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Abstract

Let G be a connected d-regular graph with k vertices. We investigate the
behaviour of a spanning random subgraph Gnp of Gn, the n-th Cartesian power
ofG, which is constructed by deleting each edge independently with probability

1−p. We prove that lim
n→∞

P[Gnp is connected] = e−λ, if p = p(n) = 1−
(
λ
1/n
n
k

)1/d
and λn → λ > 0 as n → ∞. This extends a result of L. Clark, Random
subgraphs of certain graph powers, Int. J. Math. Math. Sci., 32(5):285-292,
2002.

1 Introduction

For a graph G, we denote by Gp a random subgraph of G on the same vertex
set which includes every edge of G independently of other edges with probability
p ∈ (0, 1). Erdős and Rényi [5] were the first to investigate such random graphs. For
the complete graph Kn with n vertices and

(
n
2

)
edges they proved that if p(n) = c+lnn

n

with some c ∈ R, then lim
n→∞

P[(Kn)p is connected] = exp(−e−c). Palásti [7] gave

an analogous result for the complete bipartite graph Kn,n and Ruciński [8] did an
improvement for multipartite graphs. The Cartesian power Gn of a graph G is the
graph with vertex set V (G)n = V (G)×. . .×V (G) where two vertices (x1, . . . , xn) and
(y1, . . . , yn) are adjacent if and only if xiyi ∈ E(G) for exactly one i ∈ {1, . . . , n} and
xj = yj for all j 6= i. Burtin [2] considered a similar problem for the n-dimensional
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cube Qn = {0, 1}n. He proved that, if p > 1
2
, then lim

n→∞
P[Qn

p is connected] = 1 and

if p < 1
2
, then lim

n→∞
P[Qn

p is connected] = 0. Erdős and Spencer [6] and Bollobás [1]

proved a more precise version of this theorem. They proved that if p = 1
2

+ c
2n

for
some c ∈ R, then lim

n→∞
P[Qn

p is connected] = exp(−e−c).
Clark [3] proved for the complete graph Ka with a vertices (a ≥ 2) and for the

complete bipartite graph Ka,a with a vertices in each partition (a ≥ 1) a similar result

(recall: Kn
2 = Kn

1,1 = Qn). In detail he showed, if 1 − p = (λ
1/n
n /a)1/a−1 with λn →

λ > 0 as n → ∞, then lim
n→∞

P[(Kn
a )p is connected] = e−λ and similarly for Ka,a, if

1−p = (λ
1/n
n /2a)1/a with λn → λ > 0 as n→∞, then lim

n→∞
P[(Kn

a,a)p is connected] =

e−λ.
We say that a graph is d-regular, if every vertex is adjacent to exactly d vertices.

We can generalize the above results to Cartesian powers of arbitrary connected,
regular graphs. Keep in mind that the graph Ka is (a − 1)-regular and the graph
Ka,a is a-regular.
Now we state our main result.

Theorem 1.1. Let G be a connected, d-regular graph with k vertices and let 1− p =

q = q(n) =

(
λ

1
n
n

k

)1/d

, where λn → λ > 0 as n→∞. Then,

lim
n→∞

P[Gn
p is connected] = e−λ. (1.1)

Proof: Let Xn be the random variable, which denotes the number of isolated vertices
in Gn

p . At first we use Lemma 2.2 which is given below

0 ≤ P[Gn
p disconnected]− P[Xn > 0]

= P[Gn
p has a component of order s with 2 ≤ s ≤ kn/2] = o(1) (n→∞).

