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Abstract

Many networks arise in a random and distributed fashion, and yet result in
having a specific type of degree structure: e.g., the WWW, many social networks,
biological networks, etc., exhibit power-law, stretched exponential, or similar de-
gree structures. Much work has examined how a graph’s degree-structure influ-
ences other graph properties such as connectivity, diameter, etc. Probabilistic edge
removal models link failures, information spreading, and processes that consider
(random) subgraphs. They also model spreading influence of information as in the
independent cascade model [20]. We examine what happens to a graph’s degree
structure under edge failures where the edges are removed independently with iden-
tical probabilities. We start by analyzing the effect of edge failure on the degree
sequence for power-law and exponential networks, and improve upon results of Mar-
tin, Carr & Faulon and Cooper & Lu; then, using intuition from the power-law case,
we derive asymptotic results for almost any degree sequence of interest. Our major
result shows a classification of degree sequences which leads to simple rules that
give much of the new expected degree sequence after random edge-removal; we also
provide associated concentration bounds.
Keywords: random graph, degree distribution

1 Introduction

Many processes can cause the edges of a given graphG to fail independently, say with iden-
tical probabilities. This classical idea includes the original random-graph model G(n, p)
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of Erdős & Rényi [18], where the host graph G being the complete graph. This topic has
received much attention recently in the case where the host graph G is not complete, but
comes from some interesting family of graphs. Motivations for studying random edge-
removal are many: e.g., link failure in peer-to-peer networks [3], instant-messaging or
the fact that we can only sample (random) subgraphs of massive graphs [10], pruning of
relationships in online social networks, and disease propagation or network attacks [25].

Many properties such as diameter, emergence of the giant component, and various
spectral parameters (e.g., spectral gap, mixing, expansion) have been studied when edge
removal is conducted on graphs from various natural families [10, 18, 9, 8, 1]. Another
important parameter of a graph family is its degree sequence. Much work has focused on
various properties of random graphs with given (expected) degree sequences [11, 14, 13].
For instance, Chung & Lu [12] show how the size of such a random graph’s likely giant-
component depends on the average expected degree and the second order average degree.

The key role often played by the degree sequence leads us to the question: what
happens to the degree sequence of a graph family when edges are removed independently
with identical probabilities? If the initial graph has d(j) vertices of degree j and edges are
each removed with probability p, there are essentially d′(k)

.
=
∑∞

j=k d(j) ·
(

j
k

)

·pj−k(1−p)k

expected nodes of final degree k. Note that this is not a sum of independent variables, but
that the final degree of any node is intertwined with the final degree of its neighbors. We
provide a characterization of how this new distribution relates to d for most interesting
graph families. We also provide concentration bounds that show that the degree sequence
matches the sequence d′ with high probability.

Let us start by discussing two basic types of degree sequences. It is known that
real-world, large-scale graphs often have a degree structure similar to power-law. These
graphs include the World Wide Web [5, 6, 22], internet routers [19], many social networks
including scientific co-authorship [4], as well as biological networks such as protein-protein
interaction graphs [28]. Some graphs previously identified as being power-law may have
degree sequences closer to stretched exponential, log-normal, or other. For a thorough
examination of many empirical datasets, see Clauset et al. [15]. We will focus on power-
law sequences as a concrete example, and later show that the analysis works for essentially
all other interesting sequences as well.

A graph has a power-law structure if there exist parameters α and γ such that for
essentially all k the number of nodes of degree k is ∼ αk−γ. To accommodate small
deviations, we define a family of power-law-like networks such that for some interval I
of degrees, the number of nodes of degree k ∈ I is within a constant factor of power-law
(i.e., Θ(αk−γ)). What happens to the degree structure of the graph family when edges
are removed independently, with some probability p? Does a power-law-like graph remain
power-law-like? If so, how do its parameters vary, and how good is the concentration of the
number of final nodes with some degree k? What about graphs with exponential degree
sequences, where the degree sequence decays exponentially starting at some minimum
degree of interest?

Callaway et al. [7] address some of these questions using generating functions to show
how random edge removal affects the existence of the giant component for original random
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graphs of arbitrary degree distribution. Martin et al. [25] is a more direct predecessor of
our work. They considered the special case of p = 1/2 and γ = 2 for power-law graphs,
and derived empirical results demonstrating that removing edges with probability 1

2
from

a power-law graph gives an expected new degree structure which is close to power-law.
More recently Cooper and Lu [17] have shown that only power-law distributions are “scale-
free”, in the sense that a random subgraph of a power-law graph is likely to be “scale-free”
also. (Technically, the work of [17] is on “site percolation”, wherein vertices are removed
randomly, while those of [7, 25] and ours are on “bond percolation”, wherein edges are
removed. Because our bounds for E[dk] rely on a sum over the expected contribution
from each node and every node not removed by site percolation has the same behavior as
it does in bond percolation, our qualitative statements about expected degree sequences
apply to the bond percolation context as well.)

In Sections 2 we prove that after random edge removal, power-law-like networks retain
expected degree sequences that are power-law-like with the same value of γ. We do this
through a careful algebraic argument where we prove that the vast majority of nodes with
final degree k have initial degrees near k/(1 − p) and that for any two initial degrees in
this range, they have close enough to the same number of nodes for each. We go on to
show in Section 3 how the value p changes the exponent in exponential degree sequences.
In both cases we get explicit, analytical bounds by combining a binomial distribution, a
step function, and the degree distribution. These results are in contrast with the three
works mentioned above, as follows. Given the general generating-function bounds of [7],
one needs to evaluate numerically the parameters of interest, in some cases by iterated
numerical evaluation. The main results of [25] are largely empirical, and focus on the case
where p = 1

2
and γ = 2. Finally, the generating function based work of [17] requires that

the graph have bounded degree D, and that for all k ≤ D, the number of nodes of degree
k is precisely power-law up to a lower-order term: i.e., (c + o(1))nk−γ for some constant
c, whereas we allow a multiplicative-constant deviation from strict power-law behavior.
(We also improve upon [17] in a tail bound, as described below. Note, however, that given
a precise “(c+ o(1))nk−γ” bound as above, the elegant work of [17] shows that only such
degree sequences remain purely “scale-free” under edge removal.)

