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Abstract

Let an count the number of 2-dimensional rook paths Rn,n from (0, 0) to (2n, 0).
Rook pathsRm,n are the lattice paths from (0, 0) to (m+n,m−n) with allowed steps
(x, x) and (y,−y) where x, y ∈ N+. In answer to the open question proposed by M.
Erickson et al. (2010), we shall present a combinatorial proof for the recurrence of
an, i.e., (n + 1)an+1 + 9(n − 1)an−1 = 2(5n + 2)an with initial conditions a0 = 1
and a1 = 2. Furthermore, our proof can be extended to show the recurrence for the
number of multiple Dyck paths dn, i.e., (n+ 2)dn+1 + 9(n− 1)dn−1 = 5(2n+ 1)dn
with d0 = 1 and d1 = 1, where dn = Nn(4) and Nn(x) is Narayana polynomial.

1 Introduction

The set of rook paths Rm,n is given by all 2-dimensional lattice paths from (0, 0) to
(m + n,m − n) with allowed steps (x, x) and (y,−y) where x, y ∈ N+. They owe their
name to the following view: consider a rook placed on the lower left corner (0, 0) of a
chess board of size m × n. Then Rm,n counts the number of ways the rook can reach
the opposite corner if in each single step it can move an arbitrary number of squares in
the horizontal or vertical direction. Generalizations to d-dimensional chess boards are
available [3]. There the number of corresponding paths can also be interpreted as the
number of ways a debitor can repay all of its d creditors if the extension of the chess
board in dimension i equals the specific amount owing creditor i.
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We set |Rm,n| = am,n and Rn = Rn,n for simplicity. M. Erickson et al. [1] gave the
following generating function f(s, t) for the number of rook paths:

f(s, t) =
∑

m≥0,n≥0

am,ns
mtn =

(1− s)(1− t)
1− 2(s+ t) + 3st

. (1)

For the special case an = an,n the generating function f(x) =
∑

n≥0 anx
n can be derived

from eq. (1) by first substituting t = x
s

and then finding the coefficient of s0 using partial
fractions and Laurent series [1, 6]. Explicitly, the double generating function f(s, t) is
rational and it converges for sufficiently small |s| and |t|. As a result, f(x) = [s0]F (s, x

s
)

converges for |x| small. We shall fix a small x; then the series f(s, t), as a function of s,
converges in some circle |s| = r > 0. According to the Cauchy integral theorem and the
Residue theorem, we have

f(x) = [s0]f
(
s,
x

s

)
=

1

2πi

∫
|s|=r

f
(
s,
x

s

) ds
s

=
∑
S0

Res

[
f
(
s,
x

s

)
· 1

s

]
where S0 is the set of all the poles of 1

s
f(s, x

s
) inside the circle |s| = r and for any pole

s∗ ∈ S0, limx→0 s
∗ = 0. Therefore we arrive at

f(x) =
∑
S0

Res

[
f
(
s,
x

s

)
· 1

s

]
=

1

2πi

∫
|s|=r

(1− s)(1− x
s
)

1− 2(s+ x
s
) + 3x

· ds
s
.

The only pole of 1
s
f(s, x

s
) approaching 0 as x → 0 is at s0 = 3

4
x + 1

4
− 1

4

√
9x2 − 10x+ 1.

Consequently,

f(x) = Ress=s0

[
(1− s)(1− x

s
)

1− 2(s+ x
s
) + 3x

· 1

s

]
+

1

2
=

1

2

(
1 +

√
1− x
1− 9x

)
(2)

by taking the initial condition f(0) = 1 into account. The recurrence relation for an =
[xn]f(x) can be derived from eq. (2)[1], i.e.,

a0 = 1, a1 = 2,

an =
n+ 1

2(5n+ 2)
an+1 +

9(n− 1)

2(5n+ 2)
an−1. (3)

The set of multiple Dyck pathsMDn is given by the 2-dimensional lattice paths from
(0, 0) to (2n, 0) with allowed steps (x, x) and (y,−y) where x, y ∈ N+ that never go below
x-axis. |MDn| = dn. Similarly the generating function of dn is given by

g(x) =
∑
n≥0

dnx
n =

1

8

(
3 +

1

x
− 1

x

√
(1− x)(1− 9x)

)
, (4)
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and the recurrence for dn is

d0 = 1, d1 = 1,

dn =
n+ 2

5(2n+ 1)
dn+1 +

9(n− 1)

5(2n+ 1)
dn−1. (5)

In the next section we shall present the combinatorial proof of eq. (3). Eq. (5) follows
analogously. Part of the proof employs the bijective proof of recurrence for Dyck paths
[2, 5, 7].

