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Abstract

Let Q(n, c) denote the minimum clique number over graphs with n vertices and
chromatic number c. We investigate the asymptotics of Q(n, c) when n/c is held
constant. We show that when n/c is an integer α, Q(n, c) has the same growth
order as the inverse function of the Ramsey number R(α+ 1, t) (as a function of t).
Furthermore, we show that if certain asymptotic properties of the Ramsey numbers
hold, then Q(n, c) is in fact asymptotically equivalent to the aforementioned inverse
function. We use this fact to deduce that Q(n, dn/3e) is asymptotically equivalent
to the inverse function of R(4, t).

1 Introduction

In this paper, all graphs are assumed to be simple and finite. Let ω(G), α(G), and χ(G)
denote the clique number, independence number, and chromatic number, respectively, of
a graph G. We are concerned with the following problem: Given the chromatic number
of a graph, what is the minimum possible clique number? It is well-known that given
any c, there exist graphs with Θ(c2 log c) vertices which have chromatic number c and
clique number 2. On the other hand, when the chromatic number is “large” compared
to the number of vertices, larger cliques are forced. In particular, this happens when the
chromatic number is a constant multiple of the number of vertices. We will focus on this
case.

We define
Q(n, c) = min{ω(G) : |V (G)| = n and χ(G) = c}. (1)

The problem of showing the existence of large cliques in graphs with high chromatic
number is similar to certain problems studied in Ramsey theory. Classical Ramsey theory
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can be thought of as studying the existence of large cliques in graphs with bounded
independence number ; i.e., the determination of the function

ω(n, α) = min{ω(G) : |V (G)| = n and α(G) ≤ α}. (2)

(Note the relationship between this function and the classical Ramsey numbers R(s, t);
specifically, ω(n, α) is the unique integer ω such that R(α+ 1, ω) ≤ n < R(α+ 1, ω+ 1).)
There is a clear analogy between definitions (1) and (2), and in fact, the two functions
appear to be closely related. The relationship was pointed to in [6], where authors Gyárfás,
Sebő, and Trotignon studied the chromatic gap defined by gap(n) = max{χ(G)− ω(G) :
|V (G)| = n}. In the case where c ≥ (n+ 3)/2, an exact relationship between Q(n, c) and
ω(n, 2) was given by Biró, Füredi, and Jahanbekam [2]:

Theorem 1.1 (Biró, Füredi, Jahanbekam). For n ≥ 2k + 3,

Q(n, n− k) = n− 2k + min
s∑
i=1

(ω(2ki + 1, 2)− 1)

where the minimum is taken over all positive integers k1, . . . , ks with k1 + · · · + ks = k.
Furthermore, in the minimum we can take s ≤ 3.

Theorem 1.1 thus establishes a connection between the numbers Q(n, c) and the Ram-
sey numbers R(3, t) in the case where (roughly) c > n/2. The authors of [2] posed
the problem of finding the relationship between the Ramsey numbers and the numbers
Q(n, dτne) for τ ≤ 1/2.

In this paper, we look at the asymptotic behavior of Q(n, dn/αe) when α is an integer.
We show that the behavior of this function is closely related to the behavior of ω(n, α).
Specifically, we have the following.

Theorem 1.2. For each positive integer α, there exists a constant 0 < cα ≤ 1 such that

cαω(n, α) ≤ Q(n, dn/αe) ≤ ω(n, α).

for all n.

It seems, however, that one can do better than this. We also prove the following.

Theorem 1.3. Let α ≥ 2 be an integer, and suppose there exists a function κ : N → N
such that

lim
n→∞

ω(κ(n), α− 1)

ω(n, α)
=∞ and lim

n→∞

ω(κ(n), α)

ω(n, α)
= 0.

Then

lim
n→∞

Q(n, dn/αe)
ω(n, α)

= 1.

As a consequence of Theorem 1.3 and known bounds on the Ramsey numbers R(3, t)
and R(4, t), we have the following corollary.
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Corollary 1.4.

lim
n→∞

Q(n, dn/3e)
ω(n, 3)

= 1.

The problem of determining the asymptotic behavior of Q(n, dn/αe) is thus partly
reduced to determining the asymptotic behavior of ω(n, α) (i.e., the Ramsey numbers).

