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Abstract

Some linear algebraic and combinatorial problems are widely studied in connec-
tion with σ-games. One particular issue is to characterize whether or not a given
vector lies in the submodule generated by the rows of a given matrix over a com-
mutative ring. In general, one can solve this problem easily and algorithmically
using the linear algebra over commutative ring. However, if the matrix has some
combinatorial structure, one may expect that some more can be asserted instead
of merely giving an algorithm. A recent outstanding example appeared in this line
of research is the paper by Florence and Meunier published in Journal of Algebraic
Combinatorics in 2010. In the same spirit, we consider a matrix over Zn to com-
pletely characterize the submodule generated by its rows and give a constructive
proof. The main idea for the characterization is to find certain good basic elements
in the row space and then express a given element as the linear combination of them
as well as some additional term.
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1 Introduction

We introduce a dice rolling game on a set of tori as a variant of Fiver. Fiver is a puzzle
game in which you need to flip over all the counters so that your n × n board changes
from being completely full of white pieces, and, instead, becomes entirely inhabited by
black pieces. Clicking on any counter will not only flip that piece from being white to
black (or vice versa), but its 4 neighboring pieces immediately above, below, to the left
and right of the piece that you clicked will also reverse their allegiance, becoming black if
they were white, or white if they were black. The game is named after Fiver the rabbit
from the classic book and movie, Watership Down.

Fiver is a σ-game and was studied by Hunziker et al. [4] and Lee and Yang [5]. See [1–
3,6,7] for some results on σ-games. Some linear algebraic and combinatorial problems are
widely studied in connection with σ-games. One particular issue is to characterize whether
or not a given vector lies in the submodule generated by the rows of a given matrix over a
commutative ring. In general, one can solve this problem easily and algorithmically using
the linear algebra over commutative ring. However, if the matrix has some combinatorial
structure, one may expect that some more can be asserted instead of merely giving an
algorithm. A recent outstanding example appeared in this line of research is the paper
by Florence and Meunier [2]. In the same spirit, this paper considers a matrix over
Zn corresponding to a rectangular array on a torus and completely characterizes the
submodule generated by its rows.

Given a positive integer n, an n-dice is a dice with n faces such that element i of Zn is
written on the ith face. Given positive integers α1, α2, we arbitrarily locate α1α2 n-dice
in an α1 × α2 rectangular array, and glue the lower and upper together and also the left
and right edges. Then we have α1α2 n-dice on a torus (see Figure 1).

We denote by D((α1, α2), n) the set of tori on each of which α1α2 n-dice are located
as described above. For positive integers β1, β2, β1 ≤ α1, β2 ≤ α2, we call the following
action a “(β1, β2)-rolling procedure” (see Figure 1).
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Figure 1: A torus belonging to D((19, 8), 3)

We roll the n-dice which form a β1×β2 rectangular array on the torus so that
we increase the number on the top face of each of them by 1.

Then we may ask “Given a torus in D((α1, α2), n), is it possible to have 0 appear on the
top face of each of α1α2 n-dice on the torus by repeatedly applying (β1, β2)-rolling proce-
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Figure 2: The torus resulting from going through a (2, 4)-rolling procedure applied to the
shaded array of the torus given in Figure 1

dures?” We call this game the dice rolling game on D((α1, α2), n) with respect to (β1, β2)-
rolling procedures or the ((α1, α2); (β1, β2);n)-DR game for short. We say that a torus for
which the answer to the above question is yes is a solution of the ((α1, α2); (β1, β2);n)-DR
game. Given positive integers, α1, α2, n, β1, β2, β1 ≤ α1, β2 ≤ α2, we will characterize
the tori which are solutions of the ((α1, α2); (β1, β2);n)-DR game in the rest of this paper.

