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Abstract

Let G be a graph. The core of G, denoted by G∆, is the subgraph of G induced
by the vertices of degree ∆(G), where ∆(G) denotes the maximum degree of G. A
k-edge coloring of G is a function f : E(G)→ L such that |L| = k and f(e1) 6= f(e2)
for all two adjacent edges e1 and e2 of G. The chromatic index of G, denoted by
χ′(G), is the minimum number k for which G has a k-edge coloring. A graph G is
said to be Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) = ∆(G)+1. In this paper it
is shown that every connected graph G of even order and with ∆(G∆) ≤ 2 is Class
1 if |G∆| ≤ 9 or G∆ is a cycle of order 10.

Keywords: chromatic index, edge coloring, class 1, core of a graph

1 Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple edges.
Let G be a graph. Then V (G) and E(G) denote the vertex set and the edge set of
G, respectively. The number of vertices of G is called the order of G and denoted by
|G|. Also, ∆(G) and δ(G) denote the maximum degree and the minimum degree of G,
respectively. The core of G, denoted by G∆, is the subgraph of G induced by all vertices
of degree ∆(G). We denote the cycle of order n by Cn. Let H be a subgraph of G. For
a vertex u of H, dH(u) denotes the degree of u in H, and for every vertex v of G, NH(v)
denotes NG(v) ∩ V (H), where NG(v) is the neighborhood of v in G.

A matching in a graph G is a set of pairwise non-adjacent edges, and a 1-factor is a
matching which covers V (G). A component H of G is called an odd component if H has
odd order, and the number of odd components of G is denoted by odd(G). For a subset
X ⊆ V (G) (Y ⊆ E(G)), G−X (G− Y ) denotes the graph obtained from G by deleting
all vertices (edges) of X (Y ), respectively. Moreover, for a subgraph H of G, by G −H
we mean the induced subgraph on V (G)− V (H).

A k-edge coloring of a graph G is a function f : E(G) −→ L such that |L| = k and
f(e1) 6= f(e2) for all two adjacent edges e1 and e2 of G. A graph G is k-edge colorable if
G has a k-edge coloring. The chromatic index of G, denoted by χ′(G), is the minimum
number k for which G has a k-edge coloring. For a general introduction to the edge
coloring, the interested reader is referred to [10].

A celebrated result due to Vizing [21] states that for every graph G, ∆(G) ≤ χ′(G) ≤
∆(G)+1. A graph G is said to be Class 1 if χ′(G) = ∆(G) and Class 2 if χ′(G) = ∆(G)+1.
Moreover, a connected graph G is called critical if it is Class 2 and G − e is Class 1 for
every edge e ∈ E(G). A graph G is called overfull if |E(G)| >

⌊ |V (G)|
2

⌋
∆(G). It is easy to

see that, if G is overfull, then G is Class 2. For more information about overfull graphs
see [12]. In [19] it was proved that there is no critical connected graph G of even order
with |G∆| ≤ 5.
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Let H,Q and R be subgraphs of G. We denote the number of edges of H with one end
point in Q and another end point in R by eH(Q,R). For a subset S ⊆ V (G), we denote
the induced subgraph of G on S by 〈S〉G.

Classifying a graph into Class 1 and Class 2 is a difficult problem in general (indeed,
NP hard), even when restricted to the class of graphs with maximum degree 3 (see [17]).
As a consequence, this problem is usually considered on classes of graphs with particular
classes of cores. One possibility is to consider a graph whose core has a simple structure
(see [3, 4, 7, 9, 11, 13, 14, 15, 16, 22]). Vizing [22] proved that, if G∆ has no edge, then
G is Class 1. Fournier [11] generalized Vizing’s result by proving that, if G∆ contains no
cycle, then G is Class 1. Thus a necessary condition for a graph to be Class 2 is to have
a core containing cycles. Hilton and Zhao [14, 15] considered the problem of classifying
graphs whose cores are a disjoint union of cycles. Only a few such graphs are known to
be Class 2. These include the overfull graphs and the graph P ∗, which is obtained from
the Petersen graph by removing one vertex and has order 9. Furthermore, they posed the
following conjecture.

Conjecture 1. Let G be a connected graph such that ∆(G∆) ≤ 2. Then G is Class 2 if
and only if G is overfull, unless G 6= P ∗.

In [6], the following theorem was proved:

Theorem 2. Let G be a connected graph with |G∆| = 3. Then G is Class 2 if and only
if for some integer n, G is obtained from K2n+1 by removing n− 1 independent edges.

An edge cut is a set of edges whose removal produces a subgraph with more components
than the original graph. So a k-edge-connected graph has no edge cut of size k − 1.

Two following results provide some conditions under which a graph G with |G∆| = 4
is Class 1.

