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Abstract

Abstract. A permutation a1a2 . . . an is indecomposable if there does not exist p < n
such that a1a2 . . . ap is a permutation of {1, 2, . . . , p}. We consider the probability
that a permutation of Sn with m cycles is indecomposable and prove that this
probability is monotone non-increasing in n.

We compute also the asymptotic probability when n goes to infinity with m/n
tending to a fixed ratio. The asymptotic probability is monotone in m/n, and there
is no threshold phenomenon: it degrades gracefully from 1 to 0. When n = 2m, a
slight majority (51.117 . . . percent) of the permutations are indecomposable.

1 Introduction.

A permutation a1a2 . . . an is called decomposable if there exists p < n such that a1a2 . . . ap
is a permutation of {1, 2, . . . , p}, and is called indecomposable otherwise.

∗The first author acknowledges the support of ERC under the agreement “ERC StG 208471 - Ex-
ploreMap” and that of ANR Magnum.
†The second author acknowledges the support of the NSF grant AF-0964037.
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Let Sn denote the set of permutations of {1, 2, . . . , n}. In [Com72], Comtet proved
that almost all permutations of Sn are indecomposable, more precisely:

Pr
Sn
{α indecomposable} = 1− 2

n
+O(

1

n2
).

Indecomposable permutations are also called connected or irreducible permutations,
they have been considered by many authors.

Marshall Hall [Hal49] was probably the first to implicitly consider them while enumer-
ating subgroups of finite index of the free group with 2 generators. They were studied
in more detail about 20 years later by A. Lentin[Len72] and L. Comtet [Com72] and are
quoted as examples or exercises in many classical books in Combinatorics and Algorithms
(see for instance [Com74, FS09, GS95, GJ83, Knu05, Odl95, Sta99]).

More recently, a bijection between them and hypermaps (or equivalently bicolored
maps) was given by P. Ossona de Mendez and P. Rosenstiehl in [dMR04]. This bijection
is such that the number of cycles of the permutation is equal to the number of vertices of
the hypermap (equivalently the number of vertices of a given color of the bicolored map).
Hence in order to generate at random a hypermap with a fixed number m of vertices, a
natural algorithm consists of generating permutations with m cycles until obtaining an
indecomposable one, then building the hypermap in bijection with it. The efficiency of
this algorithm depends on the value of the probability that a permutation with m cycles
is indecomposable.

The event that α is decomposable depends heavily on the number of cycles of α. The
permutation with n cycles (the identity) is decomposable, and among the

(
n
2

)
permutations

with n−1 cycles (the transpositions), all but one are decomposable. At the other extreme,
a permutation with only one cycle is never decomposable. Intuitively, it seems clear that
a permutation with more cycles is more likely to be decomposable. In this note

• we prove that in Sn the probability for a permutation with m cycles to be indecom-
posable is greater than for one with m+ 1 cycles to be indecomposable;

• for any µ ∈ (0, 1], we calculate the asymptotic probability that a permutation over
{1, . . . , n} with approximately µn cycles is decomposable.

• Since the probability tends to 0 when µ tends to 1 and tends to 1 when µ tends to
0, one might expect that it could be 1/2 when µ = 1

2
, surprisingly this is not exactly

the case since our result shows that the asymptotic value is 0.511699676 . . .

Let Sn,m denote the set of permutations of Sn with m cycles, then its number of
elements sn,m is the unsigned Stirling number of the first kind. Let cn,m denote the
number of indecomposable permutations of Sn,m and pn,m = cn,m

sn,m
.

A left-to-right maximum of a permutation α = a1 . . . an is an aj such that for any i < j
one has aj > ai. A classical result states that the number of permutations of Sn with m
cycles is equal to the number of those with m left-to-right maxima. Moreover the so called
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First Fundamental Transform (see [Lot83] chap. 10) is a bijection between permutations
of Sn which maps a permutation with m cycles to a permutation with m left-to right
maxima. It is not difficult to prove (see [Cor09] Proposition 1) that the permutation
is indecomposable if and only if its image under this transformation is indecomposable.
Hence the probabilities obtained above are also those for a permutation with m left-to-
right maxima to be indecomposable.

2 Decreasing fraction of decomposable permutations

of Sn,m.

