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Abstract

We prove that for any integers k,m > 0 and any tree F with at least one edge,
there exists a tree whose number of F -matchings is congruent to k modulo m as
well as an analogous result for induced F -matchings. This answers a question of
Alon, Haber and Krivelevich (The number of F -matchings in almost every tree is a
zero residue, Electron. J. Combin. 18 (2011), #P30).

1 Introduction

An independent set in a graph is a set of vertices which does not induce any edges. Denote
by i(G) the number of independent sets in a graph G. The parameter was introduced
by Prodinger and Tichy [11] who called it the Fibonacci number of G and proved that
among trees of the same order, it is maximized by the star and minimized by the path.
It has also been studied in mathematical chemistry where it is known as the Merrifield-
Simmons index [9] which empirically relates physical properties of a compound with its
chemical graphs. More generally, the whole profile of independent sets can be encoded
as the independent set polynomial [4] which has connection to statistical physics, see for
example [13].

In certain applications [6], it is of interest to know if an integer can be realized as the
index of a chemical graph. To be precise, given an integer k, the inverse question asks
whether there exists a graph G in a given family such that i(G) = k. In this aspect, Linek
[8] proved that a bipartite graph can have any number of independent sets. Moreover, he
conjectured that any sufficiently large integer is the number of independent sets in some
tree. Although there has been extensive study of i(G) from an extremal perspective (for
example [7, 16, 14]), it appears that some new idea is required for the conjecture. We
wrote a computer program to calculate i(T ) for trees up to order 27 and found that up to
i(P28) = 832040, there are 823 integers with no corresponding tree with the largest being
88013.
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An interesting paper of Wagner [15] considered the parity of the parameter i(G). Let
Un denote the space of unlabelled trees of order n and m > 0 be an integer. It was
shown via singularity analysis that asymptotically almost every (a.a.e.) tree T sampled
uniformly at random (u.a.r.) from Un has i(T ) a multiple of m. A crucial fact is that
there is a rooted tree (T, t) with i(T ) and i(T − t) a multiple of m to begin with. Such a
tree was constructed with the Fibonacci sequence and led to the conjecture [15] that any
residue class is invertible as i(T ). The conjecture was resolved by Law [5] where it was
shown that for any integers k,m > 0, there exists a tree T such that i(T ) ≡ k (mod m).

Searching for an intuitive explanation of Wagner’s result, Alon, Haber and Krivelevich
[1] considered F -matchings which generalize both independent sets and matchings. Let
F,G be graphs. An F -matching is a subgraph of G consisting of vertex-disjoint copies
of F ; an induced F -matching is such a subgraph which does not induce any edges in G
outside the copies of F . Since both versions are multiplicative over components, if there
is a component whose number of F -matchings is a multiple of m, then the residue of the
whole graph is necessarily 0. Developing this property, a nullifying tree was constructed
in [1, Lemma 8] such that if contained in T , then the number of F -matchings in T is
a zero residue. Then it was proved a.a.e. tree sampled u.a.r. from the space of labelled
trees Tn of order n contains the nullifying tree, from which it follows that the number of
F -matchings in a.a.e. tree is a zero residue. A tree whose number of F -matchings is a
multiple of m is required in the proofs and was constructed using a linear recursion.

The authors of [1] raised the question: Given k,m > 0 and a tree F , is there a tree T
whose number of F -matchings is congruent to k (mod m)? The analogous question
for induced F -matchings was also raised. While the use of linear recursion seems a
natural approach, the divisibility properties may be hard to analyze in general. We
answer the two questions positively in a more general setting by constructing trees with
no two disjoint copies of F . Indeed, for an integer r ≥ 1, let an (F, r)-matching be a
possibly empty collection of copies of F in G such that for any distinct copies F1, F2,
min{distG(x, y) : x ∈ F1, y ∈ F2} ≥ r where distG denotes the graph distance in G. Thus
an F -matching is an (F, 1)-matching and an induced F -matching is an (F, 2)-matching.
Let Sr(F,G) be the set of (F, r)-matchings and sr(F,G) = |Sr(F,G)|.