Theorem 3. [5] Let G be a 2-edge-connected graph of even order with |G∆| = 4. Then G
is Class 1.

Theorem 4. [5] Let 3 ≤ r ≤ 4 be an integer and G be an (r− 2)-edge-connected graph of
order 2n+ 1 with |G∆| ≤ r. Then G is Class 2 if and only if |E(G)| ≥ n∆(G) + 1.

Theorem 5. [20] Let G be a critical connected graph with ∆(G) ≥ 3. Further suppose
that G has 2n+ 1 ≥ 7 vertices and |G∆| = 5. Then |E(G)| = n∆(G) + 1.

The following useful result, which follows from Vizing’s Adjacency Lemma [8], is given
in Schrijver’s homepage [18, p.1765].

Theorem 6. Suppose k is a natural number. Let v be a vertex of a graph G such that v
and all its neighbors have degree at most k, while at most one neighbor has degree precisely
k. Then G is k-edge colorable if G− {v} is k-edge colorable.

The previous theorem implies the following well-known result which is due to Fournier.

Theorem 7. [11] If G∆ is a forest, then G is Class 1.
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Theorem 8. [15] Let G be a connected graph of Class 2 and ∆(G∆) ≤ 2. Then the
following statements hold.

(i) G is critical;
(ii) δ(G∆) = 2;
(iii) δ(G) = ∆(G)− 1, unless G is an odd cycle.

Theorem 9. [15] Let G be a critical connected graph. Then every vertex of G is adjacent
to at least two vertices of G∆.

Theorem 10. [1] Let G be a connected graph with ∆(G∆) ≤ 2. Suppose that G has an
edge cut of size at most ∆(G)− 2 which is a matching or a star. Then G is Class 1.

A connected graph is called unicyclic if it contains precisely one cycle.

Theorem 11. [1] Let G be a connected graph. If every component of G∆ is a unicyclic
graph or a tree and G∆ is not a disjoint union of cycles, then G is Class 1.

Theorem 12. [1] Let G be a connected graph of even order. If ∆(G∆) ≤ 2 and |G∆| is
odd, then G is Class 1.

Now, we are in a position to prove our main theorem.

Theorem 13. Let G be a connected graph of even order and with ∆(G∆) ≤ 2. If |G∆| ≤ 9
or G∆ = C10, then G is Class 1.

Proof. For simplicity, let ∆ = ∆(G). The proof is by induction on ∆+|G|. First note that
if δ(G∆) ≤ 1 or δ(G) < ∆− 1 or there exists a vertex x ∈ V (G) such that |NG∆

(x)| ≤ 1,
then by Theorems 8 and 9, G is Class 1 and we are done. Thus, one can easily assume
that G∆ is a disjoint union of cycles, δ(G) = ∆− 1 and

|NG∆
(x)| ≥ 2 for every x ∈ V (G). (1)

By (1), we find that 2(|G| − |G∆|) ≤ eG(G∆, G−G∆) = (∆− 2)|G∆|, and so

|G| ≤ ∆|G∆|
2

≤ 5∆. (2)

Moreover, if |G∆| is odd, then by Theorem 12, G is Class 1. Thus we can assume that

|G∆| is even, G∆ is a disjoint union of cycles and |G∆| ≤ 8 or G∆ = C10. (3)

Note that since G∆ is a disjoint union of cycles, ∆ ≥ 2. If ∆ = 2, then by the connectivity
of G, G is a cycle of even order and so G is Class 1. If ∆ = 3, then since |G| is even,
by Theorem 2, the assertion is proved. So we may assume that ∆ ≥ 4. If G has an edge
cut of size at most 2, then by Theorem 10, G is Class 1 and we are done. Thus we can
suppose that G is 3-edge connected. First we prove the following claim.

Claim 14. G has a 1-factor.

the electronic journal of combinatorics 19 (2012), #P58 4



To the contrary, by Tutte’s 1-factor Theorem [2, p.44] and by the assumption that G
is of even order, there exists a non-empty subset T ⊆ V (G) such that odd(G− T ) > |T |.
Let m = odd(G − T ). Since |G| is even, we have m ≡ |T | (mod 2), which implies that
m ≥ |T | + 2. First assume T = {u}. Then there exists a component D of G − T such
that eG(u,D) ≤ ∆− 2 by m ≥ 3. So by Theorem 10, G is Class 1 and we are done. Thus
we may assume |T | ≥ 2.

Let B1, . . . , Bc (big) and S1, . . . , Sd (small) be the odd components of G−T such that
|Bi| ≥ ∆ for every 1 ≤ i ≤ c and |Sj| ≤ ∆ − 1 for every 1 ≤ j ≤ d, where m = c + d.
Since |T | ≤ m− 2,

|T | ≤ c+ d− 2. (4)

Also, since G is 3-edge connected,

eG(T,Bi) ≥ 3 for every 1 ≤ i ≤ c.

