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Abstract

In rotor walk on a �nite directed graph, the exits from each vertex follow a

prescribed periodic sequence. Here we consider the case of rotor walk where a par-

ticle starts from a designated source vertex and continues until it hits a designated

target set, at which point the walk is restarted from the source. We show that the

sequence of successively hit targets, which is easily seen to be eventually periodic,

is in fact periodic. We show moreover that reversing the periodic patterns of all

rotor sequences causes the periodic pattern of the hitting sequence to be reversed

as well. The proofs involve a new notion of equivalence of rotor con�gurations, and

an extension of rotor walk incorporating time-reversed particles.

Keywords: Cycle popping, hitting sequence, monoid action, rotor-router model,

sandpile group, sandpile monoid.

1 Introduction

A rotor walk in a graph G is a walk in which the sequence of exits from each vertex is
periodic. The sequence of exits from a vertex v is called the rotor mechanism at v. Rotor
walks have been studied in combinatorics as deterministic analogues of random walks, in
computer science as a means of load-balancing and territory exploration, and in statistical
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physics as a model of self-organized criticality (see the end of the introduction for refer-
ences). In this paper, we explore several properties of the rotor mechanism that imply
corresponding properties of the hitting sequence when G comes with a set of designated
target vertices:

� Given a (periodic) rotor mechanism at each vertex, the hitting sequence of the
associated rotor walk is periodic (Theorem 1).

� If every rotor mechanism is palindromic, then the hitting sequence is palindromic
(Theorem 3).

� If every rotor mechanism is m-repetitive, then the hitting sequence is m-repetitive
(Theorem 4).

See below for precise de�nitions. Since the rotor mechanisms are local features of the
walk | each one depends only on the exits from a particular vertex | while the hitting
sequence is a global feature, we regard these theorems as local-global principles.

Let G = (V;E) be a �nite directed graph, with self-loops and multiple edges permitted.
For vertices v; w 2 V , let d(v; w) denote the number of arcs from v to w, and let d(v) =P

w2V d(v; w) denote the outdegree of v. A rotor mechanism at v is an ordering of the
directed edges (or \arcs") emanating from v, say as eiv for 1 � i � d(v). Let vi denote
the endpoint of the arc eiv. We extend the de�nition of eiv and vi to all i 2 Z by taking eiv
and vi to be periodic in i with period d(v). We often indicate the rotor mechanism at v
using the notation

v ! v1; v2; : : : ; vd(v); : : : (period d(v)):

Given a rotor mechanism at each vertex v, a rotor walk on G is a �nite or in�nite sequence
of vertices x0; x1; x2; : : : in which the i-th occurrence of v is followed immediately by
an occurrence of vi. For example, if the vertex set of G is f1; 2; 3; 4; 5g and the rotor
mechanisms are

1 ! 3; 4; 5; : : : (period 3)

2 ! 3; : : : (period 1)

3 ! 4; 2; : : : (period 2)

4 ! 1; : : : (period 1)

5 ! 1; : : : (period 1)

then the rotor walk starting from 1 is

1; 3;4; 1;4; 1;5; 1; 3; 2; 3;4; 1;4; 1;5; 1; 3; 2; 3;4; 1; : : :

which is eventually periodic with period 9. Note that this sequence is not itself periodic
(the initial 1 does not repeat) but if we isolate the terms equal to 4 or 5 we obtain the
sequence

4; 4; 5; 4; 4; 5; : : :
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which is periodic with period 3.
Vertex v is reachable from vertex w if there is a directed path of edges in G from v to

w. We assume that our graph G comes with a designated source vertex s and a non-empty
set T of designated target vertices , such that

For every vertex v of G that is reachable from s,

at least one vertex of T is reachable from v.
(1)

The role of this condition is to ensure that a rotor walk started at s eventually reaches
T . In the example above, s = 1 and T = f4; 5g. All of the rotor walks we consider in
this paper will start at vertices reachable from s. Such a walk can never visit a vertex not
reachable from s, so there is no loss of generality in assuming

All vertices of G are reachable from s. (2)

Now consider the following experiment. Start a rotor walk at s and stop it when it �rst
visits the target set T , say at target t1. Then (without resetting the rotors) start a new
rotor walk at s and stop it when it �rst visits T , say at t2. Continuing in this way, the
sequence t1; t2; : : : of successively hit targets is called the hitting sequence. In the above
example, the hitting sequence is 4; 4; 5; 4; 4; 5; : : :.

In the experiment just described, all rotor walks stop as soon as they hit T , so outgoing
edges from vertices in T are never used. An equivalent way to de�ne the hitting sequence
uses a modi�ed graph G0 in which each target vertex t 2 T has just one outgoing edge,
which points to s. The e�ect is that rotor walk in G0 always returns to s immediately
after visiting a target vertex. Hence, the sequence of rotor walks in G in the experiment
can be realized by a single rotor walk in G0. Conditions (1) and (2) together on G are
equivalent to requiring that the modi�ed graph G0 is strongly connected, that is, for any
two vertices v and w, each is reachable from the other by a directed path of edges in G0.

It is easy to show that rotor walk in G0 visits T in�nitely often, so that the hitting
sequence is in�nite; see Lemma 6, below. As explained in x2, it is also easy to show that
the hitting sequence is eventually periodic. Our �rst main result goes further:

Theorem 1. The hitting sequence determined by a (periodic) rotor mechanism is periodic.

As we have already seen, the rotor walk itself is typically not periodic. Let 
n be the
portion of the walk strictly between the n-th and (n+ 1)-st visits to T . In the preceding
example, the sequence f
ngn�1 is

13; 1; 1; 1323; 1; 1; 1323; 1; 1; : : : :

In general, this sequence is eventually periodic but is not periodic.
A natural question is how to determine the period of the hitting sequence. We will

see that this period divides the order of a certain element of the sandpile group S(G=T )
of the graph G with the target set T collapsed to a single vertex (Lemma 20).