2 Ramsey Numbers and Asymptotics

Before proving these theorems, we introduce some necessary background on Ramsey num-
bers. The Ramsey number R(s, t) is the minimum integer R such that every graph with
at least R vertices has either an independent set of size s or a clique of size t. There have
been a number of results on the asymptotics of R(s, t) when s is fixed and t varies. Atjai,
Komlós, and Szemerédi [1] proved that for every fixed s ≥ 3,

R(s, t) = O

(
ts−1

(log t)s−2

)
. (3)

For s = 3, the lower bound

R(3, t) = Ω

(
t2

log t

)
was first proved by Kim [7]. More generally, Bohman and Keevash [3], [4] proved that for
every fixed s ≥ 3,

R(s, t) = Ω

(
t
s+1
2

(log t)
s+1
2
− 1

s−2

)
. (4)

Our results will make use of an inverse Ramsey function, which we mentioned earlier
and whose definition we repeat: For each positive integer α, let

ω(n, α) = min{ω(G) : |V (G)| = n and α(G) ≤ α}.

In other words, ω(n, α) is the unique integer ω such that R(α+1, ω) ≤ n < R(α+1, ω+1).
For fixed α, we can therefore view ω(n, α) as the inverse function for R(α + 1, t). The
bounds (3) and (4) imply that for each α ≥ 2, there exist constants kα, k′α such that

kαn
1/α(log n)β ≤ ω(n, α) ≤ k′αn

2/(α+2)(log n)β
′
.

where β = (α− 1)/α and β′ = 1− 2/[(α− 1)(α + 2)]. In particular, we have

k2n
1/2(log n)1/2 ≤ ω(n, 2) ≤ k′2n

1/2(log n)1/2 (5)

and
k3n

1/3(log n)2/3 ≤ ω(n, 3) ≤ k′3n
2/5(log n)4/5. (6)

Finally, we note that for all m, n, and α,

ω(m,α) + ω(n, α) ≥ ω(m+ n, α). (7)
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This follows because if G1, G2 are graphs with |V (G1)| = m, |V (G2)| = n, α(G1), α(G2) ≤
α, and ω(G1) = ω(m,α), ω(G2) = ω(n, α), then the join G = G1 +G2 of the two graphs
(i.e., the graph formed by taking the disjoint union of G1 and G2 and adding every edge
between a vertex of G1 and a vertex of G2) is a graph with V (G) = m + n, α(G) ≤ α,
and ω(G) = ω(m,α) + ω(n, α).

3 Proof of Theorem 1.2

We now proceed with the proofs of our main results. We restate our first result.

Theorem 1.2. For each positive integer α, there exists a constant 0 < cα ≤ 1 such that

cαω(n, α) ≤ Q(n, dn/αe) ≤ ω(n, α).

for all n.

Proof. We first establish the upper bound. Fix α. Let G be a graph with |V (G)| = n,
α(G) ≤ α, and ω(G) = ω(n, α). From the inequality χ(G) ≥ |V (G)|/α(G), we have
χ(G) ≥ dn/αe. Delete edges one by one from G until we have a graph G′ with χ(G′) =
dn/αe. The clique number does not increase as we delete edges, so ω(G′) ≤ ω(n, α). Since
G′ has n vertices, this establishes Q(n, dn/αe) ≤ ω(n, α).

To prove the lower bound, we induct on α. For α = 1, we have Q(n, n) = ω(n, 1) = n,
and the proof is done with c1 = 1. Now, fix α ≥ 2, and suppose there exists 0 < cα−1 ≤ 1
such that

cα−1ω(n, α− 1) ≤ Q(n, dn/(α− 1)e)

for all n. We will prove that for sufficiently large n,

1

5
cα−1ω(n, α) ≤ Q(n, dn/αe),

which will complete the induction.
Suppose G0 is a graph with |V (G0)| = n and χ(G0) = dn/αe. It suffices to show that

for any such G0 with sufficiently large n, we have ω(G0) ≥ 1
5
cα−1ω(n, α). If G0 contains

an independent set of size α+ 1, delete it to obtain a graph G1. If G1 has an independent
set of size α + 1, delete it to obtain G2. Continue doing this until we have a graph Gt

(t ≥ 0) such that either

(a) α(Gt) ≤ α, or

(b) t > n/(2α).