For every 1 ≤ j ≤ d, since 1 ≤ |Sj| ≤ ∆− 1 = δ(G), the following hold:

eG(T, Sj) =
∑

x∈V (Sj)

eG(T, x)

≥ (δ(G)− (|Sj| − 1))|Sj|
≥ (∆− |Sj|)|Sj| (5)

≥ ∆− 1. (6)

Let q = |T ∩ V (G∆)| and r = |E(〈T 〉G) ∩ E(G∆)|. Since G∆ is a 2-regular graph of
order at most 10, the number of edges of G∆ joining T to V (G)− T satisfies

2q − 2r = eG∆
(T,G− T ) ≤ 2(|G∆| − q) ≤ 2(10− q).

Hence
q ≤ 5 +

r

2
. (7)

Since |NG∆
(x)| ≥ 2 for every x ∈ V (G), |Bj| ≥ ∆ and since G is 3-edge connected, we

obtain that

eG(T,Bj) ≥


3 if |V (Bj) ∩ V (G∆)| ≥ 2,
∆ + 1 if |V (Bj) ∩ V (G∆)| = 1,
2∆ otherwise.

(8)

Let c0, c1 and c2 be the number of components Bj’s such that |V (Bj) ∩ V (G∆)| = 0,
|V (Bj)∩V (G∆)| = 1 and |V (Bj)∩V (G∆)| ≥ 2, respectively. It is easy to see that c2 ≤ 3
by |G∆| ≤ 10. Moreover, c = c0 + c1 + c2 and

eG(T,B1 ∪ · · · ∪Bc) ≥ 3c2 + (∆ + 1)c1 + 2∆c0

= (∆− 1)c− (∆− 4)c2 + 2c1 + (∆ + 1)c0. (9)
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Obviously, using (6) and (9), we have

q − 2r + |T |(∆− 1)

= q∆− 2r + (|T | − q)(∆− 1)

≥ eG(T,B1 ∪ · · · ∪Bc ∪ S1 ∪ · · · ∪ Sd) (10)

≥ (∆− 1)c− (∆− 4)c2 + 2c1 + (∆ + 1)c0 + (∆− 1)d. (11)

This implies that

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − 2c1 − (∆ + 1)c0 ≥ 0. (12)

On the other hand, by (4) and (7), we obtain that

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − 2c1 − (∆ + 1)c0

≤ −2(∆− 1) + 5− 3r

2
+ (∆− 4)c2 − 2c1 − (∆ + 1)c0. (13)

Hence, if c2 ≤ 2, then

(|T | − c− d)(∆− 1) + q − 2r + (∆− 4)c2 − c1 − (∆ + 1)c0 < 0. (14)

This contradicts (12). Thus, one can assume that c2 = 3 by c2 ≤ 3. If c0 ≥ 1, then
similarly (14) holds by (13), and we get a contradiction. So, c0 = 0. We shall show that

c = c2 = 3 and V (G∆) ⊆ T ∪ (∪3
i=1Bi). (15)

Suppose, to the contrary, that there exists a component D of G − (T ∪ (∪3
i=1Bi)) such

that |V (D) ∩ V (G∆)| ≥ 1. Now, since c2 = 3 and |G∆| ≤ 10, we have q ≤ 3. Note that if
q ≤ 1, then G∆ is a disjoint union of at least four cycles, a contradiction. If q = 2, then
G∆ consists of at least three cycles and |G∆| ≥ 11, a contradiction. If q = 3, then G∆

consists of at least two cycles and |G∆| ≥ 11, a contradiction. Therefore (15) holds.
By (15), G∆ passes through exactly three components of G− T . By (11) and (15),

q − 2r + |T |(∆− 1) ≥ 9 + (∆− 1)d. (16)

Now, if d ≥ |T |, then by ∆ ≥ 4,

q − 2r ≥ 9 + (d− |T |)(∆− 1) ≥ 9,

which contradicts (7). Thus, we can suppose that d ≤ |T | − 1. Now, by c = 3 and (4),

d = |T | − 1. (17)

By (5), (8), (10) and (15), we obtain that

q − 2r + |T |(∆− 1) ≥ 9 +
d∑

j=1

(∆− |Sj|)|Sj|.
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Thus

(|T | − d)(∆− 1) + q − 2r − 9−
d∑

j=1

(
(∆− |Sj|)|Sj| − (∆− 1)

)
≥ 0. (18)

On the other hand, by (7) and (17), we find that

(|T | − d)(∆− 1) + q − 2r − 9−
d∑

j=1

(
(∆− |Sj|)|Sj| − (∆− 1)

)
≤ ∆− 10 + 5− 3

2
r −

d∑
j=1

(
(∆− |Sj|)|Sj| − (∆− 1)

)
.