Our second main result states that if we reverse the rotor mechanism at each vertex
by replacing

v ! v1; v2; : : : ; vd(v); : : : (period d(v))
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by
v ! vd(v); vd(v)�1; : : : ; v1; : : : (period d(v))

for each vertex v, then the hitting sequence undergoes an analogous reversal; speci�cally,
if the original hitting sequence has period D, then the new hitting sequence will also have
period D, and for all 1 � i � D the i-th term of the new hitting sequence will equal the
(D + 1� i)-th term of the original hitting sequence. That is:

Theorem 2. Reversing the periodic pattern of all rotor mechanisms results in reversing
the periodic pattern of the hitting sequence.

E.g., for the above example, the reversed rotor mechanism

1 ! 5; 4; 3; : : : (period 3)

2 ! 3; : : : (period 1)

3 ! 2; 4; : : : (period 2)

4 ! 1; : : : (period 1)

5 ! 1; : : : (period 1)

gives the reversed hitting sequence 5; 4; 4; 5; 4; 4; : : : .
An immediate corollary of Theorem 2 is that if the rotors are all palindromic (that is,

if each fundamental period of each rotor reads the same backwards and forwards) then
the same is true of the hitting sequence.

Theorem 3. If all rotor mechanisms are palindromic, then the hitting sequence is palin-
dromic.

One can think of the entire collection of rotor mechanisms on G as a single rotor
| perhaps embedded as a component of a larger system | whose rotor mechanism
is the hitting sequence. From this perspective, Theorems 1 and 3 are local-to-global
principles asserting that if the sequence of exits from each vertex possesses a certain
property (periodicity, palindromicity), then the hitting sequence has the same property.
We now state one more result of this type, Theorem 4. Further examples of local-global
principles include Lemma 6, below, and [12, Theorem 1].

Call a sequence fuigi�1 m-repetitive if it consists of blocks of m consecutive equal
terms; that is,

uam+1 = uam+2 = : : : = uam+m

for all a � 0.

Theorem 4. If all rotor mechanisms are m-repetitive, then the hitting sequence is m-
repetitive.

For example, consider the 2-repetitive rotor mechanism

1 ! 3; 3; 2; 2; : : : (period 4)

2 ! 1; 1; 4; 4; : : : (period 4)

3 ! 1; : : : (period 1)

4 ! 1; : : : (period 1)
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with source 1 and targets 3 and 4. The sequence of paths 
n taken by the walker until it
hits a target

13; 13; 121213; 13; 124; 124; : : : (period 6)

is not 2-repetitive, but the hitting sequence

3; 3; 3; 3; 4; 4; : : : (period 6)

is 2-repetitive.
The proof of Theorem 4 is not di�cult (see x2) and uses only the abelian property of

rotor walk (Lemma 7). The proofs of Theorems 1-3 make essential use of a new notion
of equivalence of rotor con�gurations. We summarize the highlights here, referring the
reader to x3.1 for the full de�nitions.

Let V0 = V � T . A rotor con�guration is a map � : V0 ! E such that �(v) is an arc
emanating from v; the arc �(v) represents the arc by way of which a particle most recently
exited vertex v. A particle con�guration is a map � : V0 ! N; we interpret �(v) as the
number of particles present at vertex v. Following [11] we de�ne an action (�; �) 7! ��
of particle con�gurations on rotor con�gurations. We then de�ne rotor con�gurations �1
and �2 to be equivalent, written �1 � �2, if there exists a particle con�guration � such
that ��1 = ��2 (Lemma 10 will show that this is an equivalence relation. In fact, �1 � �2
if and only if ��1 = ��2 for all \su�ciently large" �, in a sense made precise by part
(d) of Lemma 10.) We de�ne an operation called complete cycle pushing which takes an
arbitrary rotor con�guration � as input and produces an acyclic rotor con�guration �y as
output.

Theorem 5.

(i) Each equivalence class of rotor con�gurations contains a unique acyclic con�gura-
tion.

(ii) The unique acyclic con�guration equivalent to � is e�, where e is the recurrent
identity element of the sandpile group.

(iii) e� = �y is the result of performing complete cycle pushing on �.

To see the relevance of this notion of equivalence to Theorem 1, let �n be the rotor
con�guration immediately after the rotor walk hits the target set T for the n-th time.
The sequence f�ngn�0 is not periodic, but we will show that the sequence of equivalence
classes [�0]; [�1]; [�2]; : : : is periodic. We then show that which target is hit by rotor walk
starting at s with rotor con�guration � depends only on the equivalence class [�].

In the proof of Theorem 2, a helpful trick is the use of antiparticles that behave like
the \holes" considered in [10]: while a particle at vertex v �rst increments (progresses) the
rotor at v and then moves to a neighbor according to the updated rotor, an antiparticle
at v �rst moves to a neighbor according to the current rotor at v and then decrements
(regresses) the rotor at v. Reversing the rotor mechanism at each vertex is equivalent to
replacing all particles by antiparticles and vice versa.
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Related Work

Rotor walk was �rst studied in computer science from the point of view of autonomous
agents patrolling a territory [17], and in statistical physics as a model of self-organized
criticality [16]. It is an example of a \convergent game" of the type studied by Eriksson
[9] and more generally of an abelian network of communicating �nite automata. Abelian
networks were proposed by Dhar [7], and their theory is developed in [3].

Rotor walk on G re
ects certain features of random walk on G [5]. Recalling that
d(v; w) denotes the number of arcs from v to w, so that

P
w2V d(v; w)=d(v) = 1, consider

the Markov chain on state space V in which the transition probability from v to w equals
d(v; w)=d(v). The frequency pi with which a particular target vertex t occurs in the hitting
sequence for rotor walk equals the probability that the Markov chain when started from
the source s reaches t before it reaches any other target vertex. A main theme of [12] is
that the \global" discrepancy between npi and the number of times the rotor walk hits
the target t in the �rst n runs is bounded | independently of n | by a sum of \local
discrepancies" associated with the rotors. Note also that the connectivity condition (1)
has a natural interpretation in terms of random walk: it says that with probability 1,
random walk in G started from s will eventually hit the target set T .