In this section we prove that for a given n the numbers pn,m decrease when m increases.
The proof uses inversion sequences; these are introduced here since there exists a bijection
beteween the inversion sequences of length n and permutations in Sn, moreover the set of
these sequences is a sublattice of the lattice of integer sequences of length n.

We then proceed by induction, the key point is that the lattice of the inversion se-
quences of length n may be simply built from n copies of the lattice of sequences of length
n− 1.

2.1 Permutations and inversion sequences

A classical construction associates to each permutation α = a1, a2, . . . , an the sequence
often called the inversion table, (see for instance [Knu73] section 5.1.1):

Inv(α) = x1, x2, . . . , xn

such that xi is the number of j satisfying: j < i and aj > ai.
It is well known that Inv is a bijection from permutations in Sn to the set of sequences

x1, x2, . . . , xn of integers such that:

0 ≤ xi < i for all i, 1 ≤ i ≤ n (1)

moreover the number of occurrences of 0 in Inv(α) is equal to the number of left-to-right
maxima of α.

For two sequences of the same lengths x = x1, x2, . . . , xn and y = y1, y2, . . . , yn we
write x � y if xi ≤ yi for all 1 ≤ i ≤ n and for two permutations α and β we write α � β
if Inv(α) � Inv(β). Notice that this order on the symmetric group is weaker than the
Bruhat order �B, since 2, 1, 3 �B 2, 3, 1 and Inv(2, 1, 3) = 0, 1, 0; Inv(2, 3, 1) = 0, 0, 2 so
that the two permutations 2, 1, 3 and 2, 3, 1 are incomparable for �. However we have the
same kind of result (see [Ten07] corollary 4.3):

Lemma 1 Let α and β be two permutations such that β � α. If α is decomposable then
so is β.
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Proof : Remark that α is decomposable if and only if Inv(α) = x1, x2, . . . , xn has a suffix
xi+1, . . . , xn (where i > 0) which is the inversion table of a permutation of Sn−i. The
result follows from the fact that diminishing the value of xi keeps the existence of such a
suffix. �

0,1,2,3

0,1,1,0

0,1,2,0 0,1,1,1

0,0,2,0

0,1,0,0

0,0,0,0

0,0,1,0 0,0,0,1

0,1,0,1

0,0,2,1 0,1,0,2 0,0,1,2

0,0,1,1 0,0,0,2

0,1,2,1 0,1,1,2 0,0,2,2 0,1,0,3

0,0,0,3

0,0,1,3

0,1,2,2 0,1,1,3 0,0,2,3

Figure 1: The Lattice of inversion sequences of length 4

2.2 On a bicoloring of the elements of the lattice

Generalizing the question of decomposability, we consider the following question on the
lattice En of integer sequences of length n satisfying condition (1). Divide the lattice into
n slices: the slice En,m contains those sequences with exactly m elements equal to 0. The
number of elements in slice m corresponds to the permutations of Sn having m left to
right maxima, hence is equal to the Stirling number of the first kind sn,m. Consider a
coloring of the elements of En,m in two colors, red and blue. We say that the coloring
respects the order � if any predecessor of a blue vertex is also blue.

Lemma 2 Given a bicoloring of the set En respecting the order �, let rm denote the
number of red elements in slice m. Then:

rm
sn,m

≥ rm+1

sn,m+1

(2)

Proof : We proceed by induction on n. The case n = 2 is obvious since there are two
slices with 1 element each. For the induction step, observe that the lattice En can be
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0,1,2,3

0,1,1,0

0,1,2,0 0,1,1,1

0,0,2,0

0,1,0,0

0,0,0,0

0,0,1,0 0,0,0,1

0,1,0,1

0,0,2,1 0,1,0,2 0,0,1,2

0,0,1,1 0,0,0,2

0,1,2,1 0,1,1,2 0,0,2,2 0,1,0,3

0,0,0,3

0,0,1,3

0,1,2,2 0,1,1,3 0,0,2,3

Figure 2: Divison of the lattice into 4 slices

divided in n subsets in a way different from that considered above. Indeed, En can be
decomposed into the subsets Ei

n for 0 ≤ i < n, defined by:

Ei
n = {(x1, x2, . . . , xn) ∈ En | xn = i}.