We define a module over Zn as follows. We denote the set of α1 × α2 matrices with
elements in Zn by M((α1, α2), n). For each element A ∈ M((α1, α2), n), we denote by
[A]i,j the element in the (i, j)-entry. We define operations on M((α1, α2), n) in terms of
addition and multiplication over Zn: Given two matrices A, B ∈ M((α1, α2), n),

[A+ B]i,j = [A]i,j + [B]i,j and [cA]i,j = c[A]i,j (1.1)

for any c ∈ Zn, 0 ≤ i ≤ α1 − 1, 0 ≤ j ≤ α2 − 1. Throughout this paper, we assume that
the 1st component and the 2nd component of every subscript are reduced to modulo α1

and modulo α2, respectively. Then we associate a torus in D((α1, α2), n) with a matrix
in M((α1, α2), n) whose (i, j)-element equals the number on the top face of the n-dice
in the (i, j) position of the torus for i, j, 0 ≤ i ≤ α1 − 1, 0 ≤ j ≤ α2 − 1. In this
way, we can give an isomorphism between D((α1, α2), n) and M((α1, α2), n). Thus, in
order to characterize the solutions of the ((α1, α2); (β1, β2);n)-DR game, it is sufficient
to characterize the matrices whose corresponding tori are its solutions. Let Ei,j denote
α1 × α2 matrix with 1 in the (i, j)-entry and 0 elsewhere. We define a matrix Jm1×m2

k1,k2
by

Jm1×m2
k1,k2

=

m1−1∑

i=0

m2−1∑

j=0

Ek1+i,k2+j (1.2)

for integers mi, ki such that 1 ≤ mi ≤ αi for i = 1, 2. For example, let α1 = 6, α2 = 8,
β1 = 2, β2 = 2, and n = 5. Then

J2×2
1,2 =

0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

, J3×4
5,5 =

1 0 0 0 0 1 1 1
1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1

.
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In particular, we denote Jβ1×β2

k1,k2
by J∗

k1,k2
. The torus corresponding to A in M((α1, α2), n)

is a solution of the ((α1, α2); (β1, β2);n)-DR game if the zero matrix O can be obtained by
adding a linear combination of J∗

·,· to A. That is, A is a solution of the ((α1, α2); (β1, β2);n)-
DR game if and only if there exist ci,j ∈ Z satisfying the system of linear equations

A+

α2−1∑

j=0

α1−1∑

i=0

ci,jJ
∗

i,j = O.

In this aspect, we call A a solution matrix of the ((α1, α2); (β1, β2);n)-DR game. We call
matrix (ci,j) a solving coefficient matrix of the ((α1, α2); (β1, β2);n)-DR game correspond-
ing to A. We characterize the matrices in M((α1 × α2), n) which are solutions of the
((α1, α2); (β1, β2);n)-DR game in the following section. The main idea is to find certain
good basic elements in the row space and then express a given element as the linear
combination of them as well as some additional term.

2 Solution matrices of the ((α1, α2); (β1, β2);n)-DR game

In this section, we characterize the solution matrices of the ((α1, α2); (β1, β2);n)-DR game.
Throughout this paper, for i = 1, 2, let gi, ri, si denote the integers such that

gi = gcd(αi, βi), αi = rigi, βi = sigi.

For each integer j, by the division algorithm, there exist integers uj, wj satisfying

j ≡ uj (mod g1) 0 ≤ uj ≤ g1 − 1, j ≡ wj (mod g2) 0 ≤ wj ≤ g2 − 1.

First note that for integers i and j,

β1−1
∑

a=0

Eua,j = s1

g1−1
∑

a=0

Ea,j and

β2−1
∑

b=0

Ei,wb
= s2

g2−1
∑

b=0

Ei,b. (2.1)

For integers i, j, k1, k2 such that 1 ≤ k1 ≤ α1 and 1 ≤ k2 ≤ α2, we define matrices

Ck1×1
i,j = Jk1×1

i,wj
− Jk1×1

i,j , (2.2)

R1×k2
i,j = J1×k2

ui,j
− J1×k2

i,j , (2.3)

Qi,j = Eui,wj
− Ei,wj

− Eui,j + Ei,j. (2.4)

Note that, by definitions,

Ck1×1
i,j = O if 0 ≤ j ≤ g2 − 1, (2.5)

R1×k2
i,j = O if 0 ≤ i ≤ g1 − 1, (2.6)

Qi,j = O if 0 ≤ i ≤ g1 − 1 and 0 ≤ j ≤ g2 − 1. (2.7)
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For example, consider the ((6, 8); (2, 2); 5)-DR game. Then g1 = gcd(6, 2) = 2 and
g2 = gcd(8, 2) = 2. We take i = 3 and j = 7. Then u3 = 1, w7 = 1. Consider C2×1

1,7 , that
is, by definition,

C2×1
1,7 =

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.