Furthermore, we refer the readers to the related combinatorial proof of some famous
numbers, like the recurrence for the Delannoy numbers was proved bijectively by P. Peart
et al.[4], the recurrence for the large Schröder numbers was shown by Foata et al.[2], and
R.A. Sulanke [7] independently.

2 The Main Proof

We can represent each rook path by the combination of U (i.e., up-step) and D (i.e.,
down-step) with multiplicities. Accordingly, let U i = U · · ·U︸ ︷︷ ︸

i-times

(resp. Di = D · · ·D︸ ︷︷ ︸
i-times

) be a

single up-step (resp. down-step) of length i (the underline is used to represent the step’s
atomicity). For our proof we will count the occurrence of UU , UD, DU and DD ignoring
the underlines.

Let S1S2 ↑ (S1S2 ↓) denote the steps S1S2 above x-axis (resp. below x-axis) where
Si ∈ {U,D} for i = 1, 2 subject to the condition that the y-the coordinates of both,
the start point and the end point of S1, are non-negative (resp. non-positive). Let m11

count the occurrence of UU ↑ and DD ↓, m22 count the occurrence of DD ↑ and UU ↓,
m12 count the occurrence of UD ↑ and DU ↓, and m21 count the occurrence of DU ↑
and UD ↓. For example, m11,m12,m21,m22 of the rook path UUDDDUUUUDDD is
4, 3, 0, 4.

∑
i,j=1,2mij = 2n− 1 holds for each path M∈ Rn.

Here is the sketch of the idea of the combinatorial proof. (n+1)an+1 counts the family
of rook paths Rn+1 having one unit U -step labeled with z, denoted by (U z,Rn+1). In
Lemma 1 we focus on the map from (U z,Rn+1) to (sx ∪ ∅,Rn, {a, b}) with multiplicity
on each patten UxU , UxU and DxD, DxD, and UxD, DxU . In Lemma 2, 3(n − 1)an−1
counts the family of (U z,Rn−1, [i, j]) where [i, j] = [1, 2], [2, 1], [2, 2] and having one unit
U -step labeled with z, accordingly we present map from (U z,Rn−1, [i, j]) where [i, j] =
[1, 2], [2, 1], [2, 2] to (Ux,Rn, {s, t}) with multiplicity on each pattern sxU and sxD for
s = U or D.

Lemma 1. For each M ∈ Rn, let m11 count the occurrence of UU ↑ and DD ↓, m22

count the occurrence of DD ↑ and UU ↓, m12 count the occurrence of UD ↑ and DU ↓,
and m21 count the occurrence of DU ↑ and UD ↓. Then for an+1 = |Rn+1| we have

(n+ 1)an+1 =
∑
M∈Rn

5(m11 +m21) + 8m12 + 2m22 + 6 (6)
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Proof. Let Fn be the family of free Dyck paths, i.e., the lattice paths from (0, 0) to (2n, 0)
with allowed steps (1, 1) and (1,−1), and pair (U z,Fn+1) be the set of paths Fn+1 having
one of the unit up-steps U labeled with z. Tuple (sx ∪ ∅,Fn, {a, b}) represents the set
of paths Fn having one of the unit steps s (U or D) labeled with x, or having nothing
labeled. We set fi(Fn) = f(sx ∪∅,Fn, {i}) for i = a, b. In the sequel we will construct a
bijection f : (sx ∪∅,Fn, {a, b})→ (U z,Fn+1).

Case 1: (sx∪∅,Fn, {a}): For the paths having labeling as P1 = · · · sx · · · ∈ Fn, we set
fa(P1) = · · · sU zD · · · ∈ Fn+1 if s is above x-axis, otherwise fa(P1) = · · · sDU z · · · ∈ Fn+1.
For the paths without labeling as P2 we have fa(P2) = U zDP2.

q��q����������������������q
@
@qUx

↑ x-axis, a:

fa−→ q��U q��q
U z @

@qD����������������������q
@
@qq

@
@q����������������������Dx q

@
@q fa−→

q
@
@q��q

@
@D

U z Dq����������������������q
@
@q

↓ x-axis, a:q
@
@q
LLLLLLLLLLLLLLLLLLLLLL

q��q
fa−→Dx

q
@
@qD

@
@

D q��U z q
LLLLLLLLLLLLLLLLLLLLLL

q��q

q��q
LLLLLLLLLLLLLLLLLLLLLL

q��q
Ux

fa−→

q��U q
@
@qD
�
�

q
U z

q
LLLLLLLLLLLLLLLLLLLLLL

�
�

q

For step s, we define the level of the step s, denoted by `1(s) as the y-th coordinates of
its final point.