A special case of the periodicity phenomenon was noted by Angel and Holroyd. If G
is the b-regular tree of height h and T is the set of leaves, it follows from the proof of
Theorem 1.1 of [14] that the hitting sequence from the root is eventually periodic with
period #T , and its fundamental period is a permutation of T . In Proposition 22 of [1]
Angel and Holroyd prove that for any initial setting of the rotors, the �rst #T terms of
the hitting sequence are in fact a permutation of T .

2 Abelian property, monoid action and group action

This section collects the results from the literature that we will use. Most of these can be
found in the survey [11], and many date from considerably earlier; where we know of an
earlier reference, we indicate that as well. The idea behind Lemma 8 is well known, but
we have not seen it stated anywhere in exactly this form, so we include the proof.

Let G be a �nite directed graph with source vertex s and target set T satisfying (1) and
(2). In x1, we de�ned a rotor walk in G as an in�nite sequence of vertices x0; x1; x2; : : : in
which the i-th occurrence of v is followed immediately by an occurrence of vi. The proofs
make use of an alternative, \stack-based" picture of rotor walk, which we now describe.
This viewpoint goes back at least to [8, 18].

At each vertex v is a bi-in�nite stack of cards, in which each card is labeled by an arc
of G emanating from v. The i-th card is labeled by the arc ei = (v; vi). For i > 0, the
i-th card in the stack represents an instruction for where the particle should step upon
visiting vertex v for the i-th time. (When i < 0, the i-th card in the stack never gets
used, but it is helpful to pretend that it was used in the past before the rotor walk began;
this point of view will play an important role in the proof of Theorem 3.) We also have a
pointer at v that keeps track of how many departures from v have already occurred; this
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pointer moves as time passes. When i departures from v have occurred during the rotor
walk thus far, we represent the state of the stack and pointer as

[: : : ; ei�2; ei�1; eijei+1; ei+2; ei+3; : : : ]

(i is 0 at the start of the rotor walk). Arcs ej with j � i to the left of the pointer constitute
the \past" of the rotor (arcs previously traversed), while the ej's with j > i constitute the
\future" of the rotor (arcs to be traversed on future visits to v). The arc ei is called the
retrospective state of the rotor. It represents the most recent arc traversed from v. Arc
ei+1 is called the prospective state of the rotor. It represents the next arc to be traversed
from v. When the particle next exits v (along arc ei+1) the pointer moves to the right
and the stack at v becomes

[: : : ; ei�2; ei�1; ei; ei+1jei+2; ei+3; : : : ]:

The de�ning property of rotor walk is that for each vertex v, the sequence of labels
in its stack is periodic. Initially, however, we will not need this assumption. We use the
term stack walk to describe the more general situation when the stack at each vertex v
may be an arbitrary sequence of arcs emanating from v.

The connectivity conditions (1) and (2) are global conditions on G. In fact, they
are the only non-local ingredient needed for our local-global principles. The next lemma
provides a simple example of how connectivity parlays a local property | one that can be
checked for each stack individually | into a corresponding global property of the hitting
sequence.

A sequence a1; a2; : : : whose terms belong to an alphabet A is called in�nitive if for
every a 2 A there are in�nitely many indices i such that ai = a [13]. Thus, we say that
the stack at vertex v is in�nitive if every outgoing arc from v appears in�nitely often as a
label. Likewise, the hitting sequence is in�nitive if the walk hits every target t in�nitely
often.

Lemma 6. If all stacks are in�nitive, then the hitting sequence of the stack walk is
in�nitive.

Proof. Since the graph is �nite, the stack walk visits at least one vertex in�nitely often. If
the walk visits v in�nitely often, then since the stack at v is in�nitive, the walk traverses
every outgoing arc from v in�nitely often, so it visits all of the out-neighbors of v in�nitely
often. By the strong connectivity of G0, every vertex is reachable by a directed path of
arcs from v, so every vertex is visited in�nitely often. In particular, the walk hits every
target in�nitely often.

2.1 Abelian property

Suppose that several indistinguishable particles are present on vertices of G. At each
moment, one has a choice of which particle to move; one chooses a particle, shifts the
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pointer in the stack at the corresponding vertex, and advances that particle to a neigh-
boring vertex according to the instruction on the card that the pointer just passed. We
call this procedure a �ring.

For example, if we begin with m particles at the source vertex s, we can repeatedly
advance one of them until it hits a target, then repeatedly advance another particle until
it too hits a target, and so on, until all the particles have hit (and remain at) targets.

The following lemma is known as the abelian property of rotor-routing (another name
for it is the \strong convergence property," following Eriksson [9]; yet another term for it
is \con
uence"). For a proof, see [8, Theorem 4.1] or [11, Lemma 3.9].

Lemma 7. Starting from particle con�guration � and rotor con�guration �, let v1; : : : ; vm
be a sequence of �rings that results in all particles reaching the target set. Let N(t) be
the number of particles that hit target t. The numbers N(t) (t 2 T ) and the �nal rotor
con�guration depend only on � and �; in particular, they do not depend on the sequence
v1; : : : ; vm.

The abelian property is all that is needed to prove Theorem 4, which says that if every
rotor mechanism is m-repetitive, then the hitting sequence is m-repetitive.

Proof of Theorem 4. It su�ces to show for all n that if we feed mn particles through
the system in succession (starting them at s and stopping them when they hit T ), then
the number of particles that hit each target is a multiple of m; for, if we know this fact
for both mn and m(n + 1), then it follows that the (mn + 1)-st through (mn + m)-th
particles must all hit the same target. By the abelian property (Lemma 7), if we let the
mn particles walk in tandem, letting each particle take its i-th step before any particle
takes its (i+1)-st step, then since each stack is m-repetitive, the particles travel in groups
of size m, such that the particles in each group travel the same path and hit the same
target.

Note that Theorem 4 did not require the stacks to be periodic. Theorems 1{3 certainly
do require periodic stacks. For the rest of the paper, we assume that the stack at vertex v
has period equal to its outdegree d(v), and that its fundamental period is a permutation
of the outgoing edges from v. (Recall that multiple edges are permitted in G, so any
periodic rotor mechanism can be realized in this way.)