If ∆ = 4, then |Sj| = 1 or 3 and so (∆− |Sj|)|Sj| − (∆− 1) = 0 for all j. Thus

∆− 10 + 5− 3

2
r −

d∑
j=1

(
(∆− |Sj|)|Sj| − (∆− 1)

)
= 4− 10 + 5− 3

2
r

= −1− 3

2
r < 0.

This contradicts (18). Hence ∆ ≥ 5. If 3 ≤ |Sk| ≤ ∆ − 2 for some k, then −
(
(∆ −

|Sk|)|Sk| − (∆− 1)
)
≤ −∆ + 3. So,

∆− 10 + 5− 3

2
r −

d∑
j=1

(
(∆− |Sj|)|Sj| − (∆− 1)

)
≤ ∆− 10 + 5− 3

2
r −∆ + 3

= −2− 3

2
r < 0.

This contradicts (18). Therefore, since |Sj| is odd, we conclude that

∆ ≥ 5, and |Sj| = 1 or ∆− 1 for every 1 ≤ j ≤ d. (19)

By (6), (15), (17) and by the fact that every vertex u of T is adjacent to at least two
vertices of G∆, we find that

|T |(∆− 2) ≥ eG(T,∪dj=1Sj) ≥ d(∆− 1) = (|T | − 1)(∆− 1). (20)

This concludes that |T | ≤ ∆− 1.
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First assume that |Sk| = 1 for some k, 1 ≤ k ≤ d. Let V (Sk) = {w}. Then since
dG(w) = ∆− 1, |T | ≥ ∆− 1. Thus |T | = ∆− 1 and d = ∆− 2 by (17). It follows from
(2) that

4∆− 1 +
∆−2∑
j=1

|Sj| ≤ |T |+ |B1|+ |B2|+ |B3|+
d∑

j=1

|Sj| ≤ |G| ≤ 5∆.

Hence |Sj| = 1 for all 1 ≤ j ≤ d by (19). Let Sj = {xj}, 1 ≤ j ≤ d. Then NG(xj) = T
for every j, and so for every vertex u ∈ T , eG(u,∪dj=1Sj) = d = ∆ − 2, which implies
dG(u) = ∆ as |NG∆

(u)| ≥ 2. So T ⊂ V (G∆) and eG(u,∪3
i=1Bi) ≤ 2 for every u ∈ T . Now,

since c2 = 3, q ≤ 4 and eG(T,Bi) ≥ 3, we obtain

3× 3 ≤ eG(T,B1 ∪B2 ∪B3) ≤ |T | × 2 = q × 2 ≤ 8.

This is a contradiction.
Next, suppose that |Sj| = ∆ − 1 for every 1 ≤ j ≤ d. Then it follows from (1) and

(15) that eG(T, Sj) ≥ 2|Sj| = 2∆− 2 for every 1 ≤ j ≤ d and eG(u,∪dj=1Sj) ≤ ∆− 2 for
every u ∈ T . Then similar to (20), we have

|T |(∆− 2) ≥ eG(T,∪dj=1Sj) ≥ (|T | − 1)(2∆− 2),

and so |T | = 1. This is a contradiction with |T | ≥ 2. Consequently the proof of the claim
is complete.

Now, let M be a 1-factor of G, and H = G−M . Then ∆(H) = ∆−1, δ(H) = δ(G)−1,
V (H∆) = V (G∆), H∆ ⊆ G∆, δ(H∆) ≥ δ(G∆)− 1 = 1, and by (1),

|NH(v) ∩ V (H∆)| ≥ 1 for every v ∈ V (H). (21)

It is obvious that if H is Class 1, then so is G. Thus we can assume that H is Class 2. In
particular, H is not connected since otherwise by induction hypothesis, H is Class 1.

Claim 15. G∆ consists of exactly two disjoint cycles.

By (3), G∆ is a disjoint union of cycles. Now, suppose that G∆ is a cycle. If δ(H∆) = 1,
then by Theorem 7, every component of H is Class 1, and so is H, a contradiction. Hence
we may assume that H∆ is a cycle. By (21), H is connected, a contradiction. Thus G∆

is a disjoint union of at least two cycles. By (3), G∆ is a disjoint union of two cycles.
Therefore the claim is proved.

