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Abstract

Let p ≥ 5 be prime. We determine the full automorphism groups of Cayley
digraphs of Zp × Zp2 .

1 Introduction

Determining the full automorphism group of a Cayley digraph of a group G is perhaps one
of the most fundamental questions that one can ask about a Cayley digraph, and seems
to be a very difficult question to answer. In recent years, progress towards solving this
problem has begun, usually focusing on Cayley digraphs of specific groups G or Cayley
digraphs that have particular properties, such Cayley digraphs that 1/2-transitive, or
edge-transitive. The groups G for which the full automorphism groups of Cayley digraphs
of G have been explicitly determined are G = Zp [1], Z2

p [15], Zp2 [18] (see [15] for a later
proof), Zpq [18] (see [10] for a later proof), the nonabelian groups of order pq [10], and
Z3

p [12], where p and q are distinct primes. Additionally, strong constraints on the structure
of the full automorphism group of Cayley digraphs of Zn have been obtained (see [20]),
and independently for n square-free [13]. Using these constraints, Ponomarenko [22] has
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found a polynomial time algorithm to compute the full automorphism group of circulant
digraphs. In this paper, we determine the full automorphism groups of Cayley digraphs
of Zp × Zp2 , p ≥ 5. Our approach basically follows the approach used to determine the
full automorphism groups of Cayley digraphs of Z3

p given in [12]. We use the implicit
determination of all Sylow p-subgroups of Cayley digraphs of Zp × Zp2 given in [8], and
then either determine the overgroups of these p-subgroups or use known results giving the
overgroups of these p-groups.

For permutation group terms not defined here, see [6]. We begin with some definitions,
and then state some of the many results in the literature that we will have need of.

Definition 1 Let G be a group and S ⊂ G such that 1G 6∈ S. Define a digraph D =
D(G,S) by V (D) = G and E(D) = {(u, v) : v−1u ∈ S}. Such a digraph is a Cayley
digraph of G with connection set S. A Cayley graph of G is defined analogously although
we insist that S = S−1 = {s−1 : s ∈ S}. A circulant (di)graph of order n is simply a
Cayley (di)graph of Zn.

It is straightforward to verify that for g ∈ G, the map gL : G → G by gL(x) = gx is
an automorphism of a Cayley digraph D of a group G. Thus GL = {gL : g ∈ G}, the
left regular representation of G, is a subgroup of the automorphism group of D, Aut(D).
Sabidussi has shown [23] that a digraph D is isomorphic to a Cayley digraph of D if and
only if Aut(D) contains a regular subgroup isomorphic to G.

Definition 2 Let G be a transitive permutation group with complete block system B. We
say that B is genuine if B is formed by the orbits of some normal subgroup of G. By G/B,
we mean the subgroup of SB induced by the action of G on B, and by fixG(B) the kernel of
this action. Thus fixG(B) = {g ∈ G : g(B) = B for all B ∈ B}. By StabG(B), we mean
the set-wise stabilizer in G of the block B ∈ B. Hence StabG(B) = {g ∈ G : g(B) = B},
and fixG(B) = ∩B∈BStabG(B). If C is a complete block system of G such that every block
of C is a union of blocks of B, we write B � C, and denote the complete block system of
G/B induced by C by C/B. Thus C/B ∈ C/B consists of those blocks of B whose union is
C ∈ C.

In most situations, we will be determining all 2-closed groups, which are a slightly
larger class of groups than automorphism groups of digraphs, and are defined below.

Definition 3 Let Ω be a set and G ≤ SΩ. Let G act on Ω×Ω by g(ω1, ω2) = (g(ω1), g(ω2))
for every g ∈ G and ω1, ω2 ∈ Ω. We define the 2-closure of G, denoted G(2), to be the
largest subgroup of SΩ whose orbits on Ω×Ω are the same as G’s. Let O1, . . . ,Or be the
orbits of G acting on Ω × Ω. Define digraphs Γ1, . . . ,Γr by V (Γi) = Ω and E(Γi) = Oi.
Each Γi, 1 ≤ i ≤ r, is an orbital digraph of G, and it is straightforward to show that
G(2) = ∩ri=1Aut(Γi). Equivalently, G(2) is the automorphism group of a color digraph.