The clique number does not increase as we delete vertices, so ω(G0) ≥ ω(Gt). It thus
suffices to show that ω(Gt) ≥ 1

5
cα−1ω(n, α). Also, the chromatic number decreases by at

most one each time we delete an independent set, so χ(Gt) ≥ χ(G)− t = dn/αe − t.
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First, suppose that t ≤ n/(2α). Then we must have case (a), so by the definition of
ω(·, ·),

ω(Gt) ≥ ω(|V (Gt)|, α). (8)

Now,

|V (Gt)| = n− (α + 1)t ≥ n− (α + 1)n

2α
=

(
1

2
− 1

2α

)
n.

Since α ≥ 2, we thus have

|V (Gt)| ≥
1

4
n.

Combined with (8), and since ω(n, α) is a non-decreasing function of n (given a graph G
with n + 1 vertices, α(G) ≤ α, and ω(G) = ω(n + 1, α), we can delete a vertex to create
a graph G′ with n vertices, α(G′) ≤ α, and ω(G′) ≤ ω(n+ 1, α)), we have

ω(Gt) ≥ ω(dn/4e, α).

Using property (7) and the monotonicity of ω(·, α), we thus have

ω(Gt) ≥
1

4
ω(n, α) ≥ 1

5
cα−1ω(n, α)

as desired.
Now suppose that t > n/(2α). Notice that

dn/αe − x
n− (α + 1)x

is an increasing function of x for x < n/(α + 1). Indeed, for x, y < n/(α + 1), we have

dn/αe − x
n− (α + 1)x

>
dn/αe − y
n− (α + 1)y

⇔ (dn/αe − x)(n− (α + 1)y) > (dn/αe − y)(n− (α + 1)x)

⇔
(
(α + 1)dn/αe − n

)
x >

(
(α + 1)dn/αe − n

)
y

⇔ x > y

since (α + 1)dn/αe − n > 0. Thus, we have

χ(Gt)

|V (Gt)|
≥ dn/αe − t
n− (α + 1)t

>
dn/αe − n/(2α)

n− (α + 1)[n/(2α)]

≥ n/α− n/(2α)

n− (α + 1)[n/(2α)]

=
1

α− 1
.
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It follows that

χ(Gt) ≥
⌈
|V (Gt)|
α− 1

⌉
.

Delete edges from Gt until we have a graph G′t with

χ(G′t) =

⌈
|V (Gt)|
α− 1

⌉
.

By the inductive hypothesis, we thus have

ω(Gt) ≥ ω(G′t) ≥ cα−1ω(|V (Gt)|, α− 1).

Since ω(|V (Gt)|, α− 1) ≥ ω(|V (Gt)|, α) by the definition of ω(·, ·), it follows that

ω(Gt) ≥ cα−1ω(|V (Gt)|, α). (9)

Now, by construction, t is the first integer greater than n/(2α), so t ≤ n/(2α) + 1. Thus,

|V (Gt)| = n− (α + 1)t ≥ n− (α + 1)n

2α
− (α + 1) =

(
1

2
− 1

2α

)
n− (α + 1).

Since α ≥ 2, we have |V (Gt)| ≥ 1
4
n − (α + 1). Hence, for sufficiently large n, we have

|V (Gt)| ≥ 1
5
n. From (9) and property (7), we thus have

ω(Gt) ≥ cα−1ω(dn/5e, α) ≥ 1

5
cα−1ω(n, α)

which completes the proof.

4 Proof of Theorem 1.3

Theorem 1.3. Let α ≥ 2 be an integer, and suppose there exists a function κ : N → N
such that

lim
n→∞

ω(κ(n), α− 1)

ω(n, α)
=∞ and lim

n→∞

ω(κ(n), α)

ω(n, α)
= 0.

Then

lim
n→∞

Q(n, dn/αe)
ω(n, α)

= 1.