Theorem 1. For integers k,m, r ≥ 1 and any tree F , there exist infinitely many trees T
such that sr(F, T ) ≡ k (mod m), except {s1(K1, T ) (mod m): T a tree} = Zm iff m ≤ 2.

We prove Theorem 1 and some natural extensions in Section 2. In Section 3 we
generalize the results in [15] and [1] on the asymptotic behaviour of sr(F, T ). While zero
is the dominating residue, we show that the other residue classes still grow exponentially
in Section 4. The proof constructs finite trees that can control the residue in some limited
sense.

It is interesting that the results given for F with diameter at least 3 are easier to
prove. In fact for Lemma 9, we are unable to construct trees for F = P1, P2 or P3 and
general r. Perhaps copies of these trees occur rather too easily.

the electronic journal of combinatorics 19 (2012), #P43 2



2 Inverse problems

In this section, we prove Theorem 1, i.e. with the exception of s1(K1, T ), we can represent
any residue modulo an integer m as sr(F, T ) for some tree T .

We first introduce some notation. Suppose F is a tree with at least two edges. Let
d = diam(F ) > 1 be the diameter of F , i.e. the number of edges of a longest path in F .
Take a path u0u1 · · ·ud of length d in F . Denote F − ud by D (for deficit). Also, let λ be
the number of leaves adjacent to ud−1.

Given integer m > 0, let M = ∆(F )!m where ∆(F ) is the maximum degree of F .
Then for any l = 1, 2, · · · ,∆(F ), the binomial coefficient

(
M
l

)
is divisible by m. This will

allow us to control the formation of copies of F .
Define a rooted tree (W,w) = W (a) by identifying a copies of F and M − a copies of

D at the root w = u0.
Since m is fixed, we usually omit ‘(mod m)’ after ‘≡’. Recall that a branch at v is a

maximal subtree of T such that v is a leaf.

Proof of Theorem 1. Let d = diam(F ). Suppose F = K1. If r = 1, then s1(K1, T ) = 2|T |

and {s1(K1, T ) (mod m) : T tree } = Zm iff m ≤ 2. The case for r = 2 has been proved
in [5]. For r > 2, since the leaves of K1,n are at distance 2 from each other, at most one
vertex can be chosen in any (K1, r)-matching. Thus, sr(K1, K1,n) = n+ 2. By varying n
over 1, 2, · · · ,m, we are done.

For other F , we construct various trees which do not contain disjoint copies of F .
If d = 1, then F = K2. As sr(K2, K1,n) = n+ 1, the result holds.
Suppose d > 1, consider (W,w) = W (a) where a = k− 1. There are three possibilities

for a copy F0 of F in W .

1. F0 does not contain w. Then F0 is contained in a component with strictly fewer
vertices than F which is impossible. This case does not occur.

2. F0 contains exactly one edge incident with w. Then F0 lies in a branch of W at w.
Clearly F0 cannot be embedded into D, so this branch is isomorphic to F . There
are a such copies of F0.

3. F0 contains at least two edges incident with w. Then F0 does not contain any leaf
adjacent to any copy of ud−1 for otherwise there is a path on more than d edges in
F0. Thus the number of such copies f depends only on M but not a. In fact, since
the M branches of W within distance d − 1 of w are isomorphic, f can be written
as a sum of terms each of which divisible by

(
M
l

)
for some 1 < l ≤ ∆(F ). Indeed,

we first choose l > 1 branches from the M at w, then we arrange these branches to
form copies of F . By the choice of M , f ≡ 0.

As there are no disjoint copies of F in W , we have sr(F, T ) ≡ 1 + a ≡ k.