2.2 Action of particle con�gurations on rotor con�gurations

Let V0 = V � T be the set of non-target vertices. Denote by Q the set of particle
con�gurations

Q = f� : V0 ! Ng

and by R the set of rotor con�gurations

R = f� : V0 ! E j s(�(v)) = v for all v 2 V0g

where s(e) denotes the source of the arc e. We give Q the structure of a commutative
monoid under pointwise addition.
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Next we recall from [11, De�nition 3.11] the construction of the action

Q�R! R:

Associated to each vertex v 2 V0 is a particle addition operator Ev acting on the set of rotor
con�gurations: given a rotor con�guration �, we de�ne Ev(�) as the rotor con�guration
obtained from � by adding a particle at v and letting it perform rotor walk until it arrives
at a target. Lemma 7 implies that the operators Ev commute: EvEw = EwEv for all
v; w 2 V0.

Now given a particle con�guration � on G, we de�ne

E� =
Y
v2V0

(Ev)
�(v)

where the product denotes composition. Since the operators Ev commute, the order of
composition is immaterial. The action of particle con�guration � on rotor con�guration
� is de�ned by �� := E�(�). In words, �� is the rotor con�guration obtained from � by
placing �(v) particles at each vertex v and letting all particles perform rotor walk until
they hit the target set T . By Lemma 7, the order in which the walks are performed has
no e�ect on the outcome. The fact that the operators Ev commute ensures that we have
a well-de�ned action, that is, (�1 + �2)� = �1(�2�).

2.3 The sandpile monoid and its action on rotor con�gurations

Next we show that certain ways of rearranging the particles (called topplings in the sand-
pile model) do not change the action on rotor con�gurations; this observation goes back
to [16]. As a consequence, the action of the in�nite monoid Q factors through a �nite
monoid Q� called the sandpile monoid of G (Lemma 8).

Recall that d(v; w) is the number of directed arcs from v to w in G, and that d(v) =P
w2V d(v; w). A particle con�guration � is called stable if

�(v) � d(v)� 1 for all v 2 V0.

If � is not stable, we can stabilize it by repeatedly toppling unstable vertices: Set �0 = �,
choose a vertex v0 2 V0 such that �0(v0) � d(v0) and topple it by sending one particle
along each outgoing arc from v0. The resulting con�guration �1 is given by

�1(w) =

�
�0(w) + d(v0; w) if w 6= v0;
�0(w) + d(v0; w)� d(v0) if w = v0:

If �1 is not stable, choose a vertex v1 such that �1(v1) � d(v1) and topple it in the same
way to arrive at a new con�guration �2. Conditions (1) and (2) ensure that after �nitely
many topplings we reach a stable con�guration, which is called the stabilization of � and
denoted ��. The stabilization �� does not depend on the order of topplings [6].
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Let Q� be the set of stable particle con�gurations. We give Q� the structure of a
commutative monoid with the operation

(�1; �2) 7! (�1 + �2)
�:

That is, we sum the con�gurations pointwise, and then stabilize. By comparing two
di�erent toppling orders to stabilize �1 + �2 + �3, we see that ((�1 + �2)

� + �3)
� =

(�1+(�2+�3)
�)�, which shows that this operation is associative. The monoid Q� is called

the sandpile monoid of G; its structure has been investigated in [2, 4].

Lemma 8. For any particle con�guration � and any rotor con�guration � we have

��� = ��:

Hence, the action of particle con�gurations on rotor con�gurations descends to an action
of the sandpile monoid

Q� �R! R:

Proof. (cf. the proof of [11, Lemma 3.12], which uses a similar trick) We compute ��
by grouping the initial rotor moves into \batches" each consisting of d(v) moves from a
vertex v. The net e�ect of a batch of rotor moves is the same as that of a toppling at v:
the rotor at v makes a full turn, so the rotor con�guration is unchanged, and one particle
is sent along each arc emanating from v. After �nitely many batches, we arrive at particle
con�guration �� with rotors still con�gured as �. Now letting each remaining particle
perform rotor walk until reaching the target set yields the rotor con�guration ���.

We may express Lemma 8 as a commutative diagram

Q�R - Q� �R

R
?-

where the top arrow is (�; �) 7! (��; �).

2.4 The sandpile group and its action on spanning forests

We say that a stable particle con�guration � 2 Q� is reachable from a particle con�gura-
tion � if there exists a particle con�guration � 0 such that � = (� 0 + �)�. We say that � is
recurrent if it is reachable from any � 2 Q.

Note that if � is recurrent, then for any � 2 Q there exists �1 such that �1(v) � �(v) for
all v and � �1 = � ; indeed, since � is reachable from �, there exists � 0 2 Q with � = (� 0+�)�,
and we can take �1 = � 0 + �.

Denote by S(G=T ) the set of recurrent particle con�gurations. If � is recurrent and
� is any particle con�guration, then (� + �)� is recurrent. That is, the set S(G=T ) is an
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ideal of the monoid Q�. In fact, S(G=T ) is the minimal ideal of Q�, which shows that
it is an abelian group [2]. This group is called the sandpile group of G relative to the
target set T . The set T plays the role of the sink vertex in [11]. In the terminology of
that paper, S(G=T ) is the sandpile group of the graph G=T obtained by collapsing T to
a single vertex.

A rotor con�guration � is acyclic if the graph (V; �(V0)) contains no oriented cycles
(where �(V0) = f�(v) : v 2 V0g). Equivalently, the rotors f�(v)gv2V0 form an oriented
spanning forest of G rooted at T .

Lemma 9. [11, Lemmas 3.10 and 3.12] Each addition operator E� acts as a permutation
on the set R0 of acyclic rotor con�gurations. Thus the action of the sandpile monoid Q�

on rotor con�gurations restricts to an action

S(G=T )�R0 ! R0

of the sandpile group S(G=T ) on acyclic rotor con�gurations.

A further result proved in [11, Lemmas 3.13 and 3.17] is that this group action is free
and transitive. In other words, if � and �0 are two spanning forests of G rooted at T ,
then there is a unique element of the sandpile group � 2 S(G=T ) such that �� = �0. In
particular, the order jS(G=T )j of the sandpile group equals the number of acyclic rotor
con�gurations jR0j, which is the number of spanning forests of G rooted at T . We will
not use these facts, however, except for a brief aside (Lemma 20) where we identify the
period of a sequence that arises in the proof of Theorem 1; there we use the freeness of
the action.