In Section 4 we give a unified view of how degree distributions change with edge re-
moval. Specifically, for any general, non-increasing degree distribution where d(j) nodes
have degree j, the degree distribution after edge removal can be classified based on
the limit behavior of d(j)/d(j − 1). We study three main classes based on whether
limj→∞ d(j)/d(j− 1) exists and is bounded away from both 0 and 1, approaches 1, or ap-
proaches 0. For d(j)/d(j− 1) bounded away from 0 and 1, the distribution is exponential
and after edge removal the new distribution is a different exponential; for d(j)/d(j − 1)
approaching 0, the new distribution d′(k) is Θ((1 − p)kd(k)); and for d(j)/d(j − 1) ap-
proaching 1 quickly enough, the new distribution is Θ(d(j)). This final result means that
for almost any distribution of interest, random edge-removal does not affect the distribu-
tion type, only the “scale” of the distribution. Thus whether a network is power-law or has
a similar distribution does not matter (which is useful due to the subtleties in distinguish-
ing such distributions [24, 26]), and the relationship between the expected distribution in
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the new network and the original distribution can be easily determined.
The above discussion focuses on the expected number of nodes of degree k in the

graph after random edge removal, for an arbitrary but single value of k. How well is the
final degree sequence concentrated around this target? In Section 5, we demonstrate a
constant factor concentration, by a careful grouping of the vertices and through Martingale
inequalities. One further way in which we improve upon [17] here is as follows: they
require that the sum of the degrees-squared in the original graph be O(n2−Ω(1)) for their
tail-bounds to hold. We require something much weaker than the analog of this for bond
percolation. In Section 6 we discuss the effect of edge removal on probabilistic degree
distributions: in models like those proposed by Chung and Lu [12] or Leskovec et al. [23]
edges in a graph are already specified probabilistically. Thus nodes do not have degrees
until after a graph is instantiated; instead they have expected degrees. We briefly define
what it means for such a graph to have a power-law or exponential distribution, and show
what effect edge-removals have on the distributions.

Thus, this work conducts a systematic study of what happens to a fundamental pa-
rameter of a graph, its degree sequence, under edge removal. The general flavor of the
results obtained is that for essentially all of the interval of degrees of interest, the degree
sequence retains its qualitative character, and several quantitative aspects as well.

2 Graphs with Power-Law Degree Sequences

In this section we derive specific bounds for how a power-law-like degree sequence changes
through independently random edge removal. Letting deg(v) denote the degree of a node
v, we define a graph with n vertices to be power-law-like with parameters c1, c2, dmin, dmax,
and γ if ∀i ∈ [dmin, dmax], |{v| deg(v) = i}| ∈ [ c1n

iγ
, c2n

iγ
]. In doing so, we develop the

intuition and details which lead to the general categorization presented later.
Define deg(v) to be the degree of any vertex v. Given any graph G that has a power-

law-like distribution on its node degrees we remove each edge independently with prob-
ability p. We show for all degrees k in the range R = [dmin · (1 − p), dmax · (1 − p)], that
there are an expected Θ(nk−γ) nodes of degree k in the new graph. The size of the new
graph’s power-law-like degree range is the original graph’s power law range scaled down
by a factor of 1−p. Note that this places an implicit limit on how close p can be to 1 and
still have a largely power-law new graph. If (1 − p)(dmax − dmin) is small then the range
of degrees for which the power-law-like property holds will be small as well. This makes
intuitive sense because if p is small, only a few edges are removed and the graph should
not change much. If p is close to one, then most edges are removed, the graph changes
drastically, power-law-like behavior only remains for a small range of nodes.

We define the random variable dk to be the number of vertices with degree k after
edge removal. This leads to the equation:

dmax
∑

j=max(dmin,k)

(

j

k

)

pj−k(1− p)k
c1n

jγ
≤ E[dk] ≤

dmax
∑

j=max(dmin,k)

(

j

k

)

pj−k(1− p)k
c2n

jγ
. (1)
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E[dk] Step Function
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Figure 1: Examples of the three functions which make up gk for k = 20, dmin = 60, dmax =
100, c1n = 10000, γ = 2, p = .75.

This equation comes from taking a sum over all degrees j ≥ k of the number of
nodes with degree j times the probability that this node has degree k after the edge
removal. If the distribution is exactly power-law (c1 = c2 = c, dmin = 1, and dmax = ∞)
this equation reduces to E[dk] =

∑∞
j=k

(

j
k

)

pj−k(1 − p)kcnj−γ, which is commonly used
elsewhere [25, 17, 16]. If c1 6= c2 then we can use c1 throughout and introduce only a
constant factor error term of c2

c1
which can be applied to the upper bound at the end, so

for the remainder of our analysis we assume that c1 = c2.
Based on (1) we define for all k ∈ R the functions gk and fk. Specifically we define

gk(j) for all j ≥ k to be the “j term” in the summation for E[dk]:

gk(j) =
(

j
k

)

pj−k(1− p)kc1nj
−γ. (2)

We view gk(j) as the product of three separate functions. First is a step function
which is 1 when dmin ≤ j ≤ dmax and 0 otherwise. The second is a power-law function
giving the number of nodes of degree j: c1nj

−γ. Finally we have the function that
gives the probability of a node with degree j having final degree k. The type of degree
distribution only affects the second of these functions; the other two are degree distribution
independent. Examples of the three functions appear in Figure 1.