The above proof motivates a further definition. We say that a rooted tree (T, t) is
symmetric with respect to F if the isomorphism type of each branch within distance d− 1
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of t occurs a multiple of M = ∆(F )!m times and that any copy of F in T contains t.
Then as we have just seen, the number of copies F in T using at least two edges incident
with t is divisible by m. With this notion, it is straightforward to generalize Theorem 1
to families of trees without pairwise embeddings.

Corollary 2. Given integer r ≥ 1 and trees F1, F2, · · · , Fl such that each Fi is not
embeddable into Fj for any j 6= i, then for any integers k1, k2, · · · , kl, there exist infinitely
many trees T such that sr(Fi, T ) ≡ ki (mod m).

Proof. Let di = diam(Fi). Assume that d1 ≤ d2 ≤ · · · ≤ dl. For each Fi, con-
struct Wi = Wi(ai) by identifying ai copies of Fi and M − ai copies of Di where M =
(max1≤i≤l ∆(Fi))!m. Identify the root of each Wi to form T . The nonembeddability
condition implies that there are no disjoint copies of Fi in T .

As no copy of Fi contains a leaf udj in Fj for j > i, by symmetry, sr(Fi, T ) is inde-
pendent of ai+1, ai+2, · · · , al. Therefore, we can choose a1 = k1− 1, a2, · · · , al sequentially
such that sr(Fi, T ) ≡ ki for all i.

Theorem 1 answers the questions of Alon, Haber and Krivelevich [1] on the number
of F -matchings and on induced F -matchings. Note also that by restricting ourselves to
trees with no disjoint copies of F in the proof, we avoid multiplication in Zm (and hence
number theoretic difficulties). However it seems unavoidable if we want to control s1, s2
simultaneously. The idea of the following construction is to restrain the formation of a
copy of F by supplying a power of m branches that we do not want F to be built on.

Theorem 3. For integers j, k > 2, m > 0 and a tree F with at least one edge, there exist
infinitely many trees T with s1(F, T ) ≡ j, s2(F, T ) ≡ k (mod m).

Proof. Let d = diam(F ). Suppose F = K2. For integers a1, a2, · · · , ak > 0, let T be a
tree obtained by joining a vertex v by an edge to the centre of a copy of K1,ai for each

i (see Figure 1). Then s1(K2, T ) =
∏k

i=1(1 + ai) +
∑k

i=1

∏
l 6=i(1 + al) and s2(K2, T ) =∏k

i=1(1 + ai) + k. Choose ai’s such that a1 ≡ −1, a2 ≡ j − 1, ai ≡ 0 for i = 2, 3, · · · , k.
Then s1(K2, T ) ≡ j, s2(K2, T ) ≡ k.

If d = 2, then F = K1,n for some n > 1. LetM = n!m. For any p1, · · · pM , q1, · · · , qM >
n, define Q(pi, qi) by identifying the centre of K1,qi with a leaf of pi copies of K1,n. Let
xi = s1(F,Q(pi, qi)) = 1+

(
pi+qi
n

)
+pi. Define T by joining V to the centre of each Q(pi, qi)

(see Figure 1). Then we have

s1(F, T ) =
M∏
i=1

xi +
M∑
i=1

(
pi + qi
n− 1

)∏
l 6=i

xl +
∑

A⊂[M ],|A|=M−n

∏
i∈A

xi,

s2(F, T ) =
M∏
i=1

xi +
M∑
i=1

(
pi + qi
n− 1

)
+

(
M

n

)
.

Let pi + qi ≡ n− 1 for 1 ≤ i ≤ k and pi + qi some multiple of m such that
(
pi+qi
n−1

)
≡ 0 for
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Figure 1: T for F = K2, K1,4 respectively in the proof of Theorem 3

i > k; and xi ≡ 1, for 1 ≤ i ≤M −n−1, xM−n ≡ j, xj ≡ 0 for j > M −n. This is feasible
because after we have chosen a value for pi + qi, we can adjust that of xi by changing pi.
Then s1(F, T ) ≡ j, s2(F, T ) ≡ k.