Using Lemma 2.1 which is also given below, we have

lim
n→∞

P[Gn
p disconnected] = lim

n→∞
P[Xn > 0] = 1− e−λ. (1.2)

This completes the proof. �

The proof follows the method of Clark [3]. We start with some notations. Let
graphs be always simple, finite, and undirected. Let G be a graph. We denote by
V (G) the vertex set of G and by E(G) the edge set of G. The order |V (G)| of G
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is denoted by n(G) and the size |E(G)| of G is denoted by m(G). For S ⊆ V (G),
let G[S] be the subgraph of G induced by S and let G[S, V (G) \ S] be the bipartite
subgraph of G induced by S and V (G) \ S. The neighbourhood NG(v) of a vertex
v ∈ V (G) is defined as {x ∈ V (G) : xv ∈ E(G)}. The neighbourhood NG(S) of
a subset S ⊆ V (G) is defined as {x ∈ V (G) \ S : ∃y ∈ S such that xy ∈ E(G)}.
The closed neighbourhood NG[v] of v is NG(v) ∪ {v} and analogously, NG[S] =
NG(S) ∪ S. The degree dG(v) of v is |NG(v)| and the maximum degree ∆(G) of G

is max{dG(v) : v ∈ V (G)}. Furthermore, we denote by d(G) = 2m(G)
n(G)

the average
degree of G. We call a graph d-regular for d ∈ N, if every vertex has degree d.
For arbitrary v, w ∈ V (G) let distG(v, w) be the length of a shortest v-w-path. For
S ⊆ V (G) and v ∈ V (G), let distG(S, v) = min{distG(v, w) : w ∈ S}. The size of
the boundary bG(S) of a set S ⊆ V (G) is |{vw ∈ E(G) : v ∈ S,w ∈ V (G) \ S}|.
Let bG(s) = min{bG(S) : |S| = s}. We say that a set D ⊆ V (G) is a dominating
set of G, if NG[D] = V (G). The domination number γ(G) is the minimum order
of a dominating set of G. To generalize the domination number consider for every
j ∈ N the j-neighbourhood N j

G(v) = {x ∈ V (G) : 0 < distG(x, v) ≤ j} and define
analogously N j

G(S), N j
G[v] and N j

G[S]. Note that N1
G(v) = NG(v). We call D ⊆ V (G)

a j-dominating set of G if N j
G[D] = V (G) and let γj(G) be the j-domination number

of G, which is the minimum order of a j-dominating set of G.
Before we are able to prove Theorem 1.1 we need some lemmas.

Lemma 1.2 (Tillich [9]). Let G be a d-regular graph with n(G) = k. Then there
exists a z = z(G) > 0 such that

bGn(s) ≥ zds(n− logk s) (1.3)

for all n ≥ 1 and for all 1 ≤ s ≤ kn.

Lemma 1.3 (Bollobás [1]). Let G be a graph with ∆(G) ≤ ∆ and ∆ + 1 < u <
n(G)−∆− 1. Then there exists a set U ⊆ V (G) with |U | = u, such that

|NG[U ]| ≥ n(G)
d(G)

∆

(
1− exp

(
−u(∆ + 1)

n(G)

))
. (1.4)

Lemma 1.4. Let j ∈ N and G be a graph such that every component has at least
j + 1 elements. Then,

γj(G) ≤ n(G)

j + 1
. (1.5)

The proof of Lemma 1.4 is straightforward and is left to the reader.
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2 Two lemmas for the proof of Theorem 1.1

Let Xn be the random variable, which denotes the number of isolated vertices in
Gn
p . Let Er[X] = E[X(X − 1) . . . (X − r+ 1)] the r-th factorial moment of a random

variable X. Note that Er[Xn] is the expected number of r-tuples of different isolated
vertices in Gn

p .

Lemma 2.1. Let G be a connected, d-regular graph with n(G) = k. Let q = q(n) =

1− p(n) =

(
λ

1
n
n

k

)1/d

, with λn → λ > 0 as n→∞. Then,

lim
n→∞

P(Xn = 0) = e−λ. (2.1)

Proof: Let r ∈ N and Ar = {(v1, . . . , vr) ∈ V (Gn)r : vi 6= vj ∀i, j, i 6= j},
Br = {(v1, . . . , vr) ∈ Ar : m(Gn[{v1, . . . , vr}]) ≥ 1} and Cr = Ar \Br.
To give an upper bound for |Br|, we choose at first r − 1 vertices and choose then
the last vertex from their neighbourhood. So,

|Br| ≤ (kn)r−1 · drn ≤ drnkn(r−1) and

|Cr| = (kn)r − |Br| ≥ (kn)r − drnk
n(r−1).