The identity element e 2 S(G=T ) is a highly nontrivial object (see for instance [11,
Figures 4{6]) and plays a role in several of our lemmas below. If G has an oriented cycle,
then e is distinct from the identity element 0 of Q� because the latter is not recurrent.

3 Equivalence and cycle pushing

In this section we develop a new notion of equivalence of rotor con�gurations and use it
to prove Theorem 1. Here and throughout the rest of the article, we assume that the
stack at each vertex v is periodic with period d(v). For e = eiv (the ith arc in the rotor
mechanism at v) we de�ne e+ = ei+1

v and e� = ei�1v , where i + 1 and i � 1 are to be
interpreted modulo d(v).

3.1 Equivalence of rotor con�gurations

Lemma 10. Let � and �0 be rotor con�gurations on G. The following are equivalent:

(a) �� = ��0 for some particle con�guration �.

(b) �� = ��0 for all recurrent con�gurations � 2 S(G=T ).
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(c) e� = e�0, where e is the identity element of S(G=T ).

(d) �� = ��0 for all con�gurations � � e.

Proof. It su�ces to show that (a) ) (b) and (c) ) (d), since (b) ) (c) and (d) ) (a)
trivially.
(a) ) (b): Suppose that �� = ��0 for some particle con�guration �, and let � 2 S(G=T )
be a recurrent con�guration. Since � is recurrent, there exists a particle con�guration �1
such that � �1 = � and �1 � �. Writing �1 = � + �1 for some �1 � 0, we obtain

�� = � �1 � = �1� = �1(��)

= �1(��
0) = �1�

0 = � �1 �
0 = ��0:

(c) ) (d): If � � e, then writing � = e+ � we have �� = �(e�) = �(e�0) = ��0.

De�nition. Rotor con�gurations � and �0 are equivalent, denoted � � �, if the four
equivalent conditions of Lemma 10 hold.

From condition (c) of Lemma 10 it is immediate that � is an equivalence relation. We
write the equivalence class of � as [�].

Lemma 11. If � � �0 then �� � ��0 for all particle con�gurations � .

Proof. If � � �0, then there exists � such that �� = ��0, which implies �(��) = �(��) =
�(��0) = �(��0), which implies �� � ��0.

We say that a rotor con�guration � is reachable from �0 if there exists a particle
con�guration � 6= 0 such that � = ��0. We say that a rotor con�guration � is recurrent
if it is reachable from itself. The following lemma encapsulates the remaining results of
[11] that we will need.

Lemma 12. The following properties of a rotor con�guration � are equivalent:

(a) � is recurrent.

(b) � is acyclic.

(c) � = e�.

Proof. The equivalence of (a) and (b) is Lemma 3.15 of [11]. The implication (b))(c)
follows from the well-de�nedness of the action of S(G=T ) on acyclic rotor con�gurations
(Lemma 9). To see that (c))(a), note that e� = (ee)� = e(e�) is reachable from itself,
hence recurrent.

See [11, Lemma 3.16] for several other conditions equivalent to being recurrent.

Lemma 13. Each equivalence class of rotor con�gurations contains exactly one that is
recurrent. The unique recurrent con�guration equivalent to � is e�, where e is the identity
element of S(G=T ).
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Proof. Let � be any rotor con�guration. Then

e(e�) = (e2)� = e�:

Hence e� is recurrent by Lemma 12 and e� � �. So each equivalence class contains at
least one recurrent con�guration.

For the reverse direction, suppose that � and �0 are both recurrent and that � � �0.
By Lemma 12 we have � = e� = e�0 = �0.

As a consequence of Lemmas 9, 11, and 13, we have

Corollary 14. Each addition operator E� acts as a permutation on the set R=� of
equivalence classes of rotor con�gurations. Thus the action of the sandpile monoid Q� on
rotor con�gurations projects to an action

S(G=T )�R=� ! R=�

of the sandpile group S(G=T ) on equivalence classes of rotor con�gurations.

3.2 Cycle pushing

Lemma 13 gives one way to compute the unique recurrent rotor con�guration equivalent
to �: �rst compute the identity element e of the sandpile group of G=T , then add e(v)
particles at each vertex v 2 V0 and stabilize. Note however that this is rather ine�cient;
for instance, in the case where � is already acyclic, a smart algorithm would recognize
this fact and simply output � directly. We now describe a more e�cient way to compute
e�. The idea is to convert � into an acyclic con�guration by successively removing cycles
in the rotors. We call this process complete cycle pushing.

The stack picture underlying cycle popping and cycle pushing is integral to Wilson's
work on random stacks [18], and cycle pushing in particular is a key idea in recent work
on fast simulation of rotor-routing [10]. Suppose the rotor con�guration � contains a cycle
C with vertices v0; v1; v2; : : : ; vr = v0; that is, for all 0 � j � r � 1, the arc �(vj) points
from vj to vj+1.

The rotor con�guration C� obtained by pushing C is given by

C�(v) =

(
�(v)� if v 2 C;

�(v) otherwise.

In other words, for each j = 0; 1; : : : ; r�1 the rotor �(vj) is regressed, and the other rotors
remain unchanged. (Compare this with popping a cycle, wherein rotors are progressed,
not regressed.)

Suppose we have a sequence of rotor con�gurations �0; �1; : : : ; �m where for each i < m
the con�guration �i+1 is obtained from �i by pushing a cycle Ci in �i, and suppose moreover
that �m is acyclic. We say that �m is obtained from �0 by complete cycle pushing.

Complete cycle pushing involves a choice of ordering in which to push the cycles
Ci. Wilson [18] showed that these choices do not a�ect the outcome: if �; �0 are acyclic
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Figure 1: Example of complete cycle pushing, starting from an arbitrary rotor con�gura-
tion (upper left) to obtain an acyclic rotor con�guration (lower left). Here the target set
is T = fv5g. At each step, each rotor participating in a cycle (drawn in red) is regressed
counterclockwise, until there are no more cycles.

con�gurations that can be obtained from �0 by complete cycle pushing, then � = �0. We
will not use the uniqueness in our proofs: in fact, Lemma 17 below gives another proof of
Wilson's result.