Suppose d > 2. We construct a tree T whose constituents are X, Y and Z described
as follows. For integers a, b > 0, let (X, x) = W (a) and (Y, y) = W (b).

To construct Z, we consider a poset. Let Z ′ be obtained by identifying z = ud−1 of
c > ∆(F ) copies of F . Then any copy F0 of F in Z ′ contains z. Define a fragment to
be a branch at z of a copy F0 in Z ′. Note that the set G of fragments depends on F but
not c. Define a partial order on G as follows: for any Gi, Gl ∈ G, Gi ≤ Gl iff Gi can be
embedded into Gl as a rooted subtree. Fix a linear extension (G1, G2, · · · , Gg) of G where
g = |G|. Thus G1 = K2 and Gg is F with all the leaves adjacent to ud−1 deleted.

Let Zg = Z ′. For 1 < i < g, form Zi by attaching copies of Gi to Zi+1 such that
the number of copies of Gi is a multiple of M . Note that some copies may come from
Gl for l > i but not from l < i. Define Z by attaching leaves to z in Z2 such that
degZ(z) = Cm+ λ for some integer C. Identify x with z and add the edge xy to form T
(see Figure 2). Consider a copy F0 in T .

1. F0 lies completely in X or Y . The numbers of such copies are respectively congruent
to a and b (mod m).

2. F0 contains xy and vertices in X − x or Y − y. Such a copy does not contain leaves
adjacent to ud−1 within X or Y . By symmetry, the contribution is 0 (mod m).

3. F0 contains vertices in both X − x and Z − z but not xy. Again, by symmetry, the
contribution is again 0 (mod m).

4. F0 lies completely in Z. Thus F0 is formed by choosing fragments in G. If F0 uses
any fragment other than G1 or Gg, as there are a multiple of M such fragments, the
contribution is 0 (mod m). Otherwise F0 contains exactly one copy Gg so that we
need to choose λ leaves at z. Since there are Cm+λ−1 available edges (one is used
by Gg) incident with z in Z and

(
Cm+λ−1

λ

)
≡ 0, the contribution is also 0 (mod m).

5. F0 contains xy with the rest in Z. By the same reasoning as 4, we may assume F0

chooses a copy of Gg. To complete F0, we need to choose only λ− 1 edges incident
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Figure 2: T for F with diameter d > 2 in the proof of Theorem 3

with z because xy accounts for one leaf already. Since
(
Cm+λ−1
λ−1

)
≡ 1 and there are

c copies of Gg to choose from, the number of copies is congruent to c (mod m).

Since any copy of F contains either x or y, s1(F, T ) ≡ (1+a)(1+b)+c and s2(F, T ) ≡
1 + a + b + c. By choosing a ≡ −1, b ≡ k − j, c ≡ j, we have s1(F, T ) ≡ j, s2(F, T ) ≡ k.

We conjecture that the theorem is true for general r.

Conjecture 4. Given integers r,m ≥ 1 and a tree F with at least one edge, for any
k1, · · · , kr ∈ Zm, there exists a tree T such that si(F, T ) ≡ ki (mod m) for all 1 ≤ i ≤ r.

3 Asymptotic behaviour of divisibility properties

We first generalize the results in Wagner [15] and Alon, Haber and Krivelevich [1] to
general r and a polynomial version. The proof is similar to [1] and consists of two parts
as well. Given trees F, T , recall that Sr(F, T ) denotes the set of (F, r)-matchings in T ,
define the (F, r)-matching polynomial as

Sr(F, T, z) =
∑

S∈Sr(F,T )

z|S|

where |S| denotes the number of copies of F in T . Thus S2(K1, T, z) is the independent
set polynomial and S1(K2, T, z) is the matching polynomial.