Now, we want to show that H has a component whose core is a cycle. First note that
by (21), every component of H contains at least one vertex of H∆. If the core of each
component of H has a vertex of degree 1, then by Theorem 8, each component of H is
Class 1 and so H is Class 1, a contradiction. Thus H contains at least one component,
say Q, whose core is a disjoint union of cycles. If Q∆ contains exactly two cycles, then by
(21) Q = H. Thus H is connected, a contradiction. Therefore Q∆ is a cycle.
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Let R = H − Q. Clearly, since |G| is even, |Q| ≡ |R| (mod 2). First assume that
Q has even order. Then by induction hypothesis Q is Class 1. Moreover, if the core of
R is not a cycle, then by Theorem 7, R is Class 1. If the core of R is a cycle, then R
is connected, and since |R| is even, by induction hypothesis R is Class 1, and so is H, a
contradiction. Therefore we may assume that both Q and R have odd orders. Since H
is Class 2 and by the fact that if the core of R is not a cycle, then R is Class 1, we may
assume that Q is Class 2.

Let Ck = Q∆ be a cycle of order k ∈ {3, 4, 5}. We need the following claims.

Claim 16. |Q| = ∆− 3 + k.

Let |Q| = 2h + 1. Since Q is Class 2 and ∆(Q) = ∆− 1 ≥ 3, by Theorems 8 and 10,
Q is critical and 2-edge connected. Moreover, if Q∆ = C5, then |Q| ≥ 7. Since Q∆ = Ck,
k ∈ {3, 4, 5}, it follows from Theorems 4, 5 and 8 that

k(∆− 1) + (2h+ 1− k)(∆− 2)

2
= |E(Q)| ≥ h(∆− 1) + 1.

Thus |Q| = 2h+ 1 ≤ ∆− 3 + k. On the other hand,

|Q| ≥ |Ck|+ |NQ(x) ∩ V (Q− Ck)| = k + ∆− 3 for every x ∈ V (Ck)

since Q∆ = Ck and ∆(Q) = ∆ − 1. Thus |Q| = ∆ − 3 + k and NQ(x) ⊇ V (Q) − V (Ck)
for every x ∈ V (Ck). Therefore the claim is proved, and the following (22) holds.

xy ∈ E(Q) for every x ∈ V (Q∆) and y ∈ V (Q)− V (Q∆). (22)

Let F = {u1v1, . . . , utvt} be the set of those edges of M such that ui ∈ V (Q) and
vi ∈ V (R) for every 1 ≤ i ≤ t. We show that V (Q∆) ⊆ {u1, . . . , ut}. To the contrary,
let x ∈ V (Q∆) \ {u1, . . . , ut}. Since M covers all vertices of G, there exists a vertex
y ∈ V (Q) − {u1, . . . , ut} such that xy ∈ M . If y ∈ V (Q∆), then since x ∈ V (Q∆), Q∆

is not a cycle, a contradiction. If y 6∈ V (Q∆), then xy ∈ M contradicts (22). Since
Q∆ = Ck, without loss of generality, we may assume that

V (Q∆) = {u1, . . . , uk} ⊆ {u1, . . . , ut},

where uiui+1 ∈ E(Q∆) for all 1 ≤ i ≤ k − 1 and uku1 ∈ E(Q∆). (23)

Moreover, since G∆ is an induced subgraph of G and Q∆ = Ck, we have

uivi 6∈ E(G∆) for i = 1, . . . , t, (24)

and
V (R∆) ∩ {v1, . . . , vk} = ∅. (25)

Now, we want to give a lower bound for t = |F |. First note that if |F | ≤ ∆ − 2,
then by Theorem 10, G is Class 1. Now, suppose that |F | = ∆ − 1. Let Q′ = G − R
and R′ = G − Q. Add a new vertex w1 and join w1 to each ui, 1 ≤ i ≤ t, and denote
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the resultant graph by Q′′. Also, do the same thing for R′ with a new vertex w2, and
denote the resultant graph by R′′. Since |G| > |R′′|, |Q′′| and ∆(G) ≥ ∆(R′′),∆(Q′′), by
the induction hypothesis both Q′′ and R′′ have a ∆-edge coloring with colors {1, . . . ,∆}.
By a suitable permutation of colors, one may assume that c(w1ui) = c(w2vi) = i for
i = 1, . . . ,∆−1, where c(e) denotes the color of e. Then by assigning color i to each edge
uivi, i = 1, . . . ,∆− 1, we obtain a ∆-edge coloring of G and so G is Class 1.

Hence we can assume that |F | ≥ ∆. Now, since |Q| = ∆− 3 + k and k ≤ 5, we have
|Q| ≤ ∆ + 2. This implies that

∆ ≤ |F | ≤ ∆ + 2. (26)

By (22) and since δ(Q) = ∆ − 2, for every y ∈ V (Q) − V (Q∆), we have ∆ − 2 ≥
dQ(y) ≥ k, which implies

∆ ≥ k + 2. (27)

Now, we want to prove the following claim.

