. Similarly, if s = t + 1 a new
balanced prefix is introduced when j = 0. Thus, in this case the oracle returns 1. These cases
can be summarized as follows:

procedure Oracle(s, t, bal: int)
if bal = k and s = t and s > 1 then return 2
if bal = k and s = t+ 1 then return 1
return max(0, t− s+ 1)

end.

the electronic journal of combinatorics 19 (2012), #P42 10

COROLLARY 3 Ordered forests with ≤ k trees can be generated in either co-lex or cool-lex
Gray code order in O(1) amortized time.

5.3 Forbidden substring 01k or 10k

Fixed-density strings with no substring of the form 01k (a first-01 bubble language) has a
straightforward oracle that takes advantage of the run-length block data structure. We need
only be careful when sc−1 = k − 1 since if an additional 1 is appended to this block then the
resulting string will contain the forbidden substring. Thus, if sc−1 = k − 1 the oracle returns 1;
otherwise it returns 0.

Fixed-density strings with no substring of the form 01k form a first-01 bubble language and we
can apply the same oracle.

COROLLARY 4 Fixed-density strings with forbidden substring 01k or 10k can be generated in
either co-lex or cool-lex Gray code order in O(1) amortized time.

These strings have been studied for specific values of k as outlined in [11].

5.4 Strings with ≤ k inversions

An inversion (with respect to 1∗0∗) in a string α = a1 · · · an is any ai = 0 and aj = 1 such that
i < j. For example the string a1 · · · a6 = 100101 has 5 inversions: (a2, a4), (a2, a6), (a3, a4),
(a3, a6), (a5, a6). Observe that the number of inversions in a string is the minimum number of
adjacent transpositions required to obtain a string of the form 1∗0∗. Fixed-density strings with
at most k inversions form a first-01 bubble language.

To construct an oracle for this language, we maintain an additional parameter inv in GenBub-
ble(s, t) that stores the number of inversions in the current string. By prepending the prefix 10i

to γ during a recursive call, t − i new inversions are introduced into the string. Thus, the pa-
rameter inv can be maintained by replacing the recursive call with GenBubble(s, t, inv+t−i)
and initially calling GenBubble(s, t, 0).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ has at most
k inversions given that 1s0tγ has inv inversions. In other words, we want to find the smallest j
such that inv + (t− j) ≤ k. Thus, the oracle returns Max(0, t− k + inv).

An inversion (with respect to 0∗1∗) in a string α = a1 · · · an is any ai = 1 and aj = 0 such that
i < j. Fixed-density strings with at most k of these inversions form a first-10 bubble language
and we can apply the same oracle.

the electronic journal of combinatorics 19 (2012), #P42 11

COROLLARY 5 Fixed-density strings with at most k inversions can be generated in either co-
lex or cool-lex Gray code order in O(1) amortized time.

5.5 Strings with ≤ k transpositions to sort

As previously mentioned, another way to look at a string with k inversions is that it requires k
adjacent transpositions to sort the string into the form 1∗0∗. If the “adjacent” criteria is removed,
then we can consider a bound k on the number of transpositions required to sort a string. For
example, while the string 100101 requires 5 adjacent transpositions (it has 5 inversions), it
requires only 2 transpositions to sort it: namely swapping the 0s in positions 2 and 3 with the
1s in position 4 and 6. Fixed-density strings requiring at most k transpositions to sort the string
form a first-01 bubble language.

To construct an efficient oracle for this language, we maintain an additional parameter sort that
keeps track of how many 1s occur past position d in the string. This is done by replacing the
recursive call with:

if s+ t− i > d then GenBubble(s− 1, t− i, sort+ 1)
else GenBubble(s− 1, t− i, sort)

The initial call is GenBubble(d, n− d, 0).