We use bGn({v1, . . . , vr}) ≥ dr(n − r) as an estimate for the size of the boundary
of one element in Br. Now we bound the probability of the event that there exists
an r-tuple (v1, . . . , vr) ∈ Br or Cr containing only isolated vertices in Gn

p . We give
bounds for the nonexistence of edges from a vertex of Br, Cr to its boundary. We
start with Br: ∑

(v1,...,vr)∈Br

P
[
dGn

p
(v1) = . . . = dGn

p
(vr) = 0

]
≤ |Br|qdr(n−r)

≤ drnkn(r−1)

(
λ

1
n
n

k

)r(n−r)

= drn
λ
r− r2

n
n

kn−r2
.

A lower bound for Cr:∑
(v1,...,vr)∈Cr

P
[
dGn

p
(v1) = . . . = dGn

p
(vr) = 0

]
= |Cr|qdrn

≥
(
(kn)r − drnk

n(r−1)) λrn
knr

= λrn

(
(kn)r
knr

− drn

kn

)
.
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An upper bound for Cr:∑
(v1,...,vr)∈Cr

P
[
dGn

p
(v1) = . . . = dGn

p
(vr) = 0

]
= |Cr|qdrn ≤ knr

λrn
knr

= λrn.

Taking these results together we get

λrn

(
(kn)r
knr

− drn

kn

)
≤ Er [Xn] ≤ λrn + drn

λ
r− r2

n
n

kn−r2
.

Then,

lim
n→∞

Er [Xn] = λr,

since lim
n→∞

(kn)r
knr = 1. This implies that Xn converges to the Poisson distribution with

parameter λ (see Durrett [4]) and in particular,

lim
n→∞

P[Xn = 0] = e−λ.

�

The following lemma is the main step in the proof of Theorem 1.1.

Lemma 2.2. Let G be a connected, d-regular graph with n(G) = k and 1− p = q =(
(lnn)

1
n

k

)1/d

, then

P[Gn
p has a component of order s with 2 ≤ s ≤ kn/2] = o(1) (n→∞). (2.2)

In words: With probability approaching 1 as n→∞ there is only one component of
order greater kn

2
and isolated vertices in the random graph Gn

p .

Proof: The following proof is divided into five cases. In each case we give an
upper bound for the probability of the event that Gn

p has a component S of order
2 ≤ s ≤ kn/2. The first two cases use basically that s is small in comparison to kn.
In the following three cases is s large. In the third case we estimate the probability
that there is a component with large s and large boundary. In the remaining two
cases the boundary is small and we can use this to complete the proof.

Several inequalities are true only if n is sufficiently large in terms of G. In view of
the desired statement, we may tacitly assume n to be sufficiently large. Furthermore,
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for the sake of readability we eliminate formally necessary roundings and leave it to
the reader to verify that the corresponding inequalities are correct under rounding.

Recall the well known inequality
(
n
k

)
≤
(
en
k

)k
.

Let As = {S ⊆ V (Gn), |S| = s}. Now we determine an upper bound for the number
of connected subgraphs of order s in Gn. We pick first one vertex of the connected
subgraph. Iteratively we choose every vertex from the neighbourhood of the previous
ones:

| {S ∈ As : Gn[S] is connected} | ≤ kn · dn · 2dn · . . . · d(s− 1)n ≤ knns−1ds−1ss.

From now we frequently use lemma 1.2. The constant z = z(G) depends only on G.
It follows that∑

S∈As

P[Gn
p [S] is a component in Gn

p ] ≤ knns−1ds−1ssqbGn (s)

≤ 1

dn
knnsdsss

(
(lnn)

1
n

k

)zs(n−logk s)

=
1

dn
knnsdsss

ssz(lnn)sz(1−
1
n
logk s)

knsz

≤ 1

dn

(dn lnn)sss(z+1)

kn(sz−1)
=:

1

dn
f(s).