Proof. Fix α ≥ 2, and suppose κ is a function as described. We have limn→∞ κ(n) = ∞
because limn→∞ ω(κ(n), α− 1)/ω(n, α) = ∞. Also, we have limn→∞ κ(n)/n = 0, since
limn→∞ ω(κ(n), α)/ω(n, α) = 0 and

ω(κ(n), α)

ω(n, α)
≥ ω(κ(n), α)

dn/κ(n)eω(κ(n), α)
=

1

dn/κ(n)e
≥ 2(κ(n)/n)

where the first inequality holds by property (7).
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We will prove that for sufficiently large n,

ω(n− (α + 1)κ(n), α) ≤ Q(n, dn/αe) ≤ ω(n, α). (10)

Note that we may assume n− (α+ 1)κ(n) > 0 because limn→∞ κ(n)/n = 0. Proving (10)
will suffice to prove Theorem 1.3, because by property (7) we have

ω(n− (α + 1)κ(n), α) ≥ ω(n, α)− (α + 1)ω(κ(n), α)

and hence

ω(n− (α + 1)κ(n), α)

ω(n, α)
≥ 1− (α + 1)

ω(κ(n), α)

ω(n, α)
→ 1 as n→∞

by the definition of κ.
The upper bound of (10) was established in the previous section. For the lower bound,

let n be large enough so that n − (α + 1)κ(n) > 0, and suppose G0 is a graph with
|V (G0)| = n and χ(G0) = dn/αe. It suffices to show that for any such G0 with sufficiently
large n, we have ω(G0) ≥ ω(n− (α+ 1)κ(n), α). If G0 contains an independent set of size
α + 1, delete it to obtain a graph G1. If G1 contains an independent set of size α + 1,
delete it to obtain G2. Continue doing this until we have a graph Gt such that either

(a) α(Gt) ≤ α, or

(b) t = κ(n).

Since ω(G) ≥ ω(Gt), it suffices to show ω(Gt) ≥ ω(n − (α + 1)κ(n), α). Because the
chromatic number decreases by at most one each time we remove an independent set, we
have χ(Gt) ≥ dn/αe − t.

If t < κ(n), then we must have case (a). Thus, we have

ω(Gt) ≥ ω(|V (Gt)|, α) = ω(n− (α + 1)t, α) ≥ ω(n− (α + 1)κ(n), α)

as desired.
Now suppose that t = κ(n). We have |V (Gt)| = n − (α + 1)κ(n) and χ(Gt) ≥

dn/αe − κ(n). Let H0 = Gt. If χ(H0)/|V (H0)| < 1/(α − 1), then by the inequality
α(H0) ≥ |V (H0)|/χ(H0), we have α(H0) ≥ α. Hence, if χ(H0)/|V (H0)| < 1/(α − 1), we
can remove an independent set of size α fromH0 to obtain a graphH1. If χ(H1)/|V (H1)| <
1/(α− 1), we again remove an independent set of size α to obtain a graph H2. Continue
this process until we have a graph Hs with

χ(Hs)

|V (Hs)|
≥ 1

α− 1
.

To see that we will indeed reach such an s, note that at each Hi we have χ(Hi)/|V (Hi)| ≥
f(i), where

f(x) =
dn/αe − κ(n)− x

n− (α + 1)κ(n)− αx
.
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Then f is an increasing function of x for x < n/α− α+1
α
κ(n); indeed, for x, y in this range,

we have

dn/αe − κ(n)− x
n− (α + 1)κ(n)− αx

<
dn/αe − κ(n)− y

n− (α + 1)κ(n)− αy
⇔
(
αdn/αe − ακ(n)− n+ (α + 1)κ(n)

)
x <

(
αdn/αe − ακ(n)− n+ (α + 1)κ(n)

)
y

⇔ x < y

since
αdn/αe − ακ(n)− n+ (α + 1)κ(n) = αdn/αe − n+ κ(n) ≥ κ(n) > 0.

In addition, if dn/α− 2κ(n)e < n/α− α+1
α
κ(n), then

f(dn/α− 2κ(n)e) ≥ f(n/α− 2κ(n))

=
dn/αe − κ(n)− (n/α− 2κ(n))

n− (α + 1)κ(n)− α(n/α− 2κ(n))

≥ n/α− κ(n)− (n/α− 2κ(n))

n− (α + 1)κ(n)− α(n/α− 2κ(n))

=
1

α− 1
.