Definition 4 For a positive integer n, define N(n) = {x → ax + b : a ∈ Z∗n, b ∈ Zn}.
Thus N(n) is the normalizer of the left regular representation (Zn)L of Zn in Sn. We
remark that for p a prime, N(p) is usually denoted AGL(1, p).
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The following classical result of Burnside [2] is quite useful for analyzing transitive
groups of prime degree, especially now that, as a consequence of the Classification of Finite
Simple Groups, all doubly transitive groups are known [3]. We remark that the following
versions of this result also makes use another of Burnside’s results, namely [6, Theorem
4.1B].

Theorem 5 Let G be a transitive group of prime degree. Then either G is doubly tran-
sitive with nonabelian simple socle, or G contains a normal Sylow p-subgroup.

Equivalently (see [6, Exercise 3.5.1]), we have

Theorem 6 Let G be a transitive group of prime degree p. Then we may relabel the
set upon which G acts so that G ≤ AGL(1, p), or G is doubly transitive with nonabelian
simple socle.

The following result is [9, Theorem 33], and is an extension of the previous result to
prime-powers.

Theorem 7 Let p ≥ 3 be prime, and G ≤ Spm, m ≥ 1, be transitive such that every
minimal transitive subgroup of G is cyclic. Then either G contains a transitive normal
Sylow p-subgroup, or G is doubly-transitive and

1. G = Apm or Spm, and m = 1,

2. PSL(n, k) ≤ G ≤ PΓL(n, k), for some prime power k and n ≥ 2 with pm = (kn −
1)/(k − 1),

3. PSL(2, 11) or M11 and pm = 11,

4. M23 and pm = 23.

The following is [9, Lemma 17], and gives more information concerning some of the
doubly-transitive groups of the preceding result.

Lemma 8 Let PSL(n, k) ≤ G ≤ PΓL(n, k) be primitive of degree (kn − 1)/(k− 1) = pm,
where k is a prime power, n ≥ 2, p an odd prime, and m ≥ 1. If (n, k) 6= (2, 8),
then a Sylow p-subgroup of PΓL(n, k) is regular and cyclic, and so a Sylow p-subgroup
of G is regular and cyclic. Consequently, if N(pm) ≤ G, m ≥ 2, then pm = 9 and
PSL(2, 23) < G ≤ PΓL(2, 23).

The following definition and result are very useful in determining Sylow p-subgroups
of automorphism groups of Cayley digraphs of prime-power order (among other things).

Definition 9 Let G be a transitive permutation group that admits a complete block system
B of m blocks of size p, p a prime, and B is formed by the orbits of some normal subgroup
N / G. Then for each B ∈ B there exists αB ∈ N such that αB|B is a p-cycle. Define an
equivalence relation ≡ on the blocks of B by B ≡ B′ if and only if whenever α ∈ N then
α|B is a p-cycle if and only if α|B′ is also a p-cycle. Denote the equivalence classes of ≡
by C0, . . . , Ca and let Ei = ∪B∈Ci

B.
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The following result is [7, Lemma 3].

Lemma 10 Let G be as in Definition 9, and α ∈ N be such that |α| = p. Then for each
0 ≤ i ≤ a there exists αi ∈ G(2) such that αi|Ei

= α|Ei
and αi|Ej

= 1 for every i 6= j.
Furthermore, each Ei is a block of G.

We remark that the statement of Lemma 10 is more general than in [9], but it is
straightforward to show this more general version holds using the fact that the 2-closure
of G is the intersection of the automorphism groups of the orbital digraphs of G.

We shall have need of the following result of Kalužnin and Klin [17] (this result is also
contained in the more easily accessible [4, Theorem 5.1]).

Lemma 11 Let G ≤ SX and H ≤ SY be transitive groups. Then in their coordinate-wise
action on X × Y , we have

(G×H)(2) = G(2) ×H(2), and (G oH)(2) = G(2) oH(2).