Our goal is to determine the smallest non-negative value j such that 1s−10t−j10jγ has at most
k 1s past position d given that 0s1tγ has exactly sort 1s past position d. If sort = k then
(s − 1) + (t − j) + 1 ≤ d which means the oracle returns Max(0, s + t − d). Otherwise, the
oracle returns 0.

Fixed-density strings that require at most k transpositions to sort a string into the form 0∗1∗ are
a first-10 bubble language. To apply the aforementioned oracle, replace d with n − d in the
oracle.

COROLLARY 6 Fixed-density strings that can be sorted with at most k transpositions can be
generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

5.6 Linear extensions of B-posets

If the maximum position of the i-th one in a fixed-density string of length n is bounded by posi,
then the string is a linear extension of a B-poset [7]. An oracle for this object simply returns
Max(0, s+ t− poss) since (s− 1) + (t− j) + 1 ≤ poss.

COROLLARY 7 Linear extensions of B-posets can be generated in either co-lex or cool-lex
Gray code order in O(1) amortized time.

the electronic journal of combinatorics 19 (2012), #P42 12

Another Gray code for linear extensions is given in [6].

5.7 Strings that are ≥ or ≤ a given string ω

Strings that are greater than or equal to a given ω = w1w2 · · ·wn form a first-01 bubble lan-
guage. To obtain an efficient oracle for this language, we maintain an extra parameter flag that
is set to TRUE if and only if the current suffix γ of α is greater than or equal to the suffix of
the same length in ω. To efficiently maintain this extra parameter, we need to know whether
or not two bits wi and wj belong to the same block. To check this in constant time we pre-
compute the block number associated with each bit and store it in b1 · · · bn. For example the
string w1 · · ·w9 = 111010011 with 3 blocks has the corresponding block number sequence:
b1 · · · b9 = 333322211.

To maintain this flag as 10i is prepended to γ, the recursive call is replaced with:

if ws+t−i = 0 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (ws+t−i+1 = 0 and bs+t−i+1 = bs+t) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

The initial call with the new parameter is GenBubble(d, n− d, TRUE).

Using this extra parameter, we still need to compare the prefix of α with the prefix of ω effi-
ciently. Thus we also pre-compute the first 2 blocks of ω: (u, v) and (y, z). From our example
string w1 · · ·w9 = 111010011, these blocks are (u, v) = (3, 1) and (y, z) = (1, 2) respectively.

Using these blocks, our goal is to determine the smallest non-negative value j such that
1s−10t−j10jγ ≥ ω where ω starts with 1u0v1y0z. Thus if s − 1 < u then the oracle returns
t. Also if s − 1 > u or s − 1 = u and t < v then clearly the oracle returns 0. Otherwise
s − 1 = u and t ≥ v. This will lead to two possible values for the bubble lower bound: t − v
or t − v + 1. Clearly the latter case will result in a string larger than ω since α’s prefix would
become (u, v − 1). Thus, we determine when setting j = t − v will result in a string that is
greater than or equal to ω. This will be the case if flag = TRUE and either (i) t = v or (ii)
y = 1 and t− v ≤ z. These observations can be simplified and summarized as follows:

procedure Oracle(s, t, flag: int)
if s− 1 < u then return t
if s− 1 > u or t < v then return 0
if (t = v or (y = 1 and t− v ≤ z)) and flag then return t− v
return t− v + 1

end.

Strings that are less than or equal to ω form a first-10 bubble language. For this language we
can apply the same oracle but when considering the bits within the string ω, we replace the two

the electronic journal of combinatorics 19 (2012), #P42 13

bit comparisons with 0 to 1. Also, the pre-computed block information in ω must be of the form
0∗1∗ instead of 1∗0∗.

COROLLARY 8 Fixed-density strings that are greater (less) than or equal to a string ω can be
generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

5.8 Strings that are ≥ or > or ≤ or < their reversal

Fixed-density strings that are greater than (or equal) to their reversal form a first-01 bubble
language. First we provide an oracle that includes palindromes (strings equal to their reversal)
and then add details that will allow the oracle to reject the palindromes. For our discussion let
the reversal of a string α be denoted αR. The oracle described here requires the run-length block
encoding data structure outlined in Section 3.1.