By the definition of J∗

i,j ,

J∗

1,1 − J∗

1,2 =

0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

J∗

1,3 − J∗

1,4 =

0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

,

J∗

1,5 − J∗

1,6 =

0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

.

It can be checked that

C2×1
1,7 = (J∗

1,1 − J∗

1,2) + (J∗

1,3 − J∗

1,4) + (J∗

1,5 − J∗

1,6)

or
C2×1

1,7 + (J∗

1,2 − J∗

1,1) + (J∗

1,4 − J∗

1,3) + (J∗

1,6 − J∗

1,5) = O.

In addition, it is true that

C2×1
2,7 =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1
0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

= (J∗

2,1 − J∗

2,2) + (J∗

2,3 − J∗

2,4) + (J∗

2,5 − J∗

2,6).

the electronic journal of combinatorics 19 (2012), #P54 5



Therefore, C2×1
1,7 and C2×1

2,7 are solutions matrices of the ((6, 8); (2, 2); 5)-DR game. In

addition, the matrix Q3,7 can be represented by using C2×1
1,7 and C2×1

2,7 , as

Q3,7 =

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

= C2×1
1,7 − C2×1

2,7 .

Since C2×1
1,7 and C2×1

2,7 are solution matrices, Q3,7 is a solution matrix of the ((6, 8); (2, 2); 5)-
DR game. In fact, the following lemma holds.

Lemma 2.1. For any integers i and j, matrices C
β1×1
i,j , R

1×β2

i,j , and Qi,j are solution
matrices of the ((α1, α2); (β1, β2);n)-DR game.

Proof. Since each of linear congruence equations j−uj ≡ xβ1 (mod α1) and j−wj ≡ xβ2

(mod α2) has a solution, there exist positive integers ζj and ηj satisfying that

j − uj ≡ ζjβ1 (mod α1) and j − wj ≡ ηjβ2 (mod α2). (2.8)

To show that Cβ1×1
i,j are R

1×β2

i,j are solution matrices, it is sufficient to show

C
β1×1
i,j =

ηj−1
∑

m=0

(

J∗

i,wj+mβ2
− J∗

i,wj+mβ2+1

)

, (2.9)

R
1×β2

i,j =

ζi−1
∑

m=0

(
J∗

ui+mβ1,j
− J∗

ui+mβ1+1,j

)
. (2.10)

From the definition given in (1.2), it immediately follows that J∗

i,j =
∑β2−1

b=0 J
β1×1
i,j+b . Then

(2.9) holds as

ηj−1
∑

m=0

(

J∗

i,wj+mβ2
− J∗

i,wj+mβ2+1

)

=

ηj−1
∑

m=0

[(
β2−1
∑

b=0

J
β1×1
i,wj+mβ2+b

)

−

(
β2−1
∑

b=0

J
β1×1
i,wj+mβ2+b+1

)]

=

ηj−1
∑

m=0

β2−1
∑

b=0

(

J
β1×1
i,wj+mβ2+b − J

β1×1
i,wj+mβ2+b+1

)

=

ηj−1
∑

m=0

(Jβ1×1
i,wj+mβ2

− J
β1×1
i,wj+mβ2+β2

)

=

ηj−1
∑

m=0

(Jβ1×1
i,wj+mβ2

− J
β1×1
i,wj+(m+1)β2

)

= J
β1×1
i,wj

− J
β1×1
i,wj+ηjβ2

= J
β1×1
i,wj

− J
β1×1
i,j (by (2.8).)

= C
β1×1
i,j .
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Similarly, we can show that (2.10) is true.
To prove that Qi,j is a solution matrix, it is sufficient to show that Qi,j is a linear

combination of Cβ1×1
i,j which are solution matrices. Actually,

ζi−1
∑

m=0

(

C
β1×1
ui+mβ1,j

− C
β1×1
ui+mβ1+1,j

)

=

ζi−1
∑

m=0

[(

J
β1×1
ui+mβ1,wj

− J
β1×1
ui+mβ1,j

)

−
(

J
β1×1
ui+mβ1+1,wj

− J
β1×1
ui+mβ1+1,j

)]