The intuition behind our method comes in two parts. First, for any given positive σ the
third component function (which is almost a negative binomial probability distribution)

has the vast majority of its mass (all but an amount exponential in−σ) within an O(σ·
√
k

1−p
)

range around j = k
1−p

. And second, that within this range the value of j−γ does not change
much.
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We also define the function fk(j) for j ≥ k to be the ratio of successive terms in the
sum E[dk] such that

fk(j) = gk(j + 1)/gk(j) =
pjγ

(j + 1− k)(j + 1)γ−1
. (3)

This leads to the following lemma:

Lemma 1 ∀k > γ, the function fk(j) is strictly decreasing as j increases.

The proof proceeds by treating fk as a continuous function, and showing that the
derivative is always negative.
Proof of Lemma 1 Taking the derivative of fk(j) with respect to j yields:

f ′
k(j) =

γpjγ−1

(j + 1− k)(j + 1)γ−1
− pjγ ((j + 1)γ−1 + (j + 1− k)(γ − 1)(j + 1)γ−2)

(j + 1− k)2(j + 1)2γ−2

=
γpjγ−1(j + 1− k)(j + 1)γ−1 − pjγ(j + 1)γ−1 − pjγ(j + 1− k)(γ − 1)(j + 1)γ−2

(j + 1− k)2(j + 1)2γ−2

=
pjγ−1(j + 1)γ−2

(j + 1− k)2(j + 1)2γ−2
(γ(j + 1− k)(j + 1)− j(j + 1)− j(j + 1− k)(γ − 1)) .

(4)

The fractional part of (4) is strictly positive. Therefore f ′
k(j) has the same sign as

γ(j + 1− k)(j + 1)− j(j + 1)− j(j + 1− k)(γ − 1) ≤ jγ − jk < 0.

Since the derivative of fk(j) with respect to j is always negative when k > γ, fk(j) always
decreases as j increases.

Using the fact that fk is strictly decreasing we next find the maximum value of gk for
all k > γ. When fk(j) ≥ 1, gk increases from j to j + 1 and when fk(j) < 1, gk decreases
from j to j+1. Therefore the maximum term jmax in (1) occurs within one of where fk(j)
crosses from above 1 to below 1. We treat fk(j) as a continuous function and round to
find the desired j:

1 = fk(j) =
pj

j + 1− k
· jγ−1

(j + 1)γ−1
i.e., j =

k − 1

1− p (j/(j + 1))γ−1 . (5)

It immediately follows from (5) that jmax is always less than k−1
1−p

for any γ > 1, which is

inherent in a power-law distribution. Furthermore, since j ≥ k, j
j+1

is typically close to

1, thus jmax is typically close to k−1
1−p

as well. This observation drives our focus on j ≈ k
1−p

from here on. Specifically we will use gk(
k

1−p
) as a proxy for the more elusive gk(jmax).
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We proceed by showing bounds on gk(
k

1−p
), using the error factor ξ = 1−O(1/(pk)).

gk(
k

1− p
) =

(

k
1−p

)

!

k!
(

pk
1−p

)

!
ppk/(1−p)(1− p)kc1n

(

k

1− p

)−γ

=

√

2π k
1−p

·
(

k
1−p

) k
1−p

eλk/(1−p)−λk−λpk/(1−p)

√
2πk ·

√

2π pk
1−p

· kk
(

pk
1−p

)pk/(1−p)
p

pk
1−p (1− p)kc1n

(

k

1− p

)−γ

· ξ (6)

=
(1− p)γ√

2πp
· c1n · k−γ−.5 · ξ (7)

where (6) relies on Stirling’s approximation for factorials: n! =
√
2πn

(

n
e

)n · eλn where
λn ∈ [1/(12n+ 1), 1/(12n)].

Next we use j = k/(1−p) as a starting point and bound how much gk changes around
this point. To that end we derive the bounds fk((k+σ

√
k)/(1−p)) ≤ 1−((1−p)σ)/(p

√
k+

σ) and gk(
k+σ

√
k

1−p
)/gk(

k
1−p

) ≤ epγ/(1−p)−|σ|/8 for both positive and negative σ.

We have already shown that gk(
k

1−p
) ≈

(

(1−p)γ√
2πp

)

c1nk
−γ−.5 with very small error and

that k
1−p

is close to jmax. In this section we show bounds on how quickly gk and fk change

as j moves away from k
1−p

.

We start by showing bounds on fk(
k

1−p
+ σ

1−p

√
k) and

gk(
k

1−p
+ σ

1−p

√
k)

gk(
k

1−p
)

for any real (positive

or negative) σ such that σ > −p
√
k. We need these bounds to prove that the overwhelming

amount of the probability weight of nodes with final degree k comes from nodes with initial

degrees in the range k±O(
√
k)

1−p
.

First we upper bound fk(
k

1−p
+ σ

1−p

√
k).

fk(
k

1− p
+

σ

1− p

√
k) =

p( k
1−p

+ σ
1−p

√
k)

(

k
1−p

+ σ
1−p

√
k + 1− k

)

( k
1−p

+ σ
1−p

√
k)γ−1

( k
1−p

+ σ
1−p

√
k + 1)γ−1

≤ pk + pσ
√
k

pk + σ
√
k

= 1− (1− p)σ

p
√
k + σ

(8)
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Next we upper bound
gk(

k
1−p

+ σ
1−p

√
k)

gk(
k

1−p
)

when σ is positive:

gk(
k

1−p
+ σ

1−p

√
k)

gk(
k

1−p
)

=

( k
1−p

+ σ
1−p

√
k

k

)

(1− p)kp
k

1−p
+ σ

1−p

√
k−k( k

1−p
+ σ

1−p

√
k)−γ

( k
1−p

k

)

(1− p)kp
k

1−p
−k k

1−p

−γ

=

(

( k
1−p

+ σ
1−p

√
k)!

( k
1−p

+ σ
1−p

√
k − k)!

)

/

(

k
1−p

!

( k
1−p

− k)!