For this decomposition all the subsets have the same cardinality and each of the Ei
n is by

deletion of the last coordinate isomorphic as a lattice to En−1; notice however that Ei
n for

i ≥ 1 and E0
n play different roles since the number of elements with m occurrences of 0 is

equal to sn−1,m in Ei for i ≥ 1 and to sn−1,m−1 for E0.
Each element (x1, x2, . . . , xn) of Ei

n for i < n− 1 is covered by exactly one element in
Ei+1
n , namely, (x1, x2, . . . , xn + 1).

Let us consider a bicoloring of the lattice En respecting the order � and let us compare
the number of red elements in the two slices En,m and En,m+1. These slices are divided
into n subsets:

Ei
n,m = En,m ∩ Ei

n

For each value of i > 0 we may consider that the coloring of Ei
n induces a bicoloring

of En−1 in which the subsets Ei
n,m correspond to the slices En−1,m. Similarly the coloring

of E0
n induces a coloring of En−1 in which the slice E0

n,m corresponds to En−1,m−1. Hence
we may apply the induction hypothesis for the bicoloring of the set En−1 induced by that
on En. For a subset S of En we denote by r(S) the number of red elements in S. Since
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the number of elements in E0
n,m is sn−1,m−1, we have:

r(E0
n,m)

sn−1,m−1
≥

r(E0
n,m+1)

sn−1,m
(3)

Similarly for each i > 0, since the number of elements of Ei
n,m is sn−1,m we get:

r(Ei
n,m)

sn−1,m
≥

r(Ei
n,m+1)

sn−1,m+1

(4)

The last set of inequalities (4) may be summed up since the denominators are equal,
giving:

r(∪i>0E
i
n,m)

sn−1,m
≥

r(∪i>0E
i
n,m+1)

sn−1,m+1

. (5)

Now, we turn to proving Equation (2). Let us denote am = r(E0
n,m), bm = r(∪i>0E

i
n,m),

then rm = am + bm. We prove that ∆ = rmsn,m+1 − rm+1sn,m ≥ 0. Using inequalities (3)
and (5) we have:

∆ = (am + bm)sn,m+1 − (am+1 + bm+1)sn,m

≥ (am+1
sn−1,m−1
sn−1,m

+ bm)sn,m+1 − (am+1 +
sn−1,m+1

sn−1,m
bm)sn,m

= am+1(
sn−1,m−1
sn−1,m

sn,m+1 − sn,m) + bm(sn,m+1 −
sn−1,m+1

sn−1,m
)

Applying the recurrence formula sn,m+1 = sn−1,m+(n−1)sn−1,m+1 and simplifying, yields:

∆ ≥ (bm − (n− 1)am+1)(sn−1,m −
sn−1,m+1sn−1,m−1

sn−1,m
).

Notice that each element x = (x1, x2, . . . , xn−1, 0) coloured red in E0
n,m+1 is dominated

by yi = (x1, x2, . . . , xn−1, i) in each of the Ei
n,m, and by Lemma 1 yi is also of red color.

Hence we have r(Ei
n,m) ≥ r(En,m+1), and we get :

bm ≥ (n− 1)am+1. (6)

Recall the log-concavity of Stirling numbers:

s2n−1,m ≥ sn−1,m−1sn−1,m+1.

This imples ∆ ≥ 0. �

Theorem 1 The numbers cn,m of indecomposable permutations of Sn having m cycles
satisfy :

cn,m
sn,m

≥ cn,m+1

sn,m+1
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Proof : The number cn,m counts also the number of indecomposable permutations of Sn
with m left-to-right maxima. Consider the coloring of the lattice En of inversion sequences
where red elements are those sequences (x1, . . . , xn) such that (x1, . . . , xn) = Inv(α), for
α indecomposable, and blue elements correspond to decomposable permutations. The
result is a direct consequence of Lemma 2. �

3 Asymptotic results

3.1 Proof overview

In this part, we state the main asymptotic result and the three lemmas which, together,
imply the result.

Theorem 2 Let µ be a positive real number less than 1. Let m and n be integers tending
to infinity in such a way that the ratio m/n tends to µ. Then the probability pn,m that a
permutation of Sn,m is indecomposable tends to p(µ) given by:

p(µ) =

(
u

u+ µ

)2

, (7)

where u > 0 is defined implicitly by the equation

µ =
u

eu − 1
. (8)

Moreover, when m/n = µ then |pn,m − p(µ)| = O(log(n−m)/(n−m)).