Case 2: (sx,Fn, {b}) and `1(sx) 6= 0: For an arbitrary path P1 = · · · sx · · · ∈ (sx,Fn)
and `1(sx) > 0, let Us be the first U -step preceding s for which `1(Us) = `1(s) and let Ds

be the first D-step that follows s such that `1(Ds) = `1(s) − 1. Note that Us = s if s is
a U -step. As a result, we can write P1 = · · ·Us · · · sxRDs · · · where R is the Dyck path
between sx and Ds. Then fb(P1) = · · ·U z

s · · · sURDDs · · · ∈ Fn+1.

q��q����������������������q
@
@qUx

↑ x-axis:

fb−→ q��U z
q��q
U
����������������������q

@
@q
@
@q

D

D

q��q������������������������������������������q@@q Dx q
@
@qU D

fb−→ q��q����������������������q@@q
U z

D
�
�

q����������������������q
@
@q
@
@q

DU

D

Similarly, for the paths P2 = · · · sx · · · ∈ Fn and `1(s) < 0, let Us be the first U -step
after s for which `1(Us) = `1(s) + 1 and let Ds be the first D-step preceding s such
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that `1(Ds) = `1(s). Note that Ds = s if s is a D-step. As a result, we can write
P2 = · · ·Ds · · · sxRUs · · · where R is the Dyck path between sx and Us. Then fb(P2) =
· · ·Ds · · · sDRUU z

s · · · ∈ Fn+1.

↓ x-axis:q
@
@q
LLLLLLLLLLLLLLLLLLLLLL

q��q
fb−→Dx

q
@
@qD

@
@D q
LLLLLLLLLLLLLLLLLLLLLL

q��q��q
U z

Uq
@
@q
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

q
�

�q q��q
D

Ux

fb−→

q
@
@q
LLLLLLLLLLLLLLLLLLLLLL

q
�

�q U
@
@qD
LLLLLLLLLLLLLLLLLLLLLL

q��q
U

�
�

q
U z

Case 3: (∅,Fn, {b}) or (sx,Fn, {b}) and `1(s) = 0: In the former case, let P1 ∈ Fn,
fb(P1) = DU zP1. In the later case, if P2 = · · ·Dx then fb(P2) = · · ·DDU z holds, if
P3 = · · ·Ux then fb(P3) = · · ·UU zD. We omit the proof that the map f is bijective

since that proof follows similarly to that for Dyck paths [2, 5, 7]. The next step we shall
extend f−1 to the map g : (U z,Rn+1) → (sx ∪ ∅,Rn, {a, b}) by allowing the atomic up
step and down step to be of arbitrary length, according to which g is surjective but not
injective. We start from studying the number of labeled paths in (U z,Rn+1) induced by
f(sx ∪∅,Rn, {a, b}) via integrating the newly added 2-steps to the paths in Rn.

Case 1: (∅,Rn, {a, b}): W.l.o.g. we assume path p1 = Ump0 ∈ Rn where the first step
of p1 is U -step of length m (m ≥ 1). Then fa(p1) = U zDUmp0 and fb(p1) = DU zUmp0.
DU zUmp0 ∈ (U z,Rn+1) is obtained by gluing U z and Um (m ≥ 1), therefore we set

g(U z, U zDUmp0) = (∅, p1, {a}),
g(U z, DU zUmp0) = g(U z, DU zUmp0) = (∅, p1, {b}).

For each image (∅, p1) ∈ (∅,Rn) by map g, there are three preimages in (U z,Rn+1) such
that the first unit U -step is labeled with z, which has cardinality 3an.

Case 2: (sx,Rn, {a, b}) and s is the last unit step: W.l.o.g. we assume path p2 = · · ·Dx.
Then fa(p2) = · · ·DU zD and fb(p2) = · · ·DDU z. · · ·DDU z ∈ (U z,Rn+1) is obtained by
gluing two D-steps, therefore we set

g(U z, · · ·DU zD) = (Dx, p2, {a}),
g(U z, · · ·DDU z) = g(U z, · · ·DDU z) = (Dx, p2, {b}).

For each image (sx, p2) ∈ (sx,Rn) by map g, there are three preimages in (U z,Rn+1) such
that the last unit U -step is labeled with z, which has cardinality 3an.