=

ζi−1
∑

m=0

[(

J
β1×1
ui+mβ1,wj

− J
β1×1
ui+mβ1+1,wj

)

+
(

−J
β1×1
ui+mβ1,j

+ J
β1×1
ui+mβ1+1,j

)]

=

ζi−1
∑

m=0

[(
Eui+mβ1,wj

− Eui+(m+1)β1,wj

)
+
(
−Eui+mβ1,j + Eui+(m+1)β1,j

)]

=

ζi−1
∑

m=0

(
Eui+mβ1,wj

− Eui+(m+1)β1,wj

)
+

ζi−1
∑

m=0

(
−Eui+mβ1,j + Eui+(m+1)β1,j

)

= (Eui,wj
− Eui+ζiβi,wj

) + (−Eui,j + Eui+ζiβi,j)

= Eui,wj
− Ei,wj

− Eui,j + Ei,j.

The last equality holds by (2.8).

Now we define a function T : M((α1 × α2), n) → M((α1 × α2), n) by

T (A) = A−

α2−1∑

j=0

α1−1∑

i=0

[A]i,jQi,j. (2.11)

By the definition, for a, b, 0 ≤ a ≤ α1 − 1, 0 ≤ b ≤ α2 − 1,

T (Ea,b) = Eua,b + Ea,wb
− Eua,wb

. (2.12)

By (1.1), the following lemma immediately holds:

Lemma 2.2. The function T on M((α1, α2), n) defined by (2.11) is a module homomor-
phism.

From Lemma 2.1, we know that Qi,j is a solution matrix of the ((α1, α2); (β1, β2);n)-DR
game. Thus, the following lemma is true.

Lemma 2.3. Matrix A ∈ M((α1, α2), n) is a solution matrix of the ((α1, α2); (β1, β2);n)-
DR game if and only if T (A) is a solution matrix of the ((α1, α2); (β1, β2);n)-DR game.
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We define a function S from M((α1, α2), n) to M((α1, α2), n) by

S(A) = T (A) +

α1−1∑

i=0

[T (A)]i,0 R
1×g2
i,0 +

α2−1∑

j=0

[T (A)]0,j C
g1×1
0,j . (2.13)

Then, by (1.1) and Lemma 2.2, the following lemma holds:

Lemma 2.4. The function S defined by (2.13) is a module homomorphism.

The following theorem is our main result which gives a characterization of the solution
matrices.

Theorem 2.5. A matrix A in M((α1, α2), n) is a solution matrix of the ((α1, α2); (β1, β2);
n)-DR game if and only if

T (A) = s1

α2−1∑

j=0

djJ
g1×1
0,j + s2

α1−1∑

i=0

eiJ
1×g2
i,0 − s1s2tJ

g1×g2
0,0

for some dj, ei, t ∈ Zn and, specifically,

S(A) = s1s2tJ
g1×g2
0,0 .

Theorem 2.5 tells us that we can determine whether or not a given matrix A is a solu-
tion matrix by computing T (A) and S(A). Furthermore we have an O(α1α2)-algorithm
to determine if a matrix is a solution matrix. By Theorem 2.5, we need to compute T
and S given in (2.11) and check two equalities given in the theorem. The algorithm for
computing the function T given in (2.11) iterates α1α2 times as each Qi,j has at most
4 nonzero components. Thus the time complexity for computing T is O(α1α2). Simi-
larly, the algorithm for computing the function S iterates α1 times for each R

1×g2
i,0 as it

has at most 2α2 components, and iterates α2 times for each C
g1×1
0,j as it has at most 2α1

components. Therefore the complexity for computing S is O(α1α2). Now it remains to
check two equalities hold. This involves scanning the nonzero components and solving
congruence equations in the form of pqt = r (mod n) or pq = r (mod n) where at least
one of p, q is s1 or s2. This also takes O(α1α2). Hence the time complexity to determine
if the matrix is a solution matrix is O(α1α2).

In the rest of section, we devote ourselves to prove Theorem 2.5. To do so, we need
several lemmas.