Recall that a limb at v consists of a number of branches at v. For a subset X ⊂ T ,
let Γr−1(X) denote the set of vertices within distance r − 1 from X in T . The following
is analogous to Lemma 8 in [1]; we include a proof for completeness.

Lemma 5. Given trees F,H and integer r > 0, there exists a rooted tree L such that if a
tree T contains L as a limb, then Sr(F,H, z) divides Sr(F, T, z).

Proof. Let L be defined by joining a vertex v to a copy of H by an edge and ∆(F ) + 1
copies by a path of length r. Suppose T contains L as a limb. Consider (F, r)-matchings
not containing v. Since there is a component of H in T − v, these matchings contribute
a multiple of Sr(F,H, z). On the other hand, deleting a copy F0 of F containing v along
with Γr−1(F0) always leaves a forest with an H component. As there are finitely many
possibilities for L−F0−Γr−1(F0), the contribution is also a multiple of Sr(F,H, z). Thus,
the sum Sr(F, T, z) is divisible by Sr(F,H, z).
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The probabilistic part is a classical result of Schwenk’s,

Theorem 6 ([12]). Given any rooted tree L, a.a.e. tree in Un contains L as a limb.

The following analogue of Theorem 6 for labelled trees was proved in [1] by concentra-
tion inequalities. For the sake of variation, we sketch a proof using generating functions
(for background, we refer to [3]). A rooted tree L occurs as a limb in a rooted tree T
if L consists of branches of descendants at some vertex and T 6= L. For a power series
A(z) =

∑
n≥0 anz

n, let rad(A) be its radius of convergence.

Theorem 7. Given rooted tree L, a.a.e. labelled tree in Tn contains L as a limb.

Proof. Let l = |L| > 1 and ρ be the size of the automorphism group of L as a rooted
tree. Let T (z, u) be the exponential generating function (EGF) of rooted trees with u

counting the occurrence of L as a limb. Then T (z, u) = z exp
(
T (z, u) + (u− 1) z

l

ρ

)
. Let

G(z) = T (z, 0) be the EGF for rooted trees forbidding L as a limb. Then

G(z) = z exp

(
G(z)− zl

ρ

)
.

Let g(z) = z exp
(
− zl

ρ

)
. As T (g(z), 1) is a function analytic around z = 0 and satisfies

the equation for G with T (g(0), 1) = G(0), it is the local solution for G(z). It is well
known (by Cayley’s formula) that rad(T (z, 1)) = 1/e. Hence

rad(G) = rad(T (g(z), 1)) = sup
z>0
{g(x) < 1/e,∀0 < x < z} > 1/e.

This implies that there are exponentially fewer rooted trees without L as a limb than the
total number of rooted trees. As we can root a tree in n ways, the probability of a random
unrooted tree without L as a limb is at most n times the corresponding probability for a
random rooted tree sampled u.a.r., which tends to 0 exponentially fast.

By Theorem 1, for any m > 0, there exists a tree H such that m divides sr(F,H) =
Sr(F,H, 1). Thus the following generalizes the results in [15] and [1].

Corollary 8. Given trees F,H and integer r > 0, a.a.e. tree T ∈ Un has the property
that Sr(F,H, z) divides Sr(F, T, z). The same is true when T is sampled from Tn.

Proof. It follows directly from Lemma 5, Theorems 6 and 7.

4 Trees in other residue classes

Returning to the modulo m case, it was shown in [15] that the number of trees with an
odd number of independent sets is small compared to those with an even number but it
still grows exponentially fast. While the use of ‘nullifying trees’ in [1] gives a quick proof
that the number of F -matchings is a.a.s. a zero residue, it is not clear whether the other
residue classes still grow exponentially. We show that this is the case for trees F with
diameter at least 3.
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Lemma 9. Given a tree F with at least 3 edges and integers r, k,m > 0, then for any
sufficiently large n, there exists a tree T of order n such that sr(F, T ) ≡ k (mod m).