At the start of each recursive call α = 1s0tγ and α ≥ αR. We are trying to determine the
smallest non-negative value j such that 1s−10t−j10jγ is also greater than or equal to its reversal.
If the length of γ is greater than s + t then let δ denote the string γ with the last s + t bits
removed. When testing a given j, if the reversal of γ also starts 1s−10t−j10j then we need to
determine whether or not δ ≥ δR. To obtain this information in constant time we maintain
an additional parameter flag in the recursion that is TRUE if and only if δ ≥ δR. As an
example, let α = 110000011001110000100 where s = 2, t = 5 and γ = 11001110000100.
Then δ = 1100111 and flag = FALSE since δ < δR. To efficiently update this new parameter
we may need to efficiently determine which block a given 1 (not in the first block) belongs to.
Thus, the global array b is maintained that stores which block a specific 1 (not in the first block)
belongs to. From our example string α, the 1 in position 8 belongs to the 2nd block and thus
b8 = 2. Similarly b9 = 2 and b12 = 3.

During a recursive call, as 10i is prepended to γ, we need to update flag. Let p = s+t−iwhich
denotes the position of the 1 (from the 10i) in the updated string α. Then if q = n− p + 1, we
compare the strings apap+1 · · · ap+i with aqaq−1 · · · aq−i. To perform this test efficiently, first test
ap = 1 against aq. If aq = 0 then we set flag to TRUE; otherwise we check further. If i = 0 then
flag remains unchanged, but if i > 0 then test ap+1 = 0 with aq−1. If aq−1 = 1 then set flag
to FALSE. Otherwise since ap+1 · · · ap+i = 0i test if the same is true for aq−iaq−i+1 · · · aq−1.
Because aq = 1 and aq−1 = 0, the 1 in position aq is at the start of the block bq. The number
of consecutive 0s before this 1 is given by tbq+1. Thus if tbq+1 ≥ i the value for flag remains
unchanged. Otherwise set flag to FALSE. There is one special case where p > n/2 in which
case δ is empty so flag remains TRUE.

From our discussion, to update the value for flag the recursive call is replaced with the following:

p := s+ t− i
q := n− p+ 1
bp := c− 1

the electronic journal of combinatorics 19 (2012), #P42 14

if p > n/2 or aq = 0 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (aq−1 = 0 and tbq+1 ≥ i) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

The initial call with the added parameter is GenBubble(d, n− d, TRUE).

Once again, recall that we are trying to determine the smallest non-negative value j such that
β = 1s−10t−j10jγ is greater than or equal to its reversal. Using flag we obtain a O(1) time
oracle by comparing 1s−10t−j10j with the start of the reversal 0t11s10t21s20t3 . We examine two
cases depending on t1 being careful when c = 1 or c = 2.

Case 1: t1 = 0. In this case we compare 1s−10t−j10j with 1s10t21s20t3 . If s − 1 > s1 then the
oracle returns 0. If s−1 < s1 then the oracle returns t. The interesting case is when s−1 = s1.
As a special case when c = 2 the oracle simply returns b(t + 1)/2c. Otherwise observe that
β > βR if j = t− t2 + 1 ≥ 0 and β < βR if j = t− t2 − 1 ≥ 0. Thus, consider what happens
if j = t − t2. If j < 0 then the oracle simply returns 0. Also notice that if j = 0 and flag =
TRUE then β = βR. Otherwise, in order for β ≥ βR, we have s2 = 1, t3 ≥ j and flag =
TRUE. The following subroutine (which we use again later) handles these latter cases with the
call TestJ(t− t2, f lag, s2, t3):

procedure TestJ(j, flag, ones, zeros: int)
if j < 0 or (j = 0 and flag) then return 0
if ones = 1 and zeros ≥ j and flag then return j
return j + 1

end.