)

p
σ

1−p

√
k

(

k

k + σ
√
k

)γ

(9)

=

σ
1−p

√
k

∏

i=1

(

k
1−p

+ i
k

1−p
− k + i

p

)

≤
σ

1−p

√
k

∏

i= σ
2−2p

√
k+1

(

k + σ
2

√
k

kp+ σ
2

√
k
p

)

(10)

≤
(

1− (1− p)σ

2p
√
k + σ

) σ
2−2p

√
k

≤ e
−σ2

4p+2σ/
√
k ≤ emax(−σ2

8p
,−σ

√
k

4
) ≤ e−σ/8. (11)

The bound on
gk(

k
1−p

+ σ
1−p

√
k)

gk(
k

1−p
)

when σ is negative is a little more involved. First, the
(

k
k+σ

√
k

)γ

term in (9) is greater than 1 when σ is negative, so it cannot simply be dis-

counted. However it is at most
(

k
k−p

√
k
√
k

)γ

=
(

1 + p
1−p

)γ

which is less than epγ/(1−p),

which only depends on the fixed parameters p and γ.
The next change from positive to negative σ comes on (10) which is replaced by:

gk(
k

1−p
+ σ

1−p

√
k)

gk(
k

1−p
)

≤ epγ/(1−p)

−σ
1−p

√
k

∏

i= −σ
2−2p

√
k+1

(

pk − i(1− p)

pk − pi(1− p)

)

≤ epγ/(1−p)

(

1−
−σ
2

√
k(1− p)

pk − p−σ
2

√
k

)
−σ

2−2p

√
k

≤ e
pγ/(1−p)− σ2

4p(1+σ/(2
√
k)) ≤ epγ/(1−p)−σ2

4p if σ > −2
√
k.

While our analysis runs into a discontinuity at σ = −2
√
k, this is unimportant. When

σ < −p
√
k then k

1−p
+ σ

1−p
·
√
k < k. Since there are no nodes with initial degree < k that

end up with degree k, in these cases it follows that gk(
k

1−p
+ σ

1−p
·
√
k) = 0.

Combining all of these bounds gives that for any meaningful σ,

gk(
k

1−p
+ σ

1−p

√
k)

gk(
k

1−p
)

≤ epγ/(1−p)−|σ|/8. (12)

Since we have a dropoff in gk(j) from gk(
k

1−p
) that is exponential in (j− k

1−p
)/
√
k, almost

all (at least 1− O( 1
n
)) of the concentration of E[dk] comes from a

√
k lnn region around

gk(
k

1−p
).
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Figure 2: Figure (a) shows the function g40 with p = .75, γ = 2 and c1 = 1000 in blue
along with our upper and lower bounds for it. Figure (b) shows E[dk] for various values
of k along with our upper and lower bounds. With these parameters, the lower bound is
approximately E[dk]/5 and the upper bound approximately 14E[dk].

From here we use the bounds on fk((k + σ
√
k)/(1 − p)) to create a geometric series

whose sum is a lower bound for the O(
√
k) terms of gk leading up to gk(k/(1−p)), which is

itself a lower bound on E[dk]. We go on to use the bounds on gk(
k+σ

√
k

1−p
)/gk(

k
1−p

) directly

to upper bound E[dk]. Figure 2 gives a graphical illustration of our upper and lower
bounds. This leads to the following theorem:

Theorem 2 Suppose we are given a fixed edge removal probability p and a power-law-like
graph G given by constants γ, c1, c2 and range dmin, dmax. The degree distribution of the
induced graph where each edge in G is removed with probability p is power-law-like as well.
Specifically for all k in [dmin

1−p
, dmax

1−p
] the term E[dk] falls between

((

1− e−
1
p

)

(p− k−.5)(1− p)γ−1/
√

2πp
)

·
(

c1nk
−γ/γγ

)

· (1−O(1/(12pk)))

(where the “γγ” term is only necessary when k < γ) and

(

20e(pγ/(8(1−p)))(1− p)γ−1/
√

2πp
)

·
(

c2nk
−γ
)

.

Proof of Theorem 2

Our general technique to lower bound E[dk] is to lower bound gk(j) for the
√
k values

of j preceding k
1−p

. We do this by taking gk(
k

1−p
) and successively dividing it by the

intermediate k
1−p

− j values of fk. From Eq (8) we know that these fk values are not too

large. The sum of these lower bounds, which we show to be Θ(c1nk
−γ), is itself a lower

bound on E[dk]. Figure 2 shows our upper and lower bounds for both gk and E[dk].
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For any k such that k ≥
(

1
p

)2

and dmax ≥ k
1−p

:

E[dk] =
dmax
∑

i=k

gk(i) ≥
k

1−p
∑

i= k−
√
k

1−p

gk(i) =

k
1−p
∑

i= k−
√
k

1−p



gk(
k

1− p
)

k
1−p

−i−1
∏

j=0

1

fk(i+ j)





≥
k

1−p
∑

i= k−
√
k

1−p



gk(
k

1− p
)

k
1−p

−i−1
∏

j=0

1

1 + 1−p

p
√
k−1



 (from (8) and fk decreasing)

≥ gk(
k

1− p
)

√
k

1−p
−1

∑

i=0

(

1− 1− p

p
√
k − 1

)i

=





(

1− e−
1
p

)

(p− k−.5)(1− p)γ−1

√
2πp



 c1nk
−γ . (13)

Note that we could equivalently bound E[dk] ≥
∑

k+
√
k

1−p

j= k
1−p

gk(j) ≥ Θ(pk
−γ

1−p
) using nearly

identical steps. As long as dmax − dmin > 2
√
k there are always enough j values either

above or below k
1−p

to contribute enough probability weight to this lower bound that

E[dk] ≥ Θ(pk
−γ

1−p
).

Whenever k < γ we lose the guarantee that fk(j) is monotonically decreasing with j.
However, for every term gk(j):

gk(j) =

(

j

k

)

pj−k(1− p)kc1nj
−γ

≥
(

j + γ

k + γ

)

pj+γ−k−γ(1− p)k+γc1n(j + γ)−γ

≥ gk+γ(j + γ).