The proof of Theorem 2 follows directly from the following three lemmas. The first
lemma states some simple facts and has a short proof.

Lemma 3 If the following condition holds, then α is decomposable:

(a1 = 1) or (an = n) (9)

If the following condition holds, then α is indecomposable:

(∃i, i ≤ a1 and ai > an) (10)

Proof : If condition (9) holds then either a1 is a permutation of S1 or a1 . . . an−1 is a
permutation of Sn−1.

If α is decomposable then there exist p < n such that a1a2 . . . ap is a permutation of
Sp, this implies an > ai for all 1 ≤ i ≤ p. Moreover all i such that p < i ≤ n satisfy i > a1
contradicting (10). Note that there is a simple way to represent indecomposability as a
simple drawing: put n points on a horizontal segment numbered 1 to n from left to right
draw a half circle from i to ai when ai 6= i then the permutation is decomposable if and
only if there is no vertical line intersecting the segment but not any of the half circles. As
an example the proof of the above Lemma is illustrated on Figure 3. �

The second Lemma will be proved in the next section using an evaluation of the
asymptotics of Stirling numbers due to Moser and Wyman [MW58]
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Figure 3: Illustration of Condition 10 guaranteeing indecomposability.

Lemma 4 Let m,n, µ, u be defined as in Theorem 2. Let An,m denote the event that a
permutation of Sn,m satisfies condition (9). Then the probability of An,m tends to

2eu − 1

e2u
=

2uµ+ µ2

(u+ µ)2
.

The third lemma, is the main technical point in our paper and will be proved in the
second part of the following section:

Lemma 5 The probability that a permutation of Sn,m satisfies neither condition (9) nor

condition (10) is O( log(n−m)
n−m ).

Remark The solution of equation (8) can be expressed by the so called Lambert function
W−1. The Lambert function W is the inverse relation of the function f(W ) = WeW .
When −1

e
< x = f(W ) < 0 there are two branches for W (x) classically denoted W0 and

W−1. Equation (8) can be written:

−(u+ µ)e−(u+µ) = −µe−µ

Since for 0 < µ < 1 we have −1/e < −µe−µ < 0 there are two solutions to the above

0.8

0.4

0
10.80.60.40.20

1

0.6

0.2

Figure 4: Asymptotic probability p(µ) that a permutation of Sn with bµnc cycles is
indecomposable, as a function of µ.
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equation. The first one is −(u + µ) = W0(−µe−µ) = −µ giving u = 0 which should be
discarded and the second one is −(u+ µ) = W−1(−µe−µ) giving :

p(µ) =

(
1 +

µ

W−1(−µe−µ)

)2

Using this formula the asymptotic probability of indecomposability of a permutation
as a function of µ can be computed, its graph is depicted in Figure 4.

The value for µ = 1/2 computed with Maple is 0.511699676.

3.2 Proofs

3.2.1 Asymptotics of Stirling numbers of the first kind

We use two results on those asymptotics.
The first one, due to Moser and Wyman ([MW58] Equation (5.7)) gives the following

formula for Stirling numbers of the first kind in the asymptotic regime where n and m
tend to infinity such that m/n = µ is fixed:

sn,m ∼ b
n!

an
√
n

um

m!
. (11)

Here, u is such that µ = u/(eu − 1), a = 1− e−u, and b =
√

u
2π(ueu−eu+1)

(note that since

µ < 1, we have u > 0 and b is well defined.)
The second one is due to Temme ([Tem93] Equation (3.5)) and the author shows that

his approximation is uniformly valid with respect to m when n→∞. He introduces the
following function:

φ(x) = ln(x+ 1)(x+ 2) · · · (x+ n)−m lnx.

He considers x0, the unique positive root of φ′(x) = 0. Note that, letting u = m/x0, we
can check that u/(eu − 1) ∼ µ, showing the relation between the two results. Indeed, x0
satisfies

m

x0
=

n∑
i=1

1

x0 + i
.

The left hand side equals u. The right hand side can be approximated by
∫ x0+n
x0

dt/t =
ln(1 + n/x0), giving u ∼ ln(1 + u/µ), hence µ ∼ u/(eu − 1).