Lemma 2.6. For any integers i and j, matrices s2C
g1×1
0,j and s1R

1×g2
i,0 are solution matrices

of the ((α1, α2); (β1, β2);n)-DR game.
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Proof. By (2.2), (2.12), and Lemma 2.2,

T (Cβ1×1
0,j ) = T

(

J
β1×1
0,wj

− J
β1×1
0,j

)

= T

(
β1−1
∑

a=0

(
Ea,wj

− Ea,j

)

)

=

β1−1
∑

a=0

(
T (Ea,wj

)− T (Ea,j)
)

=

β1−1
∑

a=0

[
(Eua,wj

+ Ea,wj
− Eua,wj

)− (Eua,j + Ea,wj
− Eua,wj

)
]

=

β1−1
∑

a=0

(Eua,wj
− Eua,j) =

by (2.1)
s1

g1−1
∑

a=0

(Ea,wj
− Ea,j) = s1(J

g1×1
0,wj

−J
g1×1
0,j ) = s1C

g1×1
0,j .

Similarly, we can show that
T (R1×β2

i,0 ) = s2R
1×g2
i,0 .

As T (Cβ1×1
0,j ) and T (R1×β2

i,0 ) are solution matrices by Lemmas 2.1 and 2.3, the lemma
follows.

Lemma 2.7. For any two integers i, j,

T (J∗

i,j) = s1J
g1×β2

0,j + s2J
β1×g2
i,0 − s1s2J

g1×g2
0,0 .

Proof. By Lemma 2.2,

T (J∗

i,j) = T

(
j+β2−1
∑

b=j

i+β1−1
∑

a=i

Ea,b

)

=

j+β2−1
∑

b=j

i+β1−1
∑

a=i

T (Ea,b) (by Lemma 2.2)

=

j+β2−1
∑

b=j

i+β1−1
∑

a=i

(Eua,b + Ea,wb
− Eua,wb

) (by (2.12))

=

j+β2−1
∑

b=j

i+β1−1
∑

a=i

Eua,b +

j+β2−1
∑

b=j

i+β1−1
∑

a=i

Ea,wb
−

j+β2−1
∑

b=j

i+β1−1
∑

a=i

Eua,wb

=

j+β2−1
∑

b=j

(

s1

g1−1
∑

a=0

Ea,b

)

+

i+β1−1
∑

a=i

(

s2

g2−1
∑

b=0

Ea,b

)

− s1s2

g2−1
∑

b=0

g1−1
∑

a=0

Ea,b (by (2.1))

= s1

j+β2−1
∑

b=j

g1−1
∑

a=0

Ea,b + s2

i+β1−1
∑

a=i

g2−1
∑

b=0

Ea,b − s1s2

g2−1
∑

b=0

g1−1
∑

a=0

Ea,b

= s1J
g1×β2

0,j + s2J
β1×g2
i,0 − s1s2J

g1×g2
0,0 .

Therefore, the lemma holds.

Lemma 2.8. For any integers i, j, S(J∗

i,j) is a solution matrix of the ((α1, α2); (β1, β2);n)-
DR game and

S(J∗

i,j) = s1s2J
g1×g2
0,0 .
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Proof. First, we will show that
∑α1−1

a=0

[
T (J∗

i,j))
]

a,0
R

1×g2
a,0 is a solution matrix and that

α1−1∑

a=0

[
T (J∗

i,j))
]

a,0
R

1×g2
a,0 = s2

(

s1J
g1×g2
0,0 − J

β1×g2
i,0

)

. (2.14)

Consider the case where α1 = β1. Then g1 = gcd(α1, β1) = α1 and s1 = 1. Then by
(2.6), it holds that

α1−1∑

a=0

[
T (J∗

i,j)
]

a,0
R

1×g2
a,0 = O

and so
∑α1−1

a=0

[
T (J∗

i,j))
]

a,0
R

1×g2
a,0 is a trivial solution matrix. On the other hand, since

s1 = 1 and g1 = β1,

s2

(

s1J
g1×g2
0,0 − J

β1×g2
i,0

)

= s2
(
J
g1×g2
0,0 − J

g1×g2
0,0

)

and so the equality (2.14) holds.
Now consider the case where α1 > β1. Then g1 < α1. Let X = {0, 1, 2, . . . , g1 − 1},

Y = {g1, . . . , α1−1}, and Z = {i, i+1 . . . , i+β1−1}. By Lemma 2.7, for a, 0 ≤ a ≤ α1−1,

[T (J∗

i,j)]a,0 = s1

[

J
g1×β2

0,j

]

a,0
+ s2

[

J
β1×g2
i,0

]

a,0
− s1s2

[
J
g1×g2
0,0

]

a,0
.