Case 2: t1 > 0. If s > 1 then β will start with a 1 for any j. Thus the oracle returns 0.
Otherwise s = 1 and we compare 0t−j10j with 0t11s10t2 . In a special case if c = 1 then β the
oracle returns bn/2c. For the remaining cases we encounter a problem similar to the previous
case which can be handled with the call TestJ(t− t1, f lag, s1, t2).

The following summarizes the oracle for reversible strings:

procedure Oracle(s, t, flag: int)
if t1 = 0 then

if s− 1 > s1 then return 0
if s− 1 < s1 then return t
if c = 2 return b(t+ 1)/2c
return TestJ(t− t2, flag, s2, t3)

if s > 1 then return 0
if c = 1 then return bn/2c
return TestJ(t− t1, flag, s1, t2)

end.

the electronic journal of combinatorics 19 (2012), #P42 15

Since fixed-density strings that are less than or equal to their reversal form a first-10 bubble
language we can apply the exact same oracle.

COROLLARY 9 Fixed-density strings that are greater (less) than or equal to their reversal can
be generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

Reversible strings have also been called “neckties” and Gray codes for them are presented in
[15].

5.8.1 No palindromes

If we consider fixed-density strings that are strictly greater than their reversals, which are also a
first-01 bubble language, then the following modifications are required:

• When updating flag, if δ = ε, then flag = FALSE. Thus set flag := FALSE in the
recursive call when p > n/2.
• In the oracle when t1 = 0 we make two changes. First when c = 2 and s − 1 = s1 + 1

we return 1. Second, for the case when c = 2 and s− 1 = s1, the oracle returns t/2 + 1
instead of b(t+ 1)/2c.
• In the oracle when t1 > 0 we also make 2 changes. First when c = 1 and s = 2 we return

1. Second for the case when c = 1 and s = 0 the oracle returns b(n + 1)/2c instead of
bn/2c.

COROLLARY 10 Fixed-density strings that are strictly greater (less) than to their reversal can
be generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

5.9 Strings that are ≥ or > or ≤ or < their complemented reversal

Fixed-density strings that are greater than or equal to their complemented reversals form a first-
01 bubble language if d ≥ dn/2e. These strings will be useful later when we consider connected
unit interval graphs. The construction of an oracle for this language is very similar to the
previous language for reversals and once again uses the run-length block data structure. As
defined in the previous subsection, we will use the term δ and will require the global array b
that maintains the index of the blocks for each 1 in the string α. We maintain a flag which is
set to TRUE if and only if δ (as defined in the previous section) is greater than or equal to its
complemented reversal.

Updating the flag for complemented reversals is very similar to reversals. In particular, to
update the value for flag as we add each 10i to γ, replace the recursive call with the following:

the electronic journal of combinatorics 19 (2012), #P42 16

p := s+ t− i
q := n− p+ 1
bp := c− 1
if p ≥ n/2 or aq = 1 then GenBubble(s− 1, t− i, TRUE)
else if i = 0 or (aq−1 = 1 and sbq−1 ≥ i) then GenBubble(s− 1, t− i, flag)
else GenBubble(s− 1, t− i, FALSE)

The initial call with this added parameter is GenBubble(d, n− d, TRUE).

Using this extra parameter flag, we now describe the oracle for complemented reversals. Recall
we are trying to determine the smallest non-negative value for j such that β = 1s−10t−j10jγ
is greater than or equal to its complemented reversal. So in particular we need to compare
1s−10t−j10j with the reversed complemented suffix 1t10s11t20s2 . For the special case when
c = 1, clearly a 1 can be moved into the last position an so the oracle returns 0. If s − 1 > t1,
then the oracle also returns 0; if s − 1 < t − 1 then the oracle returns t. The interesting case
is when s − 1 = t1. When c = 2, there is a special case: if t − 1 ≤ s1 then the oracle returns
0. Otherwise we can re-use the function TestJ(j,flag,ones,zeros) presented in the previous
subsection by calling TestJ(t − s1, flag, t2, s2). The resulting oracle can be summarized as
follows:

procedure Oracle(s, t, flag: int)
if c = 1 or s− 1 > t1 then return 0
if s− 1 < t1 then return t
if c = 2 and t− 1 ≤ s1 return 0
return TestJ(t− s1, flag, t2, s2)

end.