Thus, as long as dn/α − 2κ(n)e < n/α − α+1
α
κ(n), the sequence H0, H1, H2, . . . will stop

at an Hs with s ≤ dn/α− 2κ(n)e. Since α ≥ 2 and κ(n) ≥ 2 for large enough n, we have
n/α−2κ(n) ≤ n/α− α+1

α
κ(n)−1, and hence dn/α−2κ(n)e < n/α− α+1

α
κ(n), as desired.

We thus have a graph Hs with ω(Gt) ≥ ω(Hs), s ≤ dn/α− 2κ(n)e, and

χ(Hs) ≥
⌈
|V (Hs)|
α− 1

⌉
.

Delete edges from Hs until we have a graph H ′s with

χ(H ′s) =

⌈
|V (Hs)|
α− 1

⌉
.

By Theorem 1.2, we thus have

ω(Gt) ≥ ω(H ′s) ≥ cα−1ω(|V (Hs)|, α− 1).

for some cα−1 > 0. Now, since s ≤ dn/α− 2κ(n)e, we have

|V (Hs)| = n− (α + 1)κ(n)− αs
≥ n− (α + 1)κ(n)− αdn/α− 2κ(n)e
≥ n− (α + 1)κ(n)− α(n/α− 2κ(n) + 1)

= (α− 1)κ(n)− α
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and hence
ω(Gt) ≥ cα−1ω((α− 1)κ(n)− α, α− 1).

Applying α ≥ 2 and then property (7), we have

ω(Gt) ≥ cα−1ω(κ(n)− α, α− 1)

≥ cα−1
(
ω(κ(n), α− 1)− ω(α, α− 1)

)
= cα−1

(
ω(κ(n), α− 1)− 2

)
≥ 1

2
cα−1ω(κ(n), α− 1)

for large enough n. Now, since

lim
n→∞

ω(κ(n), α− 1)

ω(n, α)
=∞,

we have for large enough n

ω(Gt) ≥
1

2
cα−1ω(κ(n), α− 1) ≥ ω(n, α) ≥ ω(n− (α + 1)κ(n), α)

which completes the proof.

Corollary 1.4.

lim
n→∞

Q(n, dn/3e)
ω(n, 3)

= 1.

Proof. Let κ(n) =
⌈
n49/60

⌉
. From (5) and (6), we have

ω(
⌈
n49/60

⌉
, 2)

ω(n, 3)
≥ k2(n

49/60)1/2(log n49/60)1/2

k′3n
2/5(log n)4/5

→∞ as n→∞

since (49/60)(1/2) > (48/60)(1/2) = 2/5. Also,

ω(
⌈
n49/60

⌉
, 3)

ω(n, 3)
≤ k′3(n

49/60 + 1)2/5[log(n49/60 + 1)]4/5

k3n1/3(log n)2/3
→ 0 as n→∞

because (49/60)(2/5) < (50/60)(2/5) = 1/3. Thus, the desired result holds by Theorem
1.3.

It may be the case that there exists an appropriate κ(n) for each α ≥ 2. For example,
it is conjectured that for any fixed s ≥ 3, we have

R(s, t) = ts−1+o(1).

If this is the case, then for a given α ≥ 2 we can take κ(n) = dnγe, where α−1
α

< γ < 1.
We would then have limn→∞Q(n, dn/αe)/ω(n, α) = 1 for any α ≥ 2.
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5 Further Questions

We have proven for positive integer α that Q(n, dn/αe) and ω(n, α) have the same order
of growth, and are quite possibly asymptotically equivalent. In the case α = 2, however,
one can use the techniques of [2] to show

ω(n, 2)− 2 ≤ Q(n, dn/2e) ≤ ω(n, 2).

Furthermore, one can prove that for almost all values of n, we in fact have Q(n, dn/2e) =
ω(n, 2). (See [6] for a more precise statement.) Is there a similar, more exact relationship
between Q(n, dn/αe) and ω(n, α) for α ≥ 3? More precisely, one can ask the following
questions.

Question 1. For each α, is ω(n, α)−Q(n, dn/αe) bounded?

Question 2. Do there exist infinitely many n for which Q(n, dn/αe) = ω(n, α)?

Finally, it would be nice to have a better understanding of the behavior of Q(n, dn/αe)
when α is not an integer.
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