For a ∈ Y , s1

[

J
g1×β2

0,j

]

a,0
= 0 and

[
J
g1×g2
0,0

]

a,0
= 0. Thus

[T (J∗

i,j)]a,0 =

{
s2 if a ∈ Y ∩ Z

0 if Y \ Z
. (2.15)

Then

∑

a∈X

[T (J∗

i,j)]a,0R
1×g2
a,0 =

by (2.6)

∑

a∈Y

[T (J∗

i,j)]a,0R
1×g2
a,0 =

by (2.15)

∑

a∈Y ∩Z

s2R
1×g2
a,0

=
by (2.6)

∑

a∈Y ∩Z

s2R
1×g2
a,0 +

∑

a∈X∩Z

s2R
1×g2
a,0 =

∑

a∈Z

s2R
1×g2
a,0 .

Therefore,

∑

a∈X

[T (J∗

i,j)]a,0R
1×g2
a,0 =

α1−1∑

a=0

[T (J∗

i,j)]a,0R
1×g2
a,0 =

∑

a∈Z

s2R
1×g2
a,0 =

i+β1−1
∑

a=i

s2R
1×g2
a,0
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and so
∑α1−1

a=0

[
T (J∗

i,j))
]

a,0
R

1×g2
a,0 is a solution matrix by Lemma 2.6. In addition,

i+β1−1
∑

a=i

s2R
1×g2
a,0 = s2

i+β1−1
∑

a=i

(J1×g2
ua,0 − J

1×g2
a,0 ) = s2

i+β1−1
∑

a=i

(
g2−1
∑

b=0

(Eua,b − Ea,b)

)

= s2

g2−1
∑

b=0

i+β1−1
∑

a=i

(Eua,b − Ea,b) = s2

(
g2−1
∑

b=0

i+β1−1
∑

a=i

Eua,b −

g2−1
∑

b=0

i+β1−1
∑

a=i

Ea,b

)

= s2

(

s1

g2−1
∑

b=0

g1−1
∑

a=0

Ea,b − J
β1×g2
i,0

)

= s2

(

s1J
g1×g2
0,0 − J

β1×g2
i,0

)

.

Therefore, (2.14) holds. Similarly, we can show that
∑α2−1

b=0

[
T (J∗

i,j)
]

0,b
C

g1×1
0,b is a solution

matrix and that

α2−1∑

b=0

[
T (J∗

i,j)
]

0,b
C

g1×1
0,b = s1

(

s2J
g1×g2
0,0 − J

g1×β2

0,j

)

. (2.16)

By the definition of S given in (2.13),

S(J∗

i,j) = T (J∗

i,j) +

α1−1∑

a=0

[
T (J∗

i,j)
]

a,0
R

1×g2
a,0 +

α2−1∑

b=0

[
T (J∗

i,j)
]

0,b
C

g1×1
0,b .

Note that both
∑α1−1

a=0

[
T (J∗

i,j)
]

a,0
R

1×g2
a,0 and

∑α2−1
b=0

[
T (J∗

i,j)
]

0,b
C

g1×1
0,b are solution matri-

ces. Furthermore, by Lemma 2.3, T (J∗

i,j) is a solution matrix. Therefore, S(J∗

i,j) is a
solution matrix. On the other hand, from (2.14), (2.16) and Lemma 2.7, it follows that

S(J∗

i,j) = s1J
g1×β2

0,j + s2J
β1×g2
i,0 − s1s2J

g1×g2
0,0 + s2

(
s1J

g1×g2
0,0 −J

β1×g2
i,0

)
+ s1

(
s2J

g1×g2
0,0 −J

g1×β2

0,j

)

= s1s2J
g1×g2
0,0 .

Hence the lemma holds.