Proof. Given F , for each k, let Wk = W (k − 1) be constructed as in Section 2 such that
sr(F,Wk) ≡ k. Note that |Wk| may vary over k. Let n > maxk |Wk| be an integer.

If diam(F ) = 2, then F = K1,n for n > 2 since |F | ≥ 4. By adding a path on n− |Wk|
vertices to any leaf of Wk, we obtain a tree T of order n such that sr(F, T ) ≡ k.

If diam(F ) > 2, then F is not a star. Then attaching n − |Wk| leaves to the root
does not change the residue of sr(F,Wk). Indeed, this follows from that any copy of F
contains the root and by symmetry the number of copies of F containing an added leave
is a multiple of m. Hence we can span all residues of m with trees of order n.

In the following, we restrict ourselves to r = 1 and F with diameter at least 3. Let
A(k) denote the family of rooted trees T such that s1(F, T ) ≡ k and An(k) the set of
such trees of order n. Let an(k) = |An(k)| and A(k, z) =

∑
n≥0 an(k)zn. We will prove

that rad(A(k, z)) < 1 which implies that an(k) grows exponentially fast. Let U(z) be the
ordinary generating function for the class of unlabelled rooted trees. It is well known (see
for example [3, Chapter 1] for a derivation) that

U(z) = z exp

(∑
i≥1

U(zi)

i

)
. (1)

For any rooted tree (T, t), let s1(F, T
+) = s1(F, T )− s1(F, T − t).

Theorem 10. For a tree F of diameter at least 3 and integers m ≥ 1, there exists C > 1
such that for any k and sufficiently large integer n, the number of trees T of order n such
that s1(F, T ) ≡ k (mod m) is at least Cn.

Proof. We first reduce the general case to k = 1. Let H ∈ A(1) and Wk ∈ A(k) such
that |Wk| = n −M |H| as constructed as in Lemma 9 and M as defined in Section 2.
Join the root of Wk to that of M copies of H by an edge to form T . It is easy to check
that T ∈ A(k). In other words, given a tree H ∈ A(1), we can construct a tree of order
M |H|+ |Wk| in A(k). Hence, an(k) ≥ a(n−|Wk|)/M(1). Since M and |Wk| are constant, to
prove the result, it suffices to show that the number of choices for H grows exponentially
fast.

To this end, we construct a rooted tree (V, v) such that if v is joined to any collection
of trees in A(1), the resulting tree remains in A(1). We require (V, v) to satisfy:

1. s1(F, V − v) ≡ 0;

2. s1(F, V
+) ≡ 1;

3. V is symmetric.
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Figure 3: Construction of V in the proof of Theorem 10

Let (W,w) = W (m − 1) ∈ A(0) and D be constructed as in Section 2. Identify ud−1
of D with w to form a tree (C,w) (for complete). Delete all vertices at distance d from
w (all such vertices lie in W ) to form (I, w) (for incomplete). Define V by adding a new
vertex v joined to the root of a copy of C and M − 1 copies of I (see Figure 3).

Clearly V is symmetric. Note that s1(F,C) ≡ (m−1)+1+
(
λ−1
λ

)
≡ 0, since W ∈ A(0)

and D does not contain a copy of F . As V −v contains C as a component, s1(F, V −v) ≡ 0.
Consider a copy containing v. By symmetry of V , we may assume the copy also

contains the edge e joining v and C but no other edges on v. Moreover, as W is symmetric
as well, we may further assume no edge in W is involved. Thus there is exactly one such
copy, namely, D ∪ e. Hence, s1(F, V

+) ≡ 1.

We claim that if we join any collection of trees in A(1) to v ∈ V by an edge, the
resulting tree remains in A(1). Indeed, for H1, · · · , Hp ∈ A(1), define H by adding a
vertex h joined to each Hi. Furthermore, identify h and v to form a tree T . Then
considering the edges incident with v in an (F, r)-matching, we have

s1(F, T ) ≡ s1(F, V )

p∏
i=1

s1(F,Hi) + s1(F, V − v)s1(F,H
+) ≡ 1.