Therefore E[dk] ≥ E[dk+γ]. So if E[dk+γ] ≥ αn(k + γ)−γ, then E[dk] also has a
power-law expected degree sequence, since E[dk] ≥ E[dk+γ] ≥ αn(k + γ)−γ ≥ α

γγnk
−γ .

For the upper bound on E[dk] we use the fact from (12) that ∀σ, gk(k±σ
√
k

1−p
) ≤ gk(

k
1−p

) ·
epγ/(1−p)− |σ|

8 . We group j values based upon which value of σ gives k+(2σ−1)
√
k

1−p
closest to

j in the direction towards k
1−p

. This grouping is evident in the step-like behavior of the
upper bound on gk in Figure 2. We then bound a sum over all of these groups of an upper
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bound on the total weight from each group.

dmax
∑

i=k

gk(i) ≤
∞
∑

i=−∞
gk(i)

≤
∞
∑

σ=0

√
k(2σ)/(1−p)−1
∑

i=0

(

gk(
k

1− p
−
√
k · 2

σ − 1

1− p
− i) + gk(

k

1− p
+
√
k · 2

σ − 1

1− p
+ i)

)

(14)

≤
√
k

1− p
·

∞
∑

σ=0

2σ
(

2gk(
k

1− p
)e

pγ/(1−p)−(2σ−1)
8

)

from (12)

=

(

2epγ/(1−p)+1/8(1− p)γ−1

√
2πp

)

c1nk
−γ

∞
∑

σ=0

(2σ)
(

e
−2σ

8

)

· (1−O(1/(12pk))) (15)

=

(

20epγ/(1−p)+1/8(1− p)γ−1

√
2πp

)

c1nk
−γ, (16)

where the slack from (15) comes from Robbins’ approximation[27] and (16) follows because
the preceding summation is less than 10.

Putting the two bounds from (13) and (16) together completes the proof.

3 Exponential Degree Sequences

We follow up with a similar, though much more straightforward result for graphs with
exponential degree sequences. We say a graph has a γ exponential degree sequence if there
exist constants c1, c2 such that there are between c1nγ

k and c2nγ
k nodes of degree k (for

the analysis we use a single constant c1). If each edge is removed with probability p, then
the expected number of nodes with final degree k is E[dk] =

∑

j≥k c1nγ
j
(

j
k

)

pj−k(1− p)k.
In the remainder of this section we prove the following theorem:

Theorem 3 Given a graph with a γ exponential degree sequence and an edge removal
probability p such that 0 ≤ pγ < 1, the expected degree sequence for the resulting graph is
an γ(1−p)

1−pγ
–exponential.

As with the power-law case, the terms in the summation can be broken into three
components: a step function, an exponential function, and a negative binomial. However
unlike the power-law case, the exponential function is significant enough that the negative
binomial does not dominate it, and the algebra becomes much simpler. We can rewrite
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E[dk] as

∑

j≥k

c1nγ
j

(

j

k

)

pj−k(1− p)k = c1n

(

γ(1− p)

1− pγ

)k
∑

j≥k

(

j

k

)

(pγ)j−k(1− pγ)k

=
c1n

1− pγ

(

γ(1− p)

1− pγ

)k

.

This shows directly that E[dk] is exponential in k. Specifically the new graph has a
γ(1−p)
1−pγ

exponential degree sequence. Note that this result does not require that γ < 1,
but only requires the weaker condition that pγ < 1. This restriction is in place because if
pγ ≥ 1 then the new negative binomial term is no longer a valid probability distribution.

4 General Principles

So far we have given two specific examples of what happens to a graph’s degree distribution
when edges are removed uniformly and independently at random. In this section we
expand upon those results by developing general asymptotic principles that apply to
almost any monotonically non-increasing degree distribution. We look at any degree
distribution given in terms of two parts, a unit step function s(j) which is one for all j
between dmin and dmax and a density function d(j) giving the number of nodes of degree
j if s(j) = 1. These correspond to the first and second components of the terms of gk,
where the third component remains the negative binomial function. For now we assume

dmin = 1 and dmax = ∞. For review, E[dk] = c1n
∑∞

j=k

(

j
k

)

(

1−p
p

)k

pjs(j)d(j).

We classify most such distributions into three classes based upon the asymptotic be-
havior of d(j)

d(j−1)
in the following theorem:

Theorem 4 For all k such that the initial degrees contribution most to nodes of final
degree k are not excluded from the graphs:

• For exponential degree sequences where limj→∞
d(j)

d(j−1)
= γ for some 0 < γ < 1,

keeping edges with probability pkeep yields an expected new degree sequence of

E[dk] =
c1n

1− pγ
·
(

γ(1− p)

1− pγ

)k

.

• For super-exponential degree sequences where d(j)/d(d− 1) = o( 1
pj
),

E[dk] = Θ((1− p)kd(k)).

• For sub-exponential degree sequences where d(j)/d(j − 1) = 1± o(1−p√
j
),

E[dk] = Θ(d(
k

1− p
)).
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We derive the individual cases of this theorem in the remainder of this section.
The first class includes all exponential degree distributions. The exponential case is

unique in that the pj term and the d(j) term align to produce a new negative binomial
distribution, plus a term exponential in k. The new negative binomial sums to a constant,
leaving behind only the new exponential term.

The second class of functions we consider are super-exponential decreasing functions
where d(j)

d(j−1)
= o( 1

pj
). Here we have functions that decrease significantly faster than any

exponential. If a function d(j) decreases fast enough that asymptotically d(j)
d(j−1)

≤ ǫ
pj

for
some ǫ < 1, then for sufficiently large k,

(1− p)kd(k) ≤ E[dk] =
∞
∑

j=k

pj−k(1− p)kd(j)

≤
∞
∑

j=k

(1− p)kd(k)

(

ǫ

j

)j−k

= O((1− p)kd(k)).

The degree distribution decreases so rapidly in this case, that the number of nodes with
final degree k is dominated by the number of nodes with initial degree k. Thus the
distribution stays asymptotically the same.