From there, substituting m/u for x0 in ([Tem93] Equation (3.5)), using Stirling’s ap-
proximation for (n−m)!, and approximating sums by integrals, we recover Equation (11),
showing its uniformity. More precisely we have:

Lemma 6

∀ε ∃α,N0 such that ∀µ if n > N0 and 1− α ≤ m

nµ
≤ 1 + α then :

1− ε ≤ sn,m

b n!
an
√
n
um

m!

≤ 1 + ε.
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3.2.2 Proof of Lemma 4.

We use the inclusion-exclusion formula. The number of permutations of Sn,m such that
a1 = 1 is equal to sn−1,m−1, the number of those such that an = n is also equal to sn−1,m−1,
and the number of those such that a1 = 1 and an = n is equal to sn−2,m−2. Hence:

Pr(An,m) =
2sn−1,m−1 − sn−2,m−2

sn,m
.

In order to conclude we evaluate the limit of sn−1,m−1

sn,m
.

Lemma 7 The quotient sn,m

sn−1,m−1
tends to aµ

u
when n and m tend to infinity with m

n
close

to µ.

Proof : Denote µ1 = m−1
n−1 and let u1 be given by µ1 = u1

(eu1−1) and a1 = 1− e−u1 then:

sn,m
sn−1,m−1

∼ b1
b

√
n− 1

n

m

n

(u1
u

)m( a

a1

)n
a1
u1

(12)

The first two of these terms tend to 1, and ma1
nu1

tends to µa
u

when n,m tend to infinity. It
remains to evaluate the limit of the function φ of m,n given by:

φ(m,n) =
(u1
u

)m( a

a1

)n
(13)

To compute this limit we evaluate the logarithm of this expression which is equal to
n(log(a)− log(a1))−m(log(u)− log(u1)). By Rolle’s standard theorem we have:

log(φ(m,n))

µ− µ1

=
d(n log(a)−m log(u))

dµ
(14)

where the derivative is taken as some point µ2 (with corresponding values u2 and a2)
between µ1 and µ. We write:

d(n log a−m log(u))

dµ
=

n

a2

da

dµ
− m

u2

du

dµ
. (15)

Since a = 1− e−u the derivatives of a and of u at µ2 are related by:

da

dµ
= e−u2

du

dµ

Dividing the two members of the equation by eu2 − 1 gives:

1

1− e−u2
da

dµ
=

1

eu2 − 1

du

dµ

Hence, using µ2 = u2
eu2−1 and a2 = 1− e−u2 we have:

da

dµ
=
a2µ2

u2

du

dµ
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Substituting that in (14) and (15) gives:

log(φ(m,n))

µ− µ1

=
n

u2
(µ2 − µ)

du

dµ
.

Noting that

µ− µ1 =
1− µ
n− 1

,

and using continuity of the derivative du/dµ in [µ1, µ], we obtain

log(φ(m,n)) =
1− µ

(1− 1/n)u2
(µ2 − µ)

du

dµ
= O(µ− µ2) = O(1/n),

and so: (u1
u

)m( a

a1

)n
∼ 1.

�
We now return to prove Lemma 4 Since n/m tends to µ, by uniformity (Lemma 6) we

obtain applying Lemma 7 twice:

Pr(An,m) =
2sn−1,m−1
sn,m

− sn−2,m−2
sn−1,m−1

sn−1,m−1
sn,m

∼ 2aµ

u
− a2µ2

u2
.

Since a = 1− e−u, and µ = u
eu−1 , the result follows. �

3.2.3 Proof of Lemma 5.

Let Tn,m denote the set of permutations of Sn,m such that neither condition (9) nor
condition (10) holds. We will partition the permutations of Sn,m according to their shape,
defined below, and prove by probabilistic arguments that within each class of permutations
having the same shape, the fraction of those which are in Tn,m is negligible.

To each permutation α in Sn,m, we associate a shape (n1, . . . , nm; p, q, b, r) defined
as follows. n1 ≥ n2 ≥ · · · ≥ nm are the lengths of the m cycles of α; p and q are the
lengths of the cycles containing 1 and n; when p = q, b is a boolean indicating whether 1
and n are in the same cycle; and when b is true, r > 1 is the smallest integer such that
αr(1) = n. The shape of a permutation in Sn,m may be represented by a directed graph
with n vertices of indegree and outdegree 1, consisting of the union of m (directed) cycles
of lengths n1, n2, . . . , nm, and of two distinguished edges, that are not loops and that are
called the initial and the last edges. We identify a shape and the associated graph.