Figure 1 shows how a rotor con�guration is a�ected by cycle pushing. The shaded
vertex v5 is the target vertex, and the cycles that are pushed (�rst the 3-cycle v1 ! v3 !
v4 ! v1, then the 2-cycle v1 ! v2 ! v1, and then the 2-cycle v2 ! v3 ! v2) are shown
in red.

Lemma 15. If �0 is obtained from � by cycle pushing, then �0 � �.

Proof. Let �0 = C�, and let � = 1C be the particle con�guration consisting of one particle
at each vertex vj of the cycle. We claim that ��0 = ��. Starting from �0, let each particle
take a single step of rotor walk: for each j, the particle at vj moves to vj+1 (taking indices
mod r), and the rotor at vj progresses to �0(vj)

+ = �(vj). Since each vertex vj on the
cycle sends one particle to vj+1 and receives one particle from vj�1, the resulting particle
con�guration is still �; on the other hand, the rotor con�guration has changed from �0 to
�. By the abelian property we conclude that ��0 = ��, and hence �0 � �.

Lemma 16. For any initial rotor con�guration, any sequence of cycle pushing moves
yields an acyclic con�guration in �nitely many steps.
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Proof. Recall that target vertices do not have rotors. Hence if a vertex w has an arc to
a target vertex t, then w can participate in only a �nite number of cycle pushing moves,
because at some point the rotor at w would point to t, and thereafter w cannot belong to
a pushable cycle. Thereafter, each vertex v that has an arc to w can participate in only a
�nite number of cycle pushing moves, because at some point the rotor at v would point to
w, and thereafter v cannot belong to a pushable cycle. Continuing in this fashion, using
the fact (1){(2) that every vertex v has a directed path to some target vertex, we see that
every vertex can participate in only �nitely many cycle pushing moves.

Lemma 17. Let � be a rotor con�guration. Any sequence of cycle pushing moves that
starts from � must terminate with e�, the unique acyclic rotor con�guration equivalent to
�.

Proof. By Lemma 16, any sequence of cycle pushing moves starting from �must terminate
in an acyclic con�guration �0. By Lemma 15 we have �0 � �. Since �0 is acyclic, �0 is
recurrent by Lemma 12, and hence �0 = e� by Lemma 13.

Figure 2: The rotor con�gurations �1 at top left and �2 at top right yield the same acyclic
con�guration � after complete cycle pushing, so they are equivalent by Lemma 18.

The next lemma shows that equivalence between rotor con�gurations is the re
exive-
symmetric-transitive closure of the relation � � C� given by cycle pushing.

Lemma 18. �1 � �2 if and only if there exists a rotor con�guration that is accessible
from both �1 and �2 by a sequence of cycle pushing moves.
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Proof. If �1 � �2 then e�1 = e�2 is accessible from both �1 and �2 by Lemma 17. Con-
versely, if �0 is a con�guration accessible from both �1 and �2, then �1 � �0 � �2 by
Lemma 15.

For a pictorial example, see Figure 2. The rotor con�guration � at the bottom is
acyclic, and the other two rotor con�gurations lead to � after a single cycle pushing move
(in one case, the 3-cycle v1 ! v3 ! v2 ! v1 is pushed, and in the other case, the 2-
cycle v4 ! v5 ! v4 is pushed). As in Figure 1, rotors progress by turning clockwise
and regress by turning counterclockwise. Lemma 18 tells us that the two non-acyclic
rotor con�gurations �1 and �2 must be equivalent, and indeed the reader can check that
condition (a) of Lemma 10 is satis�ed if one takes � to be the particle con�guration with
a single particle at v4; that is, if we add a single particle at v4 and let it perform rotor
walk until reaching the target vertex v6, then the two rotor con�gurations become the
same.

Denote by tv(�) the target vertex reached by a particle started at v if the initial rotor
con�guration is �.

Lemma 19. If �1 � �2, then tv(�1) = tv(�2) for all v 2 V0.

Proof. By Lemma 18 it su�ces to consider the case where �2 is obtained from �1 by
pushing a cycle v0; v1; : : : ; vr = v0. If the particle added to �1 at v never hits the cycle,
then the particle added to �2 at v will traverse the exact same path, arriving at the same
target. On the other hand, suppose the particle added to �1 at v hits the cycle, say at v0.
Then the particle added to �2 at v will take the same walk to v0 and will then traverse
the cycle, arriving back at v0. At this point the rotor con�guration will be the same as
the rotor con�guration for the �rst situation (i.e., starting from �1) when the particle
�rst hits v0. Thereafter, the two processes evolve identically, since in both situations the
particle is at v0 and the rotor con�gurations at this stage are the same in both evolutions.
In particular, the particle will end up at the same target vertex.

3.3 Proof of the periodicity theorem

We can now prove our �rst main result, that the hitting sequence associated with a
(periodic) rotor mechanism is periodic.

Proof of Theorem 1. Let t1; t2; : : : be the hitting sequence for initial rotor con�guration
�0, and for n � 1 let �n be the rotor con�guration after n particles released from the source
vertex s have hit the targets t1; : : : ; tn (staying put after each hit). Then �n = Es�n�1 for
n � 1. Let [�n] denote the equivalence class of �n. Recall that Es acts as a permutation
on equivalence classes (Corollary 14), so the sequence [�0]; [�1]; [�2]; : : : is periodic, say
with period D. Then by Lemma 19, since [�n+D] = [�n] for all n � 0, we conclude
that tn+D = tn for all n � 1, which shows that the hitting sequence is periodic with
period D.
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Next we identify the period D of the sequence [�0]; [�1]; : : : arising in the proof of
Theorem 1. This in turn gives an upper bound on the period of the hitting sequence
t1; t2; : : :, namely, the latter period is a divisor ofD. Denote by �s the particle con�guration
consisting of 1 particle at the source vertex, and let gs = (�s + e)� be the corresponding
recurrent con�guration.