Finally we consider the case where d(j)
d(j−1)

= 1± o(1−p√
j
)), which includes all polynomial

degree distributions, including power law distributions. In these cases, the maximum
term in the E[dk] summation occurs at the highest j such that d(j)

d(j−1)
· p · j

j−k
≥ 1. Since

d(j)
d(j−1)

≈ 1, this occurs near j = k
1−p

, which maximizes the negative binomial component
function. Recall that the vast majority of the weight in a negative binomial occurs within

an O(
√
k

1−p
) region around its maximum. For some x, y ∈ [k−σ

√
k

1−p
, k+σ

√
k

1−p
], d(j) can change

by at most a ratio of

d(x)

d(y)
≤

(k+σ
√
k)/(1−p)
∏

j=(k−σ
√
k)/(1−p)+1

max

(

d(j)

d(j − 1)
,
d(j − 1)

d(j)

)

,

i.e., at most
(

1 + o((1− p)/(
√
k))
)2σ

√
k/(1−p)

which for sufficiently large k is at most

(

1 + (1− p)/(2σ
√
k)
)2σ

√
k/(1−p)

≤ e(1−p)/(2σ
√
k)·2σ

√
k/(1−p) = e.

Since for sufficiently large k, the value of d(j) changes by at most a factor of e within
the range for which the negative binomial component is large, we can approximate d as
a constant d(k/(1 − p)) with at most a factor of error e. Thus for this category of d(j)
functions, E[dk] = Θ(d( k

1−p
)). This result holds for all power-law distributions, as well as

any smooth, piece-wise combination of power-law functions, or any other slowly changing
function.
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In each of these three cases, the effect of the s(j) step function on the summations is
that of a range selector. Any k such that k

1−p
falls well within the s(j) = 1 region will

behave as described above. Any k with k
1−p

is sufficiently far away from where s(j) = 1

will have very small E[dk], with E[dk] transitioning slowly between the two extremes.

5 Bounds on Large Deviations from Expected De-

grees

In the previous section, we categorize how the expected degree sequence of a graph changes
when its edges are removed at random. In this section we take that one step further
and show that with probability at least 1 − 1

n
, all relevant degrees k will simultaneously

have Θ(E[dk]) nodes of degree k in the resulting graph as long as a few assumptions
are met. The challenge in developing tail bounds comes from the observation that every
edge’s final degree is correlated with the final degrees of its neighbors. This dependency
not only means that Chernoff bounds do not apply, but techniques requiring low degree
dependency graphs are not sufficient either. Cooper and Lu [17] use the Azuma-Hoeffding
inequality [2, 21] to show for vertex removal that when

∑

v∈V deg(v)2 = O(n2−ǫ) for some
positive ǫ, the probability that the actual number of nodes with degree k after edge
removal deviates from E[dk] by more than a constant factor is something at most O(n−2)
(they give a more specific bound). We expand upon their technique, apply it to edge and
not vertex removal, and get improved results in several ways. In addition to requiring a
bound on the sum of the degrees squared, they reach their result by requiring the power
law range to include all degrees (thus not allowing graphs with dmin 6= 0 or dmax 6= ∞) and
the number of nodes of degree k to grow linearly with n. We remove these requirements
and replace them with more generally applicable requirements. In this section we will
prove the following large deviation theorem:

Theorem 5 Suppose we are given an initial graph such that for some constants c1, c2,
and with probability at least 1−O(n−4) for all relevant k, the nodes with final degree k come
from a set of size at most E[dk]c1

√
k lnn and with maximum degree c2k(1 + lnn/

√
k). If

each edge is removed independently with probability p, then for all such k simultaneously,
the final number dk of nodes of degree k will be within [E[dk]

2
, 3E[dk]

2
] with probability at

least 1 − O( 1
n
). For this theorem, we define all relevant k to mean those k ∈ [dmin(1 −

p), dmax(1 − p)] such that E[dk] ≥ 72c1c2k ln
2 n(

√
k + lnn) or both E[dk] = Ω(lnn) and

k = Ω(ln4 n).

Remark. If we set c1 = 4/(1 − p) and c2 = 1/(1 − p), any power law graph satisfies
Theorem 5’s requirements. This includes power-law graphs that the Cooper-Lu method
does not apply to because of the edge density. To demonstrate how our theorem applies
to a concrete example, consider a power-law graph where nodes vary in degree from 1
to n/10 with γ = 2 + ǫ. The expression

∑n/10
i=1 αi−2+ǫ for some α gives the number of

nodes in the graph. Solving for α gives α ≈ n/1.6, and thus for k small enough, the
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expected number of nodes with final degree k is Θ(n/k2+ǫ). Applying Theorem 5 shows
us that the actual number of nodes of degree k will be close to E[dk] roughly as long
as either: (a) E[dk] ≥ 72c1c2k ln

2 n(
√
k + lnn) which leads to k = O(n1/3/ lnn); or

(b) k = Ω(ln4 n), which for reasonably large n is satisfied if E[dk] = Ω(lnn) and (a)’s
conditions are not satisfied. (Ω(lnn) = E[dk] is equivalent to lnn = O(n/k2+ǫ) and thus
k = O((n/ lnn)1/(2+ǫ)).) These two cases combine to show that our theorem covers most
of the range of degrees k likely to occur in the random graph. The only degrees likely to
occur for which our tail bounds do not apply are those where E[dk] = o(lnn). In these
cases even if we could directly apply Chernoff bounds to the large deviation probabilities,
there are simply not enough expected nodes of degree k to drive the probability of a bad
event below 1/n. Thus no scheme can be expected to improve significantly upon our
result in this particular example.