Case 1 (2 ≤ s ≤ r, r = r(G, z) ∈ N sufficiently large in terms of G): Every vertex in
S ∈ As is at most adjacent to |S|−1 vertices in S. So every vertex is at least adjacent
to dn− (|S| − 1) vertices in V (Gn) \S. Therefore, we have bGn(s) ≥ (dn− (s− 1))s.
Then for all S ∈ As:∑

S∈As

P[Gn
p [S] is a component in Gn

p ] ≤ knns−1ds−1ssq(dn−(s−1))s

≤ kn(dsn)sq(dn−r)s

≤ kn(dsn)s
lns n

kns−
rs
d

≤ (drn)r lnr n
1

kn(s−1)−
rs
d

= o(1) (n→∞).

Because r depends only on G, but not on n, we have

r∑
s=2

∑
S∈As

P[Gn
p [S] is a component in Gn

p ] = o(1) (n→∞).
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Case 2 (r + 1 ≤ s ≤ k
n z
z+1

n
=: s1): It is an easy exercise to show that f ′(s) =

f(s) ln dn(lnn)s1+ze1+z

knz . It follows that f(s) is monotone decreasing in [2, k
n z
1+z

n
]. If r is

large enough, we get

s1∑
s=r+1

∑
S∈As

P[Gn
p [S] is a component in Gn

p ] ≤ 1

dn
f(r) · k

n z
1+z

n

=
1

dn

(dn lnn)rrr(1+z)

krnz−n
· k

n z
1+z

n

=
(dn lnn)rrr(1+z)

dn2

1

kn(rz−1−
z

1+z
)

= o(1) (n→∞).

Case 3 (s1 ≤ s ≤ kn/2): Let Bs =
{
S ∈ As : bGn(S) ≥ ds

j

(
n− logk

s

nj2

)}
and

Cs = As \ Bs =
{
S ∈ As : bGn(S) < ds

j

(
n− logk

s

nj2

)}
for one j = j(G, z) ∈ N \ {1}

large enough in terms of G. In this case we only care about S ∈ Bs. The following
estimations are easy since we assume that S has a large boundary. Using Lemma 1.4
we get a subset of S which is small compared to S and (j− 1)-dominates S. Keep in
mind that for every vertex v ∈ S: |N j−1

Gn[S](v)| ≤ |N j−1
Gn (v)| ≤ (dn)j. We may choose

each S ∈ Bs by first choosing a subset of size s/j which contains the corresponding
dominating set (at most

(
kn

s/j

)
choices) and then picking the remaining (j − 1)s/j

vertices of S from the neighbours of this set (at most
(
s/j(dn)j

(j−1)s/j

)
choices). To give an

upper bound on the probability that such a set is indeed a component in Gn
p , it is

sufficient to demand that none of the edges of the boundary is present in Gp
n.

Since∑
S∈Bs

P[Gn
p [S] is a component in Gn

p ] ≤
(
kn

s
j

)( s
j
(dn)j

j−1
j
s

)
q

ds
j

(
n−logk s

nj2

)

≤
(
jekn

s

) s
j
(
ej−1(dn)j(j−1)

(j − 1)j−1

) s
j

(
s(lnn)

1− 1
n
logk

s

nj2

nj2kn

) s
j

≤
(
O(1) lnn

n

)s
,

we have

kn/2∑
s=s1

∑
S∈Bs

P[Gn
p [S] is a component in Gn

p ] ≤
kn/2∑
s=s1

(
O(1) lnn

n

)s
= o(1) (n→∞).

In the following two cases we only have to look at S ∈ Cs. Because S ∈ Cs has a
small boundary, the probability of the event to have no edge from S to V (G) \ S
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increases in comparison to S ∈ Bs. So we need a better upper bound for |Cs|.
Case 4 (s1 ≤ s ≤ kn/ lnl n, l = l(G, z, j, c) ∈ N and c = c(G, j) sufficiently large in
terms of G): Let H := Gn[S]. Recall that dGn(v) = dn for every vertex v ∈ V (G).
Then,

dns =
∑
v∈S

dGn(v) = 2m(H) + bGn(S)

< 2m(H) +
ds

j

(
n− logk

s

nj2

)
< 2m(H) +

dns

j

⇒ 2m(H) > dns

(
1− 1

j

)
⇒ d(H) > dn

(
1− 1

j

)
.