Lemma 20. Let D be the order of gs in the sandpile group S(G=T ). The sequence of
equivalence classes of rotor con�gurations f[�n]gn�0 has period D. Moreover, the hitting
sequence satis�es tn+D = tn for all n � 1.

Proof. For any rotor con�guration �, since � � e� we have by Lemma 11

gs� = (�s + e)�� = (�s + e)� = Es(e�) � Es�:

Since gDs = e, we obtain
ED
s � � gDs � = e� � �

which shows that �n+D � �n for all n � 0. Conversely, if �n+k � �n for some n � 0 and
k � 1, then gks�n � �n, which implies gks = e since the action of S(G=T ) on equivalence
classes of rotor con�gurations is free; hence k must be divisible by D.

The fact that tn+D = tn for all n � 1 follows from Lemma 19.

4 Time reversal and antiparticles

4.1 Stack 
ipping

Recall the stacks picture introduced in x2. Each vertex v 2 V0 has a stack �v, which is a
bi-in�nite sequence of arcs

�v = [: : : ; e�2; e�1; e0je1; e2; e3; : : : ]:

(We abuse notation slightly by using the same letter (�) to denote a stack con�guration
and its corresponding rotor con�guration.) The ei with i � 0 constitute the \past" of
the stack, the ei with i > 0 constitute the \future" of the stack, e0 is the retrospective
state of the stack, and e1 is the prospective state of the stack; the pointer \j" marks the
divide between past and future. When a particle at v takes a step, the pointer shifts to
the right, so that the stack at v becomes

[: : : ; e�2; e�1; e0; e1je2; e3; : : : ]

and the particle travels along arc e1.
Shifting the pointer at v to the right corresponds to progressing the rotor at v, or

in stack language, popping the stack at v; correspondingly, shifting the pointer at v to
the left will be called regressing the rotor or pushing the stack at v. When we perform
cycle pushing, the pointer for the vertex v moves one place to the left for all vertices v
belonging to the cycle.
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We de�ne stack 
ipping as the operation on a bi-in�nite stack that exchanges past
and future, turning

[: : : ; e�2; e�1; e0je1; e2; e3; : : : ]

into
[: : : ; e3; e2; e1je0; e�1; e�2; : : : ]:

Given a stack con�guration � = (�v)v2V0 , let �(�) denote the stack con�guration obtained
by 
ipping all its stacks. Note that �(�(�)) = �.

Lemma 21. Let � be a rotor con�guration that has a cycle C. Then C is also a cycle of
�(C�), and

�(C(�(C�))) = �:

Proof. Let v be a vertex of C. Let �0 = C�, and write the rotor stack at v as

�v = [: : : ; e�2; e�1; e0je1; e2; e3; : : : ]:

If we push the cycle, the stack at v becomes

(C�)v = [: : : ; e�2; e�1je0; e1; e2; e3; : : : ]:

If we then 
ip all the stacks, we obtain

(�(C�))v = [: : : ; e3; e2; e1; e0je�1; e�2; : : : ]:

The retrospective rotors at the vertices v 2 C are now as they were initially in �, so they
form the same cycle C. Pushing that cycle yields

(C(�(C�)))v = [: : : ; e3; e2; e1je0; e�1; e�2; : : : ]:

Finally, 
ipping the stacks once more brings us to

(�(C(�(C�))))v = [: : : ; e�2; e�1; e0je1; e2; e3; : : : ]

which equals �v.
Meanwhile, for those vertices v that are not part of the cycle C, the stack at v is

simply reversed twice (with no intervening cycle pushing moves to complicate things), so
this stack ends up in exactly the same con�guration as it was in �.

Diagrammatically, writing �0 = C�, we have

�
C - �0

�(�)

�

?

6

� C
�(�0)

�

?

6

Note the reversal of the direction of the C arrow.

Lemma 22. If � � �0, then �(�) � �(�0).

Proof. By Lemma 18, it su�ces to show that if two stack con�gurations are related by
a cycle pushing move, then their 
ips are related by a cycle pushing move. But that is
precisely what Lemma 21 tells us.
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4.2 Antiparticles

Next we introduce antiparticles. Like particles, they move from vertex to vertex in the
graph, but they interact with the stacks in a di�erent way. Suppose that the current stack
con�guration at v is

[: : : ; e�2; e�1; e0je1; e2; e3; : : : ]

and that there is an antiparticle at v. An antiparticle step consists of �rst moving the
particle along the arc e0 and then pushing the stack at v to obtain

[: : : ; e�2; e�1je0; e1; e2; e3; : : : ]:

(Compare: a particle step consists of �rst popping the stack at v to obtain

[: : : ; e�2; e�1; e0; e1je2; e3; : : : ]

and then moving the particle along the arc e1.)

Lemma 23. If �0 is obtained from � by moving a particle from v along arc e, then �(�0)
is obtained from �(�) by moving an antiparticle from v along arc e.

Proof. Write the stack at v for the rotor con�guration � as

�v = [: : : ; e�2; e�1; e0je1; e2; e3; : : : ]:

When a particle at v advances by one step, the particle moves along the arc e1 and the
stack at v becomes

�0v = [: : : ; e�2; e�1; e0; e1je2; e3; : : : ]:

On the other hand, the stack at v for the 
ipped rotor con�guration �(�) is

�(�)v = [: : : ; e3; e2; e1je0; e�1; e�2; : : : ]:

When an antiparticle at v advances by one step, the antiparticle moves along the arc e1
and the stack at v becomes

[: : : ; e3; e2je1; e0; e�1; e�2; : : : ]

which equals �(�0)v.

Just as one de�nes particle addition operators Ev , one can de�ne antiparticle addition
operators E�

v on rotor con�gurations: to apply E�
v , add an antiparticle at v and let

it perform rotor walk on G (using the antiparticle dynamics described above) until it
arrives at a vertex in the target set T . To highlight the symmetry between particles and
antiparticles we will sometimes write E+

v instead of Ev for particle addition operators.
Note that in general, E+

v and E�
w do not commute.

Write t+v (�) (resp. t
�
v (�)) for the target vertex hit by a particle (resp. antiparticle)

started at v if the initial rotor con�guration is �.
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Lemma 24. For any rotor con�guration � and any v 2 V0 we have �(E
+
v (�)) = E�

v (�(�)),
and t+v (�) = t�v (�(�)).