For the first step in our proof we take any arbitrary ordering on the edges and consider
the random process where the edges are exposed sequentially, each being removed with
probability p. For any vertex v, we can use Chernoff bounds to show that at every step in
the random process, if v has had x of its edges exposed, then less than xp− 4

√
x lnn or

more than xp+ 4
√
x lnn of those edges will have been removed with probability at most

2 exp(−xp(4
√
x lnn
xp

)2/3) = 2 exp(−(16 lnn
3p

)) = O(n−5). If we then take the union bound

over all vertices and all time steps we have that with probability at least 1− O(n−3) for
every vertex v and number of exposed edges x, between xp− 4

√
x lnn and xp+ 4

√
x lnn

of those edges will have been removed. This means that for any k, with probability at
least 1−O(n−3) only those vertices for which the initial degree deg(v) satisfies

deg(v)(1− p)− 4
√

deg(v) lnn ≤ k ≤ deg(v)(1− p) + 4
√

deg(v) lnn

can have final degree k. We call this Event (A). Note that this result immediately implies
one of the conditions for Theorem 5, namely that with high probability only nodes of
initial degree at most c2k(1 + lnn/

√
k) can end up with final degree k.

We also rely upon the high probability event that for all relevant k, only nodes from
the set Sk of size at most E[dk]c1

√
k lnn might end up with final degree k (this is a

precondition of Theorem 5). By the union bound over all k individually, with probability
at least 1−O(n−3) this will happen for all k simultaneously. We call this Event (B).

For any relevant k, when E[dk] ≥ 72c1c2k ln
2 n(

√
k+ lnn), only |Sk| ≤ E[dk]c1

√
k lnn

nodes are conditioned to possibly have final degree k, and each of these has at most c2k(1+
lnn/

√
k) edges to other nodes in this set, for a total of at most E[dk]c1c2k

1.5
√
lnn(1 +

lnn/
√
k)/2 edges internal to this set. Furthermore, each edge we expose in our random

process can affect at most two of these nodes (its endpoints). Define the random variable
X to be the expected number of nodes from Sk with final degree k after exposing these
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internal edges. We can use Azuma’s inequality which says

Pr[|X − E[dk]| ≥ E[dk]/3] ≤ 2 exp(−E[dk]
2/(18

∑

internal edges

22))

≤ 2 exp(−E[dk]
2/(36E[dk]c1c2k

1.5
√
lnn(1 + lnn/

√
k)))

≤ 2 exp(−2 lnn) = 2n−2.

Therefore, with high probability X ∈ [2
3
·E[dk],

4
3
·E[dk]]. After exposing all of the in-

ternal edges, those nodes with external edges will not yet have their degrees fixed because
their external edges have not been exposed. By definition, each external edge affects at
most one relevant node. Therefore these remaining nodes end up with degree k indepen-
dently from each other, and thus we can apply Chernoff bounds directly to exposing the
external edges. Because X ≫ lnn, with high probability the final result will be within a
small constant factor of X. Specifically, if the final number of nodes of degree k is Y :

Pr[|Y − E[dk]| > E[dk]/2] ≤ 2n−2 + Pr[|Y −X| ≥ E[dk]/6|X > 2E[dk]/3]

≤ 2n−2 + exp(−2E[dk]/3(1/4)
2/3)

≤ 2n−2 + exp(−c1c2k
1.5 ln2 n) = (2 + o(1))n−2.

For the second case of Theorem 5, when E[dk] = Ω(lnn) and k = Ω(ln4 n), once again
for any k we have E[dk]c1

√
k lnn nodes which might end up with degree k. Each of these

nodes has at most a
(

k/(1−p)
k

)

(1 − p)kpk/(1−p)−k = O(1/
√
k) probability of having final

degree k. We divide the set Sk of nodes into groups of size at most k/(2 − 2p) (and at
most k/(4− 4p) unless there is only one group). We make this partition fairly uniformly,
so that within each group G, the total expected number of nodes of degree k within the
group, denoted E[dGk ] is within a constant factor, say 2, of every other group. The balls-
and-bins model shows that even if we assign the nodes to groups randomly, this will be
satisfied. Thus each group will have an E[dGk ] such that

E[dGk ] ≥ E[dk] ·
k/(4− 4p)

2E[dk]c1
√
k lnn

≥
√
k

2c1(4− 4p) lnn
≥ Ω(lnn).

Now consider the process where we arbitrarily order the internal edges, exposing them
one at a time, and once finished we expose all of the external edges at once. How much
can exposing one of the internal edges change E[dGk ]? For any node v at any point in this
process the internal edges already exposed are at most half of its total edges. Thus for
each internal edge and each of its two endpoints, for some i: deg(v)/2 ≤ i ≤ deg(v) and
i ≤ j, where i is the number of edges left unexposed and j the number left to keep, the
effect on the expectation of exposing a single edge one way or the other per endpoint is
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at most
∣

∣

∣

∣

(

i− 1

j − 1

)

pi−j(1− p)j−1 −
(

i− 1

j

)

pi−j−1(1− p)j
∣

∣

∣

∣

=

∣

∣

∣

∣

(

i

j

)

pi−j(1− p)j
(

j

i(1− p)
− i− j

ip

)∣

∣

∣

∣

= O(
1√
i
)

∣

∣

∣

∣

j − i(1− p)

i(1− p)p

∣

∣

∣

∣

.

Because of the conditioning that at any point the number of edges removed r is between
xp − 4

√
x lnn and xp + 4

√
x lnn, (j − i(1 − p)) is at most 8

√

deg(v) lnn. This follows
because i = deg(v)− x and j = k − (x− r), and thus

|j − i(1− p)| = |k − x+ r − (deg(v)− x)(1− p)|

= |(k − deg(v)(1− p))|+ |(r − xp)|

≤ 4
√

deg(v) lnn+ 4
√
x lnn ≤ 8

√

deg(v) lnn.

Therefore
∣

∣

∣

∣

(

i− 1

j − 1

)

pi−j(1− p)j−1 −
(

i− 1

j

)

pi−j−1(1− p)j
∣

∣

∣

∣

= O(

√
lnn

i
) = O(

√
lnn

k
). (17)

Define XG and Y G to be the expected number of nodes in G of degree k after exposing
the internal and all edges respectively. If we look at any single such group G in isolation
and using the bound from (17) in applying Azuma’s inequality, we get

Pr[|XG − E[dGk ]| ≥ E[dk]/2] ≤ 2 exp(−E[dGk ]
2/(8

∑

internal edges

O(
√
lnn/k)2))

≤ 2 exp(−E[dGk ]
2/O(lnn)) = n−Ω(1).