Claim 17. If {uiuj, vivj} ⊆ E(G) for some i, j ∈ {1, . . . , t}, then G is Class 1.

Consider M ′ = (M − {uivi, ujvj}) ∪ {uiuj, vivj}. Let Q′ = Q − {uiuj} and R′ =
R − {vivj}. We claim that G′ = G −M ′ is Class 1. We show that there exists a path
which joins a vertex of Q′∆ to a vertex of R′∆ in G′. First note that since Q is Class 2,
by Theorems 8 and 9, every v ∈ V (Q) satisfies |NQ∆

(v)| ≥ 2. Thus, |NQ′
∆

(ui)| ≥ 1 and
|NQ′

∆
(uj)| ≥ 1. Moreover, by (21), |NR∆

(v)| ≥ 1 for every v ∈ V (R). Now, if vj 6∈ V (R∆),
then since |NR∆

(vi)| ≥ 1, |NR′
∆

(vi)| ≥ 1 which implies that there exists a path which joins
a vertex of Q′∆ to a vertex of R′∆ in G′. If vj ∈ V (R∆), then there exists a path which
joins vj to a vertex of Q′∆ in G′.

If R∆ is a cycle, then G′ is connected and by induction hypothesis, G′ is Class 1 and
so G is Class 1. Otherwise, for every component K of G′, δ(K∆) = 1 and ∆(K∆) ≤ 2.
Thus by Theorem 8, G′ is Class 1, so is G and the claim is proved.

Now, two cases may be occurred. First suppose that Q and R are Class 2. Then by
(3) and since Q∆ is a cycle, we can suppose that R∆ = Cr, for r = 3, 4, 5. So, similar to
the proof of Claim 16, |R| = ∆−3+r. Now, similar to (23) and with no loss of generality,
one can assume that vt ∈ V (R∆) and so by (24), ut 6∈ V (Q∆) and v1 6∈ V (R∆) and so
u1ut ∈ E(Q) and v1vt ∈ E(R), by (22). By Claim 17, G is Class 1 and we are done.

Next, assume that Q is Class 2 and R is Class 1. First we prove the following claim.

Claim 18. If |NR∆
(vi)| + |NR∆

(vi+1)| ≤ 3 for some 1 ≤ i ≤ k (mod k), then G is Class
1.

Without loss of generality, suppose that |NR∆
(v1)|+ |NR∆

(v2)| ≤ 3. First note that if
v1v2 ∈ E(G), then by Claim 17, G is Class 1 and we are done. So, suppose that v1v2 6∈
E(G). By (1) and assumptions, we can assume that |NR∆

(v1)| = 1 and |NR∆
(v2)| ≤ 2.

Let NR∆
(v1) = {x}. Now, consider Q − {u1u2}, add a new vertex w1 and join w1 to u1

and u2. Then call the resultant graph by Q′. Clearly, ∆(Q′) = ∆(Q) = ∆− 1. Note that
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since ∆ ≥ 4, Q′∆ is a path and by Theorem 7, Q′ has a (∆− 1)-edge coloring with colors
{1, . . . ,∆− 1}. Moreover, we can assume that c(w1u1) = 1 and c(w1u2) = 2.

Now, add a new vertex w2 to R, join w2 to v1 and v2 and call the resultant graph by
R′. By (25), V (R∆) ∩ {v1, v2} = ∅ and so ∆(R′) = ∆(R) = ∆ − 1. We claim that R′

is Class 1. Let R′′ = R′ − {v1}. Thus dR′′(w2) = 1 and dR′′(x) = ∆ − 2 which implies
that x 6∈ V (R′′∆). We claim that every component K of R′′ is Class 1 and so is R′′. If
δ(K∆) ≤ 1, then by Theorem 11, K is Class 1. If K∆ is a cycle, then clearly w2 ∈ V (K).
Now, by Theorem 8 and since 1 = δ(K) < ∆(K)− 1, K is Class 1. This implies that R′′

is Class 1. Now, by Theorem 6, since dR(v1) = ∆− 1 and dR(x) = ∆− 1 and R′′ is Class
1, R′ has a (∆ − 1)-edge coloring with colors {1, . . . ,∆ − 1}. Moreover, we can assume
that c(w2v1) = 1 and c(w2v2) = 2. Now, color u1v1 and u2v2 by 1 and 2, respectively and
then color every edge f ∈ (F − {u1v1, u2v2}) ∪ {u1u2} by ∆ to obtain a ∆-edge coloring
of G and the claim is proved.

So, we can assume that

|NR∆
(vi)|+ |NR∆

(vi+1)| ≥ 4 for i = 1, . . . , k (mod k). (28)

This implies that
k∑

i=1

|NR∆
(vi)| ≥ 2k.