In what follows we consider all the possible scenarios for sxY ⊆ P where Y is the step
immediately following sx for an arbitrary but fixed path p ∈ Rn.
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Let U U represent UU xor UU , i.e., the two exclusive cases of either an atomic up-step
of length two or of two up-steps which for sure belong to two different atomic up-steps.
For a multiple Dyck path A that has a t-step of length m1 as its first atomic step and
s-step of length m2 as its last atomic step, i.e., A = tm1A′sm2 where t = U, s = D or
t = D, s = U and m1,m2 ≥ 1, we set

tAs = tm1+1A′sm2s

tAs = tm1+1A′sm2+1

tAs = ttm1A′sm2+1

tAs = ttm1A′sm2s

tA s = tAs xor tAs

t As = tAs xor tAs

Case 3: Ux U ↑: Let p3 = · · ·Ux U · · · , then fa(p3) = · · ·U U zDU · · · and recall that
DUx is the step that after Ux for which `1(Ux) = `1(DUx) + 1. Let Ax

1 (resp. A1) be the
sub multiple Dyck paths from Ux to DUx with (resp. without) labeling x, then we can
assume p3 = · · ·Ax

1 · · · , and therefore fb(p3) = · · ·U zA1D · · · . By setting

g(U z, · · ·UU zDU · · · ) = (UxU , p3, {a}) xor
g(U z, · · ·UU zDU · · · ) = (UxU , p3, {a}),
g(U z, · · ·U zA1D · · · ) = g(U z, · · ·U zA1D · · · ) = (Ux U , p3, {b}),
g(U z, · · ·U zA1D · · · ) = g(U z, · · ·U zA1D · · · ) = (Ux U , p3, {b}),

all the five preimages in (U z,Rn+1) are mapped by g to (Ux U ,Rn, {a, b}). We name
the “active point” to be the point that connects two S-steps (S = U or D) as SS or
SS, Furthermore, the hollow circled dot represents the point that connects one of the
patterns from {SS, SS} exclusively. The figure below shows the images (Ux U , p3, {a, b})
representing the active points by big black dots.

↑ x-axis:

q���
�c

Ux

����������������������
@
@����������������������

@
@q
g
←−

a

q���
�

qc @
@q��U z

����������������������
@
@����������������������

@
@q

q���
�c

Ux

����������������������
@
@����������������������

@
@

b

q
g
←−

Ax
1 q��s���

�
q����������������������q

@
@����������������������

@
@s
@
@q

U D

DUx

c
U z

A1

Case 4: UxD ↑: Let p4 = · · ·UxD · · · , then fa(p4) = · · ·UU zDD · · · and fb(p4) =
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· · ·U zUDD · · · holds. Accordingly we set

g(U z, · · ·UU zDD · · · ) = g(U z, · · ·UU zDD · · · ) = (UxD, p4, {a}),
g(U z, · · ·UU zDD · · · ) = g(U z, · · ·UU zDD · · · ) = (UxD, p4, {a}),
g(U z, · · ·U zU DD · · · ) = g(U z, · · ·U zU DD · · · ) = (UxD, p4, {b}),
g(U z, · · ·U zU DD · · · ) = g(U z, · · ·U zUDD · · · ) = (UxD, p4, {b}).

Every eight preimages in (U z,Rn+1) are mapped by g to one image (UxD, p4, {a, b}).

↑ x-axis:

aq��q
@
@qUx g

←− q��s��q
@
@s
@
@q

U z

q��q
@
@qUx g

←−
b q��s��q

@
@s
@
@qU z

Case 5: DxU ↑: First we discuss the subcase in which Dx touches the x-axis,
i.e., `1(Dx) = 0, and is followed by U -step. Let p5 = · · ·DxU · · · , then fa(p5) =
· · ·DU zDU · · · and fb(p5) = · · ·DDU zU · · · hold. Thus, we set

g(U z, · · ·DU zDU · · · ) = (DxU, p5, {a}),
g(U z, · · ·DD U zU · · · ) = g(U z, · · ·DD U zU · · · ) = (DxU, p5, {b}),
g(U z, · · ·DD U zU · · · ) = g(U z, · · ·DDU zU · · · ) = (DxU, p5, {b}).