Since fixed-density strings that are less than or equal to their complemented reversal form a first
10-bubble language we can apply the exact same oracle.

COROLLARY 11 Fixed-density strings that are greater (less) than or equal to their comple-
mented reversal can be generated in either co-lex or cool-lex Gray code order inO(1) amortized
time.

Note that a string cannot equal its complemented reversal unless n = 2d. Thus, this result
applies to strings that are strictly greater (less) than their complemented reversals when d >
n/2.

5.10 0-1 Knapsack

Consider a knapsack with capacity C and a set of n items sorted by non-decreasing weights
w1w2 · · ·wn. The set of all subsets of d items whose total weight does not exceed the capacity

the electronic journal of combinatorics 19 (2012), #P42 17

form a first-01 bubble language. For example, consider a knapsack with capacity C = 22 and
5 items with weights 2, 4, 6, 6, and 15 respectively. Then the 5 feasible solutions with 3 items,
where a 1 indicates that we are including the item, are: 11100, 11010, 11001, 10110, and 01110.

To obtain an efficient oracle we maintain an extra parameter avail that represents the available
capacity from using the current d items. As the string 10i is prepended to γ, we are effectively
removing the s-th item from the knapsack and inserting the s+ t− i-th item. Thus to maintain
this parameter, replace the recursive call with GenBubble(s − 1, t − i, avail − ws+t−i + ws)
where the initial call is GenBubble(d, n− d, C −

∑d
k=1wk).

Using this extra parameter, the oracle determines the heaviest item (up to item s+ t) that can be
swapped with the s-th item so we do not violate the capacity C. This can be done as follows:

procedure Oracle(s, t, avail: int)
int j

j := t
while j > 0 and avail ≥ ws+t−j+1 − ws do j := j − 1
return j

end.

Clearly this oracle does not run in O(1) time. However observe that for every successful itera-
tion of the while loop, we will generate a recursive call in GenBubble(s, t, avail). This means
we will still achieve a CAT algorithm.

COROLLARY 12 Feasible solutions to the 0-1 knapsack problem with exactly d items can be
generated in either co-lex or cool-lex Gray code order in O(1) amortized time.

A comprehensive discussion on knapsack problems is given in [2].

5.11 Closure properties of oracles

Bubble languages are closed under both union and intersection [7] (with respect to either the
first-01 bubble or first-10 bubble property). Thus if there are oracles for two first-01 bubble
languages L1 and L2, then an oracle for L1 ∪L2 will be the minimum of the two oracles and an
oracle for L1 ∩ L2 will be the maximum of the two oracles.

As an example, connected unit interval graphs with d vertices can be expressed as a first-01
bubble language of length n = 2d and density d. This language is the intersection of balanced
parentheses strings with 1 balanced prefix and strings that are greater than or equal to their
complemented reversals [7]. Since there exists O(1) time oracles for these two languages, we
obtain a O(1) time oracle for connected unit interval graphs.

the electronic journal of combinatorics 19 (2012), #P42 18

COROLLARY 13 Connected unit interval graphs can be generated in either co-lex or cool-lex
Gray code order in O(1) amortized time.

Another Gray code for connected unit interval graphs is also presented in [9].

6 Layering densities

In the previous section we provided efficient oracles for a number of fixed-density bubble lan-
guages that allows the languages to be generated in O(1) amortized time. For many of the
objects, there are corresponding bubble languages when the density is not fixed. For such lan-
guages, we can concatenate the cool-lex Gray codes together over all densities to obtain Gray
codes that are ordered by density. Alternatively if we output the even densities in increasing
order followed by the odd densities in decreasing order, then we will obtain a cyclic Gray code
[7].