After exposing the internal edges, we can expose all of the external edges at random,
and apply Chernoff bounds to show that the final Y G values will be very close to XG. The
analysis details are the same as in the first case of the theorem. For n large enough, n−Ω(1)

plus the large deviation bound from the external edges is a small enough per group, that
with probability at most n−2 any group will have large deviation. As long as no group’s
Y G has a large deviation from E[dGk ], the sum Y cannot have large deviation from E[dk]
either. Since for each k the large deviation probability of Y is at most O(1/n2). By
taking a union bound over all such bad events for k from 0 to n and the event that at
least one of Events (A,B) do not hold, we see that the probability that any such k has a
large deviation is at most O(1/n). This completes the proof of Theorem 5.

6 Edge Removal on Probabilistic Degree Distribu-

tions

For completeness we also mention the effect of random edge removal on stochastic graph
models. Two such models are the Chung-Lu [12] and Kronecker [23] models. In the
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Chung-Lu model, every node v in a bipartite graph is parametrized with an expected
degree xv. The model includes each edge u, v with probability proportional to xu · xv.
The Kronecker graph model starts with a small initiator adjacency matrix with entries
between 0 and 1. A Kronecker product of two matrices A and B each of size n by n gives
a new n2 by n2 matrix where entry i, j is A(⌈i/n⌉,⌈j/n⌉) · B(i mod n,j mod n). A Kronecker
power of the matrix gives a probabilistic adjacency matrix from which graphs can be
instantiated. In either case, each edge has a probability with which it is independently
placed in an instance of the graph. We can sum the probabilities of all the edges incident
on a node to get that node’s expected degree.

In these, or any other, random graph models, we cannot used the definition of a degree
distribution d(j) for integers j giving the number of nodes of degree j. We modify the
definition slightly, to say a stochastic graph specification has distribution d(j) if for all
j the number of nodes with expected degrees in the range [j, j + 1) is d(j). Using this

definition E[dk] is approximately
∑

k+1
1−p

j= k
1−p

d(j). For any d(j) such that d(j)
d(j−1)

= 1 − o(1),

this yields E[dk] ≈ 1
1−p

· d( j
1−p

). For any exponential distribution with d(j)
d(j−1)

= c for

some constant c, E[dk] = Θ(d( j
1−p

)). Meanwhile for an exponential distribution, we have
∑

k+1
1−p

j= k
1−p

d(j) ≈ d( k
1−p

)
∑1/(1−p)

i=0 γ−i = d(k/(1− p))1−γ−1/(1−p)

1−γ−1 ≈ d(k/(1− p)).

In the case of an initial power-law distribution, the new distribution is also power-
law, and has the same parameter γ. Interestingly, exponential graphs behave differently
for stochastic and discrete models. In the discrete model, edge removal changes the
exponential base, while the base remains unchanged for the stochastic models.

7 Conclusion

We examine the effect of random edge removal on a graph’s degree sequence. We find
that with power-law sequences, or any sequence whose rate of change is slow enough,
the new degree sequence is a shifted version of the original, with the new sequence
d′(k) = O(d( k

1−p
)). This immediately implies that for power-law degree sequences, the

new distribution remains power-law-like with the original exponent γ. Exponential de-
gree sequences exhibit an interesting mathematical property where the d(j) terms in the
summation for E[dk] combine with the probability terms to create a new exponential with
exponent γ · 1−p

1−pγ
. We then conclude by showing that, for many types of graphs, with

high probability the actual degree sequences will be within a small constant factor of
the expected sequence. These results provide a useful bridge in settings where a graph
property that is tied to the degree sequence may be extended with high probability to an
edge-percolated subgraph because of the similarity in degree sequences.
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[6] Albert-László Barabási, Réka Albert, and H. Jeong. Scale-free characteristics of
random networks: the topology of the World-Wide Web. Physica A, 281:69–77(9),
2000.

[7] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robust-
ness and fragility: Percolation on random graphs. Physical Review Letters, 85:5468,
2000.

[8] F. Chung. Spectral Graph Theory. AMS Publications, 1997.

[9] F. Chung and L. Lu. Complex Graphs and Networks. AMS Publications, 2006.

[10] Fan Chung, Paul Horn, and Linyuan Lu. The giant component in a random subgraph
of a given graph. In WAW ’09: Proceedings of the 6th International Workshop on
Algorithms and Models for the Web-Graph, pages 38–49, Berlin, Heidelberg, 2009.
Springer-Verlag.

[11] Fan Chung and Linyuan Lu. The average distance in random graphs with given
expected degrees. In Proceedings of National Academy of Science, volume 99, pages
15879–15882, 2002.

[12] Fan Chung and Linyuan Lu. Connected components in random graphs with given
expected degree sequences. Annals of Combinatorics, 6:125–145, November 2002.

[13] Fan Chung and Linyuan Lu. The volume of the giant component for a random graph
with given expected degrees. SIAM J. Discrete Math., 20(2):395–411, 2006.

[14] Fan Chung, Linyuan Lu, and Van Vu. The spectra of random graphs with given
expected degrees. In Proceedings of National Academy of Science, volume 100, pages
6313–6318, 2003.

the electronic journal of combinatorics 19 (2012), #P51 19



[15] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Rev., 51(4):661–703, 2009.

[16] Reuven Cohen, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin. Resilience
of the Internet to Random Breakdowns. Physical Review Letters, 85(21):4626–4628,
November 2000.

[17] Joshua N. Cooper and Lincoln Lu. Graphs with asymptotically invariant degree
sequence under restriction. Internet Mathematics, 7(1):67–80, 2011.
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