To repeat, the tree defined by joining a collection of trees in A(1) to the large ‘root’
V is in A(1). Hence, the coefficients of A(1, z) dominate those of B(z) where

B(z) = z|V | exp

(∑
i≥1

B(zi)

i

)
.

Suppose U(z) satisfies (1), then the solution around z = 0 is B(z) = U(z|V |). Thus

rad(A(1, z)) ≤ rad(B) = rad(U)1/|V |.

It was proved by Pólya [10] that rad(U) < 1. Hence, rad(A(1, z)) < 1. It follows that
an(1) grows exponentially fast and so does an(k) for any k.
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(R1, r1) (R2, r2)

Figure 4: Pairs of rooted trees with identical local independent set polynomial data

Further questions

The original motivation of Schwenk [12] was to show that a.a.e. tree is cospectral to some
other tree. He constructed a pair of rooted trees R1, R2 such that if a tree has R1 as a
limb, swapping it with R2 preserves the characteristic polynomial. By Theorem 6 ([12]),
a.a.e. tree contains R1 as a limb, hence the cospectral result. Given the classical result
that the characteristic polynomial of a tree carries the same information as S1(K2, ·, z)
(see for example [2]), it is natural to conjecture that swapping is possible for general
(F, r)-matchings and hence a.a.e. tree is not distinguished by Sr(F, ·, z).

Conjecture 11. For any tree F and integer r > 0, there exist rooted trees R1, R2 with
the property: if a tree T1 has R1 as a limb and T2 is obtained from T1 by swapping R1

with R2, then Sr(F, T1, z) = Sr(F, T2, z).

Thus we are asking for a pair of rooted trees with identical local versions of Sr(F,R, z).
For example, the rooted trees (Ri, ri), i = 1, 2 in Figure 4 satisfy S2(K1, R1, z) =
S2(K1, R2, z) and S2(K1, R1 − r1, z) = S2(K1, R2 − r2, z). Switching them does not al-
ter S2(K1, T, z) for any T containing R1 as a limb. It follows that a.a.e. trees are not
distinguished by the independent set polynomial.

We end with a question on the growth rate of the maximum number of (F, r)-matchings
among trees. In [11] it was proved that the star and the path maximize the number of
independent sets and matchings respectively for trees of order n. It would be interesting
to study the extremal trees for other pairs (F, r). Here we give a start in this direction.
Let µ(F, r, n) = max{sr(F, T ) : T is a tree of order n}.

Proposition 12. For any r ≥ 1 and tree F , λ(F, r) = lim
n→∞

µ(F, r, n)1/n exists and

1 < λ(F, r) ≤ 2.

Proof. Let µn = µ(F, r, n). We may assume f = |F | > 2. Since joining two trees by
a path of length r preserves (F, r)-matchings, it follows that µn+k+r−1 ≥ µnµk for all
integers n, k ≥ 0. By an adaptation of Fekete’s Lemma, λ(F, r) = lim

n→∞
µ1/n
n exists.

By taking disjoint copies of F and joining them to a vertex with a path of length r,
we obtain a tree T with sr(F, T ) > cn for some constant c > 1. Hence λ > 1. Moreover,
as an (F, r)-matching corresponds to an edge subset, µn ≤ 2n−1. Hence, λ ≤ 2.

the electronic journal of combinatorics 19 (2012), #P43 10



We remark that while 1 /∈ Λ, it can be shown that limp→∞ λ(K1, 2p) = 1. Thus in the
spirit of inverse problems, we ask the following.

Question 13. Let Λ = {λ(F, r) : F tree, r ≥ 1}. Is Λ dense in [1, 2]?

I would like to thank Alex Scott, Chandu Thatte and the referees for their comments
and suggestions.
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