Let c be large enough, u := c s
n

and recall that ∆(H) ≤ dn. Then, dn + 1 < u <
s − dn − 1 for n large enough. Using Lemma 1.3 we get a set U in H such that
|U | = u and

|NH [U ]| ≥ s
dn
(

1− 1
j

)
dn

(
1− exp

(
−u(dn+ 1)

s

))
= s

(
1− 1

j

)(
1− exp

(
−c
(
d+

1

n

)))
≥ s

(
1− 2

j

)
.

Let t = s
(

1− 2
j

)
. Then u < t < s. The set U is adjacent to at least t− u vertices

in H. Recall that
(
dnu
i

)
≤ 2dnu for all 0 ≤ i ≤ dnu. So, we get an upper bound for

|Cs| by first picking u vertices, then the vertices in their neighbourhood and at the
end the remaining vertices, which are at most 2s/j:

|Cs| ≤
(
kn

u

)
2dnu

(
kn

2s
j

)
≤
(
ekn

u

)u
2dnu

(
jekn

2s

) 2s
j

.

Recall that z = z(G) is fixed for a fixed graphG and therefore we have that z− c
n
− 2
j
>

0, if j is large enough and n ≥ n0(G). So we have an upper bound for probability
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that Gn
p [S] is a component in Gn

p :∑
S∈Cs

P[Gn
p [S] is a component in Gn

p ] ≤ |Cs|qbGn (s)

≤
(
enkn

cs

) cs
n

2dcs
(
jekn

2s

) 2s
j

(
(lnn)

1
n

k

)sz(n−logk s)

=

[
2dc
(en
c

) c
n

(
je

2

) 2
j ( s

kn

)z− c
n
− 2

j
(lnn)z(1−

1
n
logk s)

]s
≤
[
O(1)(lnn)z(1−

1
n
logk s)−l(z− c

n
− 2

j
)
]s
. (2.3)

In (2.3) we use the fact that s
kn

is maximal, if s is maximal. Since z > c
n

+ 2
j
, we

can choose l so large that z
(
1− 1

n
logk s

)
− l
(
z − c

n
− 2

j

)
< −α < 0 for some α > 0.

Hence, ∑
S∈Cs

P[Gn
p [S] is a component in Gn

p ] ≤
[
O(1)(lnn)−α

]s
and it follows that

kn

lnl n∑
s=s1

∑
S∈Cs

P[Gn
p [S] is a component in Gn

p ] ≤

kn

lnl n∑
s=s1

[
O(1)(lnn)−α

]s
= o(1) (n→∞).

Case 5 (kn/ lnl n ≤ s ≤ kn/2): Let again H := Gn[S]. Furthermore, consider the set
T =

{
v ∈ S : dH(v) ≥ dn− log2

k n
}

, and define t := |T | and H1 := Gn[T ] = H[T ].
We will show that the degree of every vertex in H1 is close to the maximum degree
and because of that the graph H1 has large average degree. This is done as follows.
We start with a partition of the edges of H

2m(H1) = 2m(H)− 2m(H[S \ T ])− 2m(H[S \ T, T ])

≥ ds

(
j − 1

j
n+

1

j
logk

s

nj2

)
− 2 · dn(s− t) (2.4)

= ds

(
j − 1

j
n+

1

j
logk

s

nj2
− 2n

s
(s− t)

)
. (2.5)

For (2.4) keep the definition of Cs in mind and note that every upper bound for the
boundary of H corresponds to a lower bound for m(H).
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Since s ≥ kn

lnl n
, we have:

j − 1

j
n+

1

j
logk

s

nj2
≥ logk

kn

nj lnl/j n
≥ n− (j + 1) logk n. (2.6)

Let ε := (j+1)d
logk n

. By the definition of T and Cs it follows that

dsn− (s− t) log2
k n ≥

∑
v∈S

dH(v)

> dsn− ds

j

(
n− logk

s

nj2

)
≥ ds(n− (j + 1) logk n).