Next we study the subcase in which Dx is above x-axis. Let p5 = · · ·DxU · · · , then
fa(p5) = · · ·DU zDU · · · holds. Let DDx be the first step after Dx such that `1(Dx) =
`1(DDx) + 1. Let UDx be the first step preceding Dx such that `1(UDx) = `1(Dx). Then
we assume Ax

2 (resp. Az
2) is the path from UDx to Dx with labeling Dx (resp. U z

Dx = U z)
and A3 is the path from the end of Dx to DDx . Therefore we can interpret p5 as p5 =
· · ·Ax

2A3 · · · , and fb(p5) = · · ·Az
2UA3D · · · . Thus, we set

g(U z, · · ·DU zDU · · · ) = (DxU, p5, {a}),
g(U z, · · ·Az

2UA3D · · · ) = g(U z, · · ·Az
2UA3D · · · ) = (DxU, p5, {b}),

g(U z, · · ·Az
2UA3D · · · ) = g(U z, · · ·Az

2UA3D · · · ) = (DxU, p5, {b}).

In both cases, every five preimages in (U z,Rn+1) are mapped by g to one image in
(DxU,Rn, {a, b}).

↑ x-axis:

q��q������������������������������������������q@@q Dx
q q

@
@q g

←−

a

q��q����������������������qq
D
@
@
�
�
q
@
@q����������������������q

@
@q

U z

Ax
2 A3q��q������������������������������������������q@@q Dx

q q
@
@q g

←−

b

q��q����������������������qq
D
@
@
�
�
s����������������������q

@
@s
@
@

U

q
A3

U z

D

DDxAz
2
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Case 6: Dx D ↑: First we discuss the subcase in which Dx touches the x-axis, i.e.,
`1(Dx) = 0, and is followed by a D-step. Let p5 = · · ·Dx D, then fa(p5) = · · ·DU zDD · · ·
and fb(p5) = · · ·DDU zD · · · . We set

g(U z, · · ·DU zDD · · · ) = (DxD, p5, {a}) xor

g(U z, · · ·DU zDD · · · ) = (DxD, p5, {a}),
g(U z, · · ·DDU zD · · · ) = (DxD, p5, {b}) xor

g(U z, · · ·DDU zD · · · ) = (DxD, p5, {b}).

Next we study the subcase that Dx is above x-axis. For p6 = · · ·Dx D · · · , fa(p6) =
· · ·DU zD D · · · holds. Let UDx be the first step preceding Dx such that `1(UDx) =
`1(Dx). Then we follow the assumption of Ax

2 and Az
2 in Case 5, and represent p6 as

p6 = · · ·Ax
2 D · · · , therefore fb(p6) = · · ·Az

2UD D · · · . Consequently, by setting

g(U z, · · ·DU zDD · · · ) = (DxD, p6, {a}) xor

g(U z, · · ·DU zDD · · · ) = (DxD, p6, {a}),
g(U z, · · ·Az

2UDD · · · ) = (DxD, p6, {b}) xor

g(U z, · · ·Az
2UDD · · · ) = (DxD, p6, {b}),

every two preimages in (U z,Rn+1) are mapped by g to one image in (DxD,Rn, {a, b}).

↑ x-axis:

q����������������������
�

�q
q
@
@c
@
@q

Dx
g
←−

a q����������������������
�

�q
q
@
@q��q

@
@c
@
@q

U z q����������������������
�

�q
q
@
@c
@
@q

Dx
g
←−

b q����������������������
�
�q

q
@
@q��q

@
@c
@
@qU z

For those labeled step sxY ↓, the case discussion follows similarly. To sum up, for each
path p ∈ Rn, the number of paths in (U z,Rn+1) resulted from p is 5(m11 +m21) + 8m12 +
2m22 + 6. Hence eq. (6) follows and the proof is complete.

Lemma 2. Under the assumption of Lemma 1 we have∑
M∈Rn

[(m11 +m21) + 2m12] + 3(n− 1)an−1 = 2nan (7)

Proof. We shall construct the map

µ : (UxU ∪DxU,Rn ↑)∪̇(UxD,Rn ↑, {a, b})∪̇(DxD ∪ UxD,Rn ↓)∪̇(DxU,Rn ↓, {a, b})
∪̇(Ux,Rn−1, {[1, 2], [2, 1], [2, 2]})→ (U z,Rn, {s, t}).