THEOREM 3 The following objects can be listed in a cyclic Gray code order in O(1) amortized
time:

first-01 bubble languages first-10 bubble languages
• strings with forbidden 01k • strings with forbidden 10k

• strings with ≤ k inversions from 1∗0∗ • strings with ≤ k inversions from 0∗1∗

• strings with ≤ k transpositions from 1∗0∗ • strings with ≤ k transpositions from 0∗1∗

• strings ≥ some string ω • strings ≤ to some string ω
• strings ≥ their reversal • strings ≤ their reversal
• strings > their reversal • strings < their reversal
• feasible solutions to 0-1 knapsack.

7 Summary

We have provided a recursive framework to efficiently generate many fixed-density bubble lan-
guages in cool-lex Gray code order. Moreover, we have reduced the problem of generating the
Gray code for a particular bubble language to the problem of providing a membership tester for
it.

Question: Are there other interesting bubble languages and do they have efficient oracles?

Acknowledgements

Thanks to Frank Ruskey for many helpful discussions and valuable comments.

the electronic journal of combinatorics 19 (2012), #P42 19

References
[1] J.P. Duval, Factorizing words over an ordered alphabet, J. Algorithms, Vol. 4 No. 4 (1983) 363-381.

[2] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.

[3] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Tuples and Permuta-
tions, Fascicle 2, Addison-Wesley, 2005.

[4] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating all Combinations and
Partitions, Fascicle 3, Addison-Wesley, 2005.

[5] D. E. Knuth, The Art of Computer Programming, Volume 4: Generating All Trees; History of
Combinatorial Generation, Fascicle 4, Addison-Wesley, 2006.

[6] G. Pruesse and F. Ruskey, Generating linear extensions fast, SIAM Journal on Computing, Vol.23
No. 2 (1994) 373-386.

[7] F. Ruskey, J. Sawada and A. Williams, Binary bubble languages and cool-lex Gray codes, Journal
of Combinatorial Theory, Series A, 119(1):155-169, 2012.

[8] F. Ruskey, J. Sawada and A. Williams, De Bruijn sequences for fixed-weight binary strings, SIAM
Journal on Discrete Mathematics, 2012, to appear.

[9] T. Saitoh, K. Yamanaka, M. Kiyomi and R. Uehara, Random generation and enumeration of proper
interval graphs, WALCOM ’09: Third International Workshop on Algorithms and Computation,
LNCS 5431 (2009) 177-189.

[10] J. Sawada and A. Williams, A Gray code for fixed-density necklaces and Lyndon words in constant
amortized time, Theoretical Computer Science, 2012, to appear.

[11] N. Sloane, The on-line encyclopedia of integer sequences, http://www.research.
att.com/njas/sequences, sequence numbers A000071, A004070, A008937, A055216,
A107066, A107065.

[12] R. Stanley, Enumerative Combinatorics, Cambridge University Press, 1997.

[13] T. Ueda, Gray codes for necklaces, Discrete Math., Vol. 219 No. 1-3 (2000) 235-248.

[14] V. Vajnovszki and T. Walsh, A loop-free two-close Gray-code algorithm for listing k-ary Dyck
words, Journal of Discrete Algorithms, Vol. 4 No. 4 (2006) 633–648.

[15] T. Wang and F. Ruskey, Generating neckties: algorithms Gray codes and parity differences, (1993),
preprint.

[16] T. Wang and C. Savage, A Gray code for necklaces of fixed density, SIAM J. Discrete Math., Vol.
9 No. 4 (1996) 654-673.

[17] A. Williams, Shift Gray codes, PhD thesis in Computer Science, University of Victoria, 2009.

the electronic journal of combinatorics 19 (2012), #P42 20