Now we are ready to prove the main result:

Proof of Theorem 2.5. Suppose that a matrix A in M((α1, α2), n) is a solution matrix of
the ((α1, α2); (β1, β2);n)-DR game. By definition, there exists a solving coefficient matrix
(ci,j) of the ((α1, α2); (β1, β2);n)-DR game corresponding to A. That is,

A = −

α2−1∑

b=0

α1−1∑

a=0

ca,bJ
∗

a,b.
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Then

T (A) =

α2−1∑

b=0

α1−1∑

a=0

(−ca,b)T (J∗

a,b) (by Lemma 2.2)

=

α2−1∑

b=0

α1−1∑

a=0

(−ca,b)
(

s1J
g1×β2

0,b + s2J
β1×g2
a,0 − s1s2J

g1×g2
0,0

)

(by Lemma 2.7)

=

α2−1∑

b=0

α1−1∑

a=0

(−ca,b)

(

s1

b+β2−1
∑

j=b

J
g1×1
0,j + s2

a+β1−1
∑

i=a

J
1×g2
i,0 − s1s2J

g1×g2
0,0

)

= s1

α2−1∑

b=0

b+β2−1
∑

j=b

α1−1∑

a=0

(−ca,b)J
g1×1
0,j + s2

α1−1∑

a=0

a+β1−1
∑

i=a

α2−1∑

b=0

(−ca,b)J
1×g2
i,0

− s1s2

α2−1∑

b=0

α1−1∑

a=0

(−ca,b)J
g1×g2
0,0 .

It is not difficult to check that

s1

α2−1∑

b=0

b+β2−1
∑

j=b

α1−1∑

a=0

(−ca,b)J
g1×1
0,j = s1

α2−1∑

j=0

j
∑

b=j−β2+1

α1−1∑

a=0

(−ca,b)J
g1×1
0,j = s1

α2−1∑

j=0

djJ
g1×1
0,j

s2

α1−1∑

a=0

a+β1−1
∑

i=a

α2−1∑

b=0

(−ca,b)J
1×g2
i,0 = s2

α1−1∑

i=0

i∑

a=i−β1+1

α2−1∑

b=0

(−ca,b)J
1×g2
i,0 = s2

α1−1∑

a=0

eiJ
1×g2
i,0 ,

where dj =
∑j

b=j−β2+1

∑α1−1
a=0 (−ca,b) and ei =

∑i

a=i−β1+1

∑α2−1
b=0 (−ca,b). Thus we obtain

T (A) = s1

α2−1∑

j=0

djJ
g1×1
0,j + s2

α1−1∑

a=0

eiJ
1×g2
i,0 − s1s2tJ

g1×g2
0,0

where t =
∑α2−1

b=0

∑α1−1
a=0 (−ca,b). On the other hand, by Lemmas 2.4 and 2.8,

S(A) =

α2−1∑

j=0

α1−1∑

i=0

(−ci,j)S(J
∗

i,j) =

α2−1∑

j=0

α1−1∑

i=0

(−ci,j)s1s2J
g1×g2
0,0

=

[
α2−1∑

j=0

α1−1∑

i=0

(−ci,j)

]

s1s2J
g1×g2
0,0 = s1s2tJ

g1×g2
0,0 .

Thus the ‘only if’ part is true. To show the converse, assume that

T (A) = s1

α2−1∑

j=0

djJ
g1×1
0,j + s2

α1−1∑

i=0

eiJ
1×g2
i,0 − s1s2tJ

g1×g2
0,0 (2.17)
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and S(A) = s1s2tJ
g1×g2
0,0 for some dj, ei, t ∈ Zn. Then, by the definition of S given in

(2.13),

s1s2tJ
g1×g2
0,0 = T (A) +

α1−1∑

i=0

[T (A)]i,0 R
1×g2
i,0 +

α2−1∑

j=0

[T (A)]0,j C
g1×1
0,j ,

or

T (A) = s1s2tJ
g1×g2
0,0 −

α1−1∑

i=0

[T (A)]i,0 R
1×g2
i,0 −

α2−1∑

j=0

[T (A)]0,j C
g1×1
0,j .