Note that (DxD ∪ UxD,Rn ↓) and (DxU,Rn ↓, {a, b}) are the mirror images of (UxU ∪
DxU,Rn ↑) and (UxD,Rn ↑, {a, b}) under reflection K : y = 0, i.e., for a ∈ (UxU ∪
DxU,Rn ↑), then K(a) ∈ (DxD ∪ UxD,Rn ↓) and g(K(a)) = K(g(a)), for which we omit
the case discussion for (DxD ∪ UxD,Rn ↓) and (DxU,Rn ↓, {a, b}).
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Case 1: For w1 ∈ (UxU,Rn ↑) or w1 ∈ (UxD,Rn ↑, {a, b}), µ simply replaces the
labeling x with z, i.e., µ(UxU,w1) = (U zU,w1, s) and µ(UxD,w1, a) = (U zD,w1, s),
µ(UxD,w1, b) = (U zD,w1, t).

Case 2: w2 ∈ (DxU,Rn ↑): Let Ux be the first U -step preceding Dx such that `1(Ux) =
`1(Dx) + 1. Similarly, let DU be the first D-step that follows U and for which `1(U) =
`1(DU) + 1 holds. We assume Ax

4 (resp. A4) is the path from Ux to Dx with (resp.
without) labeling x, and A5 is the path from the end of U to DU . Then we consider
path w2 = · · ·Ax

4U A5 · · · , µ(w2) = (U z, · · ·U z A4A5 · · · , t). We observe that in the case
A5 6= D, µ is a one-to-one correspondence. In the case A5 = D, three patterns are missing
from (U zU,Rn, t), i.e., (· · ·U zA4 A5 · · · , t), (· · ·U zA4A5 · · · , t) and (· · ·U z A4A5 · · · , t).
Case 3 will make up for this.

↑ x-axis:

q��c c����������������������
@
@q��c����������������������c

@
@qDx

A BU

µ
−→

q��c��c����������������������c
@
@q����������������������c

@
@qU z

A

BD

D

Case 3: w3 ∈ (Ux,Rn−1, {[1, 2], [2, 1], [2, 2]}): If Ux ∈ Rn−1 (thus w3 = · · ·Ux A D · · ·
in which A is a multiple Dyck path (can be ∅)), then we set

µ(w3, [2, 1]) = (U z, · · ·U zU A DD · · · , t)
µ(w3, [1, 2]) = (U z, · · ·U z U A DD · · · , t)
µ(w3, [2, 2]) = (U z, · · ·U zU A DD · · · , t),

which make up three other possible patterns in Case 2.
It remains to prove the map µ is bijective. Note the union of the image set for these 3

cases is exactly the set (U z,Rn, {s, t}) and µ is injective by construction. Consequently,
eq. (7) holds.

Theorem 3. Let an denote the number of 2-dimensional rook paths from (0, 0) to (2n, 0).
Then the recurrence of an is given by

a0 = 1, a1 = 2,

an =
n+ 1

2(5n+ 2)
an+1 +

9(n− 1)

2(5n+ 2)
an−1. (8)

Proof. In combination of Lemma 1 and Lemma 2, we obtain

(n+ 1)an+1 + 9(n− 1)an−1

= 2(2n− 1) + 6 + 3
∑
M∈Rn

[(m11 +m21) + 2m12] + 9(n− 1)an−1

= 2(5n+ 2)an,

with initial condition a0 = 1 and a1 = 2.
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The combinatorial proof for the recurrence of rook paths can also be extended to the
combinatorial proof for the recurrence of multiple Dyck paths. Eq. (5) follows according
to the lemmas below.

Lemma 4. For each M∈ Dn, let n11, n12, n21, n22 count the occurrence of UU , UD, DU
and DD. Then for dn+1 = |Dn+1| we have

(n+ 2)dn+1 =
∑

M∈MDn

5(n11 + n21) + 8n12 + 2n22. (9)

Lemma 5. Under the assumptions of Lemma 4 we have∑
M∈MDn

2n12 + 3(n− 1)dn−1 = (n+ 1)dn. (10)

References

[1] M. Erickson, S. Fernando and K. Tran. Enumerating rook and Queen paths. Bull.
Inst. Combin. Appl., 60:37-48, 2010.

[2] D. Foata and D. Zeilberger. A classic proof of a recurrence for a very classical
sequence. J. Comb. Theor., Ser. A., 80:380-384, 1997.

[3] M. Kauers and D. Zeilberger. The computational challenge of enumerating high-
dimensional rook walks, arXiv:1011.4671v1 [math.CO] 21 Nov 2010.

[4] P. Peart and W. J. Woan. A bijective proof of the delannoy recurrence. Pro-
ceeding of the Thirty-third Southeastern International Conference on Combinatorics,
Graph Theory and Computing (Boca Raton, FL), 158:29-33. Congressus Numeran-
tium, 2002.
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