Lemma 8 In the graph representing a shape σ there exist (n−m)/2− 4 edges, that are
pairwise disjoint, and disjoint from the initial and last edges. We say that those edges are
marked.
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Figure 5: The shape (6, 5, 2, 2, 1, 1, 1, 1, 1; 5, 6), the initial vertex is indicated by a circle
and the last one by a double circle; the marked edges are in bold.

Proof : There are m cycles, of which m1 have length 1. In each of the cycles of length
ni, we can mark at least (ni − 1)/2 disjoint edges, for a total of [(n−m1)− (m−m1)]/2
marked edges. Discounting the marked edges that touch the initial or the last edge yields
the result. �

Lemma 5 follows by summing Equation (16) below over all shapes.

Lemma 9 Given a shape σ, let sσn,m and tσn,m be the number of permutations with shape
σ in Sn,m and in Tn,m. Then

tσn,m ≤ sσn,m
1 + ln((n−m− 8)/2)

n−m− 8
. (16)

Proof : Let α = a1, a2, . . . , an be a permutation of shape σ = (n1, . . . , nm; p, q, b, r), and
let (j1, aj1), (j2, aj2 , . . . , (j`, aj`) denote the ` = (n − m)/2 − 4 marked edges. We may
suppose p, q > 1 since this means a1 6= 1, an 6= n. If α is in Tn,m, then the following
condition holds

∀i = 1, 2, . . . , `, ¬(ji ≤ a1 and aji > an). (17)

Consider the set of points

(a1, an), (j1, aj1), . . . , (j`, aj`).

The rank of a1 among {a1, j1, . . . j`} is uniform in {1, 2, . . . , `+ 1}. If a1 has rank r then
Property (17) is satisfied if and only if an is maximum among {an, aj1 , . . . , ajr−1}. This

event has probability 1/r, giving tσn,m/s
σ
n,m ≤

∑`+1
r=1(1/` + 1)(1/r). Using the well-known

inequality Hn ≤ 1 + ln(n) gives the statement of the lemma. �
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4 Remarks

4.1 Numerical results

It is well-known that (sn,m) satisfies sn,m = 0 for m = 0 or m > n, s1,1 = 1, and:

sn,m = sn−1,m−1 + (n− 1)sn−1,m (18)

The numbers cn,m of indecomposable permutations of Sn,m, can be computed by a formula
similar to that giving the number of those in Sn, (see for instance [Cor09], Proposition 2)

cn,m = sn,m −
n−1∑
p=1

min(m,p)∑
i=1

cp,isn−p,m−i (19)

Thus the value of pn,m = cn,m

sn,m
can be computed exactly by using the above formulas

inductively for small n.
We have proved that the error term |pn,m−p(µ)| is bounded by O(log(n−m)/(n−m)).

The error is actually very small. The table below gives some values of cn,m

sn,m
for n = 20, n =

100 and for some values of m/n. The last row shows the values of the fonction p(m/n)
allowing the comparison.

m/n 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1

p20,m 1 0.968 0.883 0.774 0.644 0.5 0.35 0.207 0.090 0.02 0.005 0

p100,m 0.981 0.95 0.868 0.764 0.643 0.51 0.371 0.236 0.116 0.03 0.006 0

p(m/n) 0.978 0.946 0.865 0.762 0.642 0.511 0.374 0.241 0.122 0.035 0.009 0

4.2 Comments

• The majority (51.1 . . . percent) of permutations of S2m with m cycles are indecom-
posable.

• Since there is a bijection between indecomposable permutations and hypermaps (see
[dMR04]) our result shows that the probability for an ordered pair of permutations
σ, α on Sn to generate a transitive group when σ is supposed to have m cycles is
about the same as the probability for a permutation of Sn+1,m to be indecomposable.
Hence this probability is about 0.511 when n = 2m.

• It would be interesting to know the structure of the group generated by two permu-
tations when their number of cycles is given. When these numbers are not fixed then
Dixon (see [Dix05]) proved that the probability that they generate the symmetric or
alternating group is near to 1, using the fact that they generate a transitive group
with probability 1. But as we saw transitivity cannot be assumed when the number
of cycles is given and large.
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