The first term s1s2tJ
g1×g2
0,0 of the right hand side of above inequality is equal to tS(J∗

i,j)
for some integers i, j and so it is a solution matrix of the ((α1, α2); (β1, β2);n)-DR game
by Lemma 2.8. By (2.5), (2.6) and (2.17), the matrix [T (A)]i,0 R

1×g2
i,0 is equal to either O

or s2eiR
1×g2
i,0 , and the matrix [T (A)]0,j C

g1×1
0,j is equal to either O or s1djC

g1×1
0,j , depending

on whether or not 0 ≤ i ≤ g1 − 1, 0 ≤ j ≤ g2 − 1. Therefore, by Lemma 2.6, both
[T (A)]i,0 R

1×g2
i,0 and [T (A)]0,j C

g1×1
0,j are solution matrices. Thus we can conclude that T (A)

is a solution matrix. By Lemma 2.3, A is a solution matrix of the ((α1, α2); (β1, β2);n)-DR
game. 2

3 Closing remarks

In this paper, we give a necessary and sufficient condition for a torus to be a solution of
the ((α1, α2); (β1, β2);n)-DR game for positive integers α1, α2, n, β1, β2 such that β1 ≤ α1

and β2 ≤ α2.
When α1 = β1 = 1, a matrix in M((α1, α2), n) becomes an α2-tuple, so D((1, α2), n) is

the set of circles on each of which α2 n-dice are located. By using the results obtained in
the previous section, we can characterize a circle which is a solution of dice rolling game
on the set D((1, α2), n) with respect to (1, β2)-rolling procedures.

Suppose that α1 = β1. Then g1 = gcd(α1, β1) = α1 and so s1 = 1. Then 0 ≤ i ≤ α1−1
if an only if 0 ≤ i ≤ g1−1. By (2.7) and the definition of T given in (2.11), if 0 ≤ i ≤ g1−1
or 0 ≤ j ≤ g2 − 1, then T is the identity function, that is, T (A) = A. Since α1 = g1,
R

1×g2
i,0 = O by (2.6) and so

S(A) = A+

α2−1∑

j=0

[A]0,jC
α1×1
0,j . (3.1)

Hence a characterization of a solution matrix in M((1, α2), n) immediately follows from
Theorem 2.5:

A matrix A is a solution matrix of the ((α1, α2); (α1, β2);n)-DR game if and
only if

A =

α2−1∑

j=0

djJ
α1×1
0,j + s2

α1−1∑

i=0

eiJ
1×g2
i,0 − s2tJ

α1×g2
0,0 (3.2)

for some dj, ei, t ∈ Zn and S(A) = us2J
α1×g2
0,0 for some u ∈ Zn.
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However, if S(A) = us2J
α1×g2
0,0 for some u ∈ Zn, then it holds that

A = −S(A) +

α2−1∑

j=0

[A]0,jC
α1×1
0,j (by (3.1))

= −us2J
α1×g2
0,0 +

α2−1∑

j=0

[A]0,jC
α1×1
0,j

= −us2

g2−1
∑

j=0

Jα1×1
0,j +

α2−1∑

j=0

[A]0,j(J
g1×1
0,wj

− Jα1×1
0,j ) (by (2.2))

=

g2−1
∑

j=0

(−us2)J
α1×1
0,j +

α2−1∑

j=0

(

[A]0,jJ
α1×1
0,wj

− [A]0,jJ
α1×1
0,j

)

=

α2−1∑

j=0

fjJ
α1×1
0,j = s2

α1−1∑

i=0

0 · J1×g2
i,0 +

α2−1∑

j=0

fjJ
α1×1
0,j − s2 · 0 · J

α1×g2
0,0

for some fj ∈ Zn. Thus (3.2) is true if S(A) = us2J
α1×g2
0,0 for some u ∈ Zn. Hence the

characterization of a solution matrix in M((1, α2), n) given above can be simplified as
follows:

Corollary 3.1. A matrix A is a solution matrix of the ((α1, α2); (α1, β2);n)-DR game if
and only if

S(A) = us2J
α1×g2
0,0

for some u ∈ Zn.

When α1 = β1 = 1, the above proposition can be stated as:

An ordered α2-tuple v is a solution matrix of the ((1, α2); (1, β2);n)-DR game
if and only if S(v) = (us2, . . . , us2

︸ ︷︷ ︸

g2

, 0, . . . , 0) for some u ∈ Zn.

which characterizes the solution set of the dice rolling game on a set of circles.
For the case where α2 = β2, we can give a similar argument. We believe that our

characterization for the 2-dimensional case can be generalized to the t-dimensional case
for t ≥ 1 if we can find a way to manipulate notations more effectively.
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