Moreover, since V (G∆) ∩ {uk+1, . . . , ut} = ∅, (1) yields that |NR∆
(vi)| ≥ 2 for i = k +

1, . . . , t. This implies that
t∑

i=1

|NR∆
(vi)| ≥ 2t. (29)

Now, we want to prove the following claim. Let L = R− {v1, . . . , vt}.

Claim 19. Let uiuj ∈ E(G) for some i, j ∈ {1, . . . , t} and xy ∈ M ∩ E(L). If vix, vjy ∈
E(G), then G is Class 1.

Consider M ′ = (M − {uivi, ujvj, xy}) ∪ {uiuj, vix, vjy}. Let G′ = G − M ′. Now,
remove two edges vix and vjy of R and add xy to the edges of R and call the resultant
graph by R′. By (28) and with no loss of generality, one can assume that |NR∆

(vi)| ≥ 2.
This implies that vi is adjacent to at least one vertex of R′∆. Also, since Q is Class 2, by
Theorems 8 and 9, |NQ′

∆
(ui)| ≥ 1, where Q′ = Q−{uiuj}. Thus there exists a path which

joins one vertex of Q′∆ to a vertex of R′∆. Now, if G′ is connected, then by induction
hypothesis, G′ is Class 1 and so G is Class 1. Otherwise, since there exists a path which
joins one vertex of Q′∆ to a vertex of R′∆, for every component K of G′, δ(K∆) ≤ 1 and
∆(K∆) ≤ 2. Thus by Theorem 8, K is Class 1 and so is G′. This implies that G is Class
1 and the claim is proved.

By (23), V (Q∆) ∩ {u1, . . . , ut} = {u1, . . . , uk}, where k = 3, 4, 5. Now, by (22),
uiuj ∈ E(Q) for i = 1, . . . , k and j = k + 1, . . . , t. Note that dQ(ui) = ∆ − 1 and
dQ(uj) = ∆ − 2 for i = 1, . . . , k and j = k + 1, . . . , t, respectively. Now, by Claim 16, ui
is not adjacent to exactly k− 3 vertices in the set {u1, . . . , ut} for i = 1, . . . , k. Moreover,
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uj is not adjacent to at most k − 2 vertices in the set {u1, . . . , ut} for j = k + 1, . . . , t.
Note that if {uiuj, vivj} ⊆ E(G), for some i, j ∈ {1, . . . , t}, then by Claim 17, G is Class
1 and we are done. Thus, we can suppose that for k = 3, 4, 5,

|NR(vi) ∩ {v1, . . . , vt}| ≤ k − 3 for i = 1, . . . , k,

|NR(vj) ∩ {v1, . . . , vt}| ≤ k − 2 for j = k + 1, . . . , t.

Since dR(vi) ≥ ∆− 2 for i = 1, . . . , t, we conclude that for k = 3, 4, 5,

eR(vi, L) ≥ ∆− k + 1 for i = 1, . . . , k. (30)

eR(vj, L) ≥ ∆− k for j = k + 1, . . . , t. (31)

Now, two cases may be occurred:
First suppose that |L| ≤ 2∆ − 2k + 2. Let M ∩ E(L) = {x1y1, . . . , xmym}. Thus

m ≤ ∆− k + 1. With no loss of generality, suppose that

NR(v1) ∩ V (L) = {x1, . . . , xs+t, y1, . . . , ys}.

Thus by (30),
2s+ t ≥ ∆− k + 1 for some s, t. (32)

Now, if
{x1, . . . , xs, y1, . . . , ys+t} ∩ (NR(v2) ∩ V (L)) 6= ∅,

then since u1u2 ∈ E(Q) by Claim 19, we are done. So, we can suppose that

NR(v2) ∩ V (L) ⊆ {xs+1, . . . , xm, ys+t+1, . . . , ym}.

Thus by (30), (32) and since |L| ≤ 2∆− 2k + 2,

|NR(v2) ∩ V (L)| ≤ 2∆− 2k + 2− (2s+ t)

≤ 2∆− 2k + 2− (∆− k + 1)

= ∆− k + 1.

So, by (30),
NR(v2) ∩ V (L) = {xs+1, . . . , xm, ys+t+1, . . . , ym}

and |L| = 2∆− 2k + 2. Now, if

{xs+t+1, . . . , xm, ys+1, . . . , ym} ∩ (NR(v3) ∩ V (L)) 6= ∅,

then since u2u3 ∈ E(Q) by Claim 19, we are done. So, by a similar argument as we did
for v2, we conclude that

NR(v3) ∩ V (L) = {x1, . . . , xs+t, y1, . . . , ys}.

the electronic journal of combinatorics 19 (2012), #P58 12



Now, we do this procedure for vi, i ≤ k and so{
N(vk+1) ⊆ N(v1) if k is even

N(vk+1) ⊆ N(v2) if k is odd.