It follows that

t ≥ s

(
1− (j + 1)d

logk n

)
= s(1− ε). (2.7)

Take (2.6) and (2.7) and plug it into (2.5), such that

2m(H1) ≥ ds

(
n− (j + 1) logk n−

2n

s
sε

)
= ds((1− 2ε)n− (j + 1) logk n) ≥ dsn(1− 3ε).

Taking everything together we get a lower bound for d(H1):

d(H1) ≥
2m(H1)

t
≥ 2m(H1)

s
≥ d(1− 3ε)n.

Let u := kn

ln3l n
, such that dn+ 1 < u < t− dn− 1. Using Lemma 1.3 again, we get a

set U ⊂ S mit |U | = u, such that

|NH [U ]| ≥ |NH1 [U ]| ≥ t
d(1− 3ε)n

dn

(
1− exp

(
−u(dn+ 1)

t

))
≥ s(1− ε)(1− 3ε)

(
1− exp

(
−k

n(dn+ 1)

t ln3l n

))
≥ s(1− ε)2(1− 3ε) ≥ s(1− 5ε).

Let c := s − 5εs, such that u < c < s, w := 5εs and define y := log2
k n. Recall the

definition of T . Every vertex in H1 has at most y adjacent vertices which are not in
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H. Then

|Cs| ≤
(
kn

u

) ∑
(k1,...,ku)∈{0,...,y}u

u∏
i=1

(
dn

ki

)(kn
w

)

≤
(
ekn

u

)u
(y + 1)u

(
dn

y + 1

)u(
ekn

w

)w
≤
(
ekn

u

)u
(y + 1)u

(
dne

y + 1

)u(y+1)(
ekn

w

)w
≤(de2n ln3l n)u

(
dne

log2
k n

)uy (
ekn

5εs

)5εs

.

Recall that l ≥ 2 and kn

lnl n
≤ s ≤ kn

2
. It follows that

0 <
u

s
<
uy

s
<

1

ln2 n
, (2.8)

z

(
1− 1

n
logk s

)
− 2uy

s
≤ z

l

n
logk lnn− 4

ln2 k ln3l−2 n
≤ 0. (2.9)

For (2.10) keep in mind s ≤ kn

2
, z−5ε > 0 and see (2.8), (2.9) above. Let α := 2−z < 1

and hence 1+α
2
< 1 with z as in Lemma 1.2. Then,∑

S∈Cs

P[Gn
p [S] is a component in Gn

p ] ≤ |Cs|qbGn (s)

≤
(
de2n ln3l n

)u( dne

log2
k n

)uy (
ekn

5εs

)5εs
(

(lnn)
1
n

k

)sz(n−logk s)

=

[(
de2n ln3l n

)u
s
(
dne ln2 k

)uy
s

( e
5ε

)5ε ( s
kn

)z−5ε
(lnn)z(1−

1
n
logk s)−

2uy
s

]s
≤
[(
d2e3n2 ln3l n ln2 k

) 1
ln2 n

( e
5ε

)5ε
25ε−z

]s
(2.10)

≤
(

1 + α

2

)s
. (2.11)

In (2.11) we use
(
d2e3n2 ln3l n ln2 k

) 1
ln2 n → 1 (n→∞),

(
e
5ε

)5ε → 1 (ε→ 0) and ε→ 0
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(n→∞). Taking everything into consideration leads to

kn

2∑
s= kn

lnl n

∑
S∈Cs

P[Gn
p [S] is a component in Gn

p ] ≤
kn

2∑
s= kn

lnl n

(
1 + α

2

)s
= o(1) (n→∞).

�

Remark. Keep in mind that if q̃ ≤ q, then q̃bGn (s) ≤ qbGn (s). Since λn → λ > 0 as
n → ∞, there exists a N ∈ N, such that λn ≤ lnn for all n ≥ N . Because of that

Lemma 2.2 remains correct if we replace q =

(
(lnn)

1
n

k

)1/d

by q = [λ
1
n
n /k]1/d.
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1968.
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