Proof. This follows by repeated application of Lemma 23: the sequence of vertices traveled
by the particle added to � at v is the same as the sequence of vertices traveled by the
antiparticle added to �(�) at v.

Diagrammatically, writing �0 = E+
v �, we have:

�
E+
v - �0

�(�)

�

?

6

E�
v - �(�0)

�

?

6

Lemma 25. If � � �0, then E�
v � � E�

v �
0 and t�v (�) = t�v (�

0) for all v 2 V0.

Proof. We have E�
v = � � E+

v � � by Lemma 24. Moreover, � preserves equivalence by
Lemma 22 and E+

v preserves equivalence by Lemma 11, so E�
v must preserve equivalence.

This proves the �rst statement. For the second, since �(�) � �(�0), we have by Lemmas 24
and 19

t�v (�) = t+v (�(�)) = t+v (�(�
0)) = t�v (�

0):

4.3 Loop-erasure

If a path (x0; : : : ; xr) in the directed graphG contains a cycle, i.e., a sub-path (xp; xp+1; : : : ;
xq) with xq = xp, de�ne the �rst cycle as the unique cycle with q as small as possible; we
may replace the path by the shorter path (x0; : : : ; xp�1; xp; xq+1; : : : ; xr) from which the
q � p vertices of the �rst cycle have been removed. If this new path contains a cycle, we
may erase the �rst cycle of the new path, obtaining an even shorter path. If we continue
in this fashion, we eventually obtain a simple path from x0 to xr, called the loop-erasure
of the original path.

The notion of loop-erasure is due to Lawler [15], who studied the loop-erasure of
random walk. As is mentioned at the end of x5 of [11], there is also a connection between
loop-erasure and rotor walk. Given a rotor con�guration � and a set S � V0, de�ne
popping S as the operation of popping the stack at each vertex in S to obtain the new
rotor con�guration

S+�(v) =

(
�(v)+ if v 2 S;

�(v) otherwise.

(Compare to cycle pushing x3.2, in which the rotors are regressed instead of progressed.)
For a rotor con�guration � and a vertex v 2 V0, let � be the loop-erasure of the path
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x0; : : : ; xr traveled by a particle performing rotor walk starting from x0 = v until it hits
the target set. Let C1; : : : ; Cm be the cycles erased to obtain �. For any vertex w, the
number of i (0 � i � r � 1) with xi = w is equal to the number of j (1 � j � m) for
which w 2 Cj, plus either 1 or 0 according to whether or not w 2 �. Hence the �nal rotor
con�guration E+

v � can be obtained from � by popping the cycles C1; : : : ; Cm and the path

 := �� fxrg; that is,

E+
v � = 
+C+

1 : : : C+
m�: (3)

Lemma 26. For every rotor con�guration � and every v 2 V0 we have E�
v E

+
v � � �,

and the path traversed by the antiparticle is the loop-erasure of the path traversed by the
particle. In particular, the antiparticle hits the same target as the particle:

t�v (E
+
v �) = t+v (�):

Proof. After the particle has been added to � at v, changing the rotor con�guration to
E+
v � and arriving at target t = t+v (�), the retrospective rotor at each vertex v is the arc

that the particle traversed the last time it left v. Hence the rotors of E+
v � give a simple

(cycle-free) path 
 from v to t, and the antiparticle will travel this path, arriving at the
same target t. By (3), the rotor con�guration E+

v � is obtained from � by a sequence
of cycle popping moves followed by a \path-popping move" along 
. The motion of the
antiparticle from v to t undoes the path-popping move, so all that survives in E�

v E
+
v � are

the cycle popping moves. Since cycle popping doesn't change the equivalence class of a
rotor con�guration (by Lemma 18), we conclude that E�

v E
+
v � � �.

Likewise, for every � we have E+
v E

�
v � � �. Lemma 26 thus says that the products

E+
v E

�
v and E�

v E
+
v act as the identity operation on equivalence classes of rotor con�gu-

rations. That is, if we view E+
v and E�

v as elements of the sandpile group (acting on
equivalence classes of rotor con�gurations), they are inverses.

4.4 Proof of the rotor-reversal theorem

Now we turn to the proof of our second main result, that reversal of the periodic pattern
of the rotor mechanism at all vertices causes reversal of the periodic pattern of the hitting
sequence. To save unnecessary notation in the proof, we write E� := E�

s and t� := t�s .

Proof of Theorem 2. As in the proof of Theorem 1, the sequence of equivalence classes,
[�0]; [�1]; [�2]; : : : is periodic, say with period D. Now consider the hitting sequence for
antiparticles released from the source vertex s from initial con�guration �0. De�ne �0 = �0
and �i = E�(�i�1) for i � 1. We �rst show by induction on i that �i � �D�i for all
i = 0; : : : ; D. The base case i = 0 is the fact that �0 � �D; and for 1 � i � D, if
�i�1 � �D�i+1 then by Lemmas 25 and 26,

�i = E�(�i�1) � E�(�D�i+1) = E�E+(�D�i) � �D�i

which completes the inductive step.
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Now for i � 1, let u+i = t+(�i�1) and u�i = t�(�i�1) be the hitting sequences for
a particle (resp. antiparticle) started at s with initial rotor con�guration �0. Using the
second statements of Lemmas 25 and 26, we have for i = 0; : : : ; D � 1

u�i+1 = t�(�i) = t�(�D�i) = t�(E+�D�i�1) = t+(�D�i�1) = u+D�i:

By Lemma 24, the hitting sequence for a particle starting at s with rotor con�guration
�(�0) equals the hitting sequence for an antiparticle starting at s with rotor con�guration
�0, that is, the sequence fu�i gi�1. Moreover, since �D = �0 � �D = �0, the sequence
fu�i gi�1 satis�es u�i+D = u�i for all i � 1 by Lemma 25. Hence the particle hitting
sequences for �(�0) and �0 are both periodic modulo D, and reversing the �rst D terms
of the latter hitting sequence yields the �rst D terms of the former.
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