Now, if s ≥ 1, then with no loss of generality one may assume that there exists an edge
xiyi for some i = 1, . . . , t such that{

{v1xi, vk+1yi} ⊆ E(Q) if k is even

{v2xi, vk+1yi} ⊆ E(Q) if k is odd.

Moreover, by (22), {u1uk+1, u2uk+1} ⊆ E(Q) and so by Claim 19, G is Class 1. Thus we
can suppose that s = 0 and so

N(vi) ⊆ {x1, . . . , xm} for i = 1, . . . , t.

Now, by pigeonhole principle, (26), (30) and (31), for some i = 1, . . . , t,

dR(xi) ≥
k(∆− k + 1) + (∆− k)2

∆− k + 1
.

Now, by (27), dR(xi) > ∆− 1, a contradiction.
Now, suppose that |L| > 2∆ − 2k + 2. Note that since M is a 1-factor, L has even

order. Thus we can suppose that

|L| ≥ 2∆− 2k + 4. (33)

By (26), let |F | = ∆ + i, where i = 0, 1, 2. Therefore we find

|R| ≥ 3∆− 2k + 4 + i. (34)

Now, we want to determine an upper bound for |R|. Suppose that |R∆| = r. Let X be
the set of those vertices of L−R∆ such that |NR∆

(x)| = 1. So, for every y ∈ L−(X∪R∆),
|NR∆

(y)| ≥ 2. Note that since G∆ is a disjoint union of cycles, the minimum degree of
the core of every component of H∆ is at least 1. Thus, for every w ∈ V (R∆), since
dR(w) = ∆ − 1, eR(w,R − R∆) ≤ ∆ − 2. Moreover, let NG∆

(x) = {vx, wx} such that
NR∆

(x) = {vx}. Clearly, |X| = |{wx |x ∈ X}| and so eR(wx, R − R∆) ≤ ∆ − 3. Let
|V (R∆) ∩ {v1, . . . , vt}| = d. Now, since V (R∆) ∩ {v1, . . . , vk} = ∅, by (28), (29) we find
that

2(t− d) + |X|+ 2(|R| − (t+ |X|+ r − d))

≤ eR(R∆, R−R∆)

≤ |X|(∆− 3) + (r − |X|)(∆− 2).

This implies that

|R| ≤ r∆

2
. (35)
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Now, by (34),

3∆− 2k + 4 + i ≤ r∆

2
.

Since r ∈ {3, 4, 5}, this implies that

∆ ≤ 4k − 8− 2i

6− r
. (36)

Now, three cases can be considered:
(i) r = 3. Since G∆ has even order, k ∈ {3, 5}. So, by Claim 16 and since |Q| is odd,

∆ is odd. Now, by (36), ∆ ≤ 4. Thus ∆ = 4, a contradiction.
(ii) r = 4. Since G∆ has even order, k = 4. Moreover, by Claim 16, |Q| = ∆ + 1 and

so i = 1. Thus, by (36) we conclude that ∆ ≤ 3, a contradiction.
(iii) r = 5. Since G∆ has even order and |G∆| ≤ 8, k = 3. Moreover, by Claim 16

and since |Q| is odd, ∆ is odd. Now, by (36), ∆ ≤ 3, a contradiction and the proof is
complete.

The following remark states that why the main idea of the proof of Theorem 13 fails
for general graphs.

Remark. In [1], it is shown that if G is a connected graph of even order, ∆(G∆) ≤ 2
and |G∆| is odd, then G is Class 1. Thus as we mentioned in the proof of Theorem 13,
it suffices to prove the assertion for |G∆| ≤ 8. We know that if G is Class 2, then G∆ is
a 2-regular graph and since the number of vertices of G∆ is small and indeed at most 8,
G∆ is a disjoint union of at most two cycles. In our proof, first we proved the existence
of a 1-factor M in G. Next, we considered G−M . The worst case was whenever G−M
is not connected, one of its components is Class 2 with odd number of vertices, and
moreover its core has exactly one cycle. There are useful results in connection to graphs
whose cores have order at most 5, see [5],[6],[19] and [20]. Indeed, if G∆ has order more
than 9 in the aforementioned part of the proof of Theorem 13, that component which is
Class 2 maybe have a core with more than 5 vertices and there is no good information
about the structure of such graphs. Therefore, we have some serious problems to prove
Theorem 13 for the graphs with large cores.

Acknowledgments. The authors would like to express their deep gratitude to the
referee for her/his fruitful comments.
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