For the remainder of this paper, we define τ1, τ2 : Zp × Zp2 → Zp × Zp2 by τ1(i, j) =
(i+ 1, j) and τ2(i, j) = (i, j + 1). Then 〈τ1, τ2〉 = (Zp×Zp2)L and so 〈τ1, τ2〉 ≤ Aut(Γ) for
every Cayley digraph Γ of Zp × Zp2 .

The following result can be extracted from [8, Theorem 10], together with the previous
result, and gives the Sylow p-subgroups of the automorphism groups of Cayley digraphs
of Zp × Zp2 . Let B1,1 be the complete block system of 〈τ1, τ2〉 formed by the orbits of
〈τ1, τ

p
2 〉, and B2 the complete block system of 〈τ1, τ2〉 formed by the orbits of 〈τ2〉. In the

following result, by γ|B we mean the permutation of Zp×Zp2 defined by γ|B(x) = γ(x) if
x ∈ B, and γ|B(x) = x if x 6∈ B.

Theorem 12 Let H ≤ SZp×Zp2
be 2-closed with Sylow p-subgroup P which contains (Zp×

Zp2)L. Then one of the following is true for some α1 ∈ Aut(Zp × Zp2)L:

(i) H = SZp×Zp2
,

(ii) P = (Zp × Zp2)L,

(iii) P = α−1
1 〈τ1, τ2, τ

p
2 |B : B ∈ B1,1〉α1

∼= Zp × (Zp o Zp),

(iv) P = α−1
1 〈τ1, τ2, τ

p
2 |B : B ∈ B2〉α1,

(v) P = α−1
1 〈τ1, τ2, τ1|B : B ∈ B1,1〉α1,

(vi) if γ : Zp × Zp2 → Zp × Zp2 by γ(i, j) = (i + [aj (mod p)], j + ibp), a, b ∈ Z∗p, then
P = 〈τ1, τ2, γ〉, and |P | = p4,

(vii) α−1
1 Pα1 = P1 o P2, where P1 is 2-closed p-group of degree p2 and contains a regular

subgroup isomorphic to Zp2 or Z2
p, and P2 ≤ Sp is cyclic of order p,

(viii) α−1
1 Pα1 = P2 o P1, where P2 ≤ Sp is cyclic of order p, and P1 ≤ Sp2 is 2-closed
p-subgroup of degree p2 and contains a regular subgroup isomorphic to Zp2.
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We remark that in [8, Theorem 10], there is an additional case, namely when P admits
a complete block system B′ consisting of p2 blocks of size p formed by the orbits of 〈τ1〉,
fixP (B′) = 〈τ1〉, P admits B1,1 as a complete block system, fixP (B1,1)|B 6≤ 〈τ1, τ

p
2 〉|B for

some B ∈ B1,1, and 〈τ1, τ2〉 / P . This case is superfluous, as if 〈τ1, τ2〉 / P , then P admits
a complete block system formed by the orbits of 〈τ p2 〉. This follows as if 〈τ1, τ2〉 / P , then
γ−1〈τ2〉γ = 〈τ2τ

a
1 〉 for some a ∈ Zp, and so γ−1〈τ p2 〉γ = 〈τ p2 〉. Thus 〈τ p2 〉 / P and its orbits

form a complete block system (which is a case considered separately in [8, Theorem 10].
We shall also have need of the following result [11, Corollary 7.3], which gives the

2-closed groups which contain a regular abelian Sylow p-subgroup that is of rank 2 (i.e.
is a direct product of two cyclic groups).

Theorem 13 Let G ≤ Spk be transitive and 2-closed with Sylow p-subgroup P that is
abelian of rank two. Then one of the following is true:

1. G has a normal Sylow p-subgroup,

2. G is primitive, k = 2, and G is permutation isomorphic to S2 o Sp,

3. k = 2, and G is permutation isomorphic to Sp × Sp, or

4. G is permutation isomorphic to Sp × A, where A ≤ N(pk−1) has order dividing
(p− 1)pk−1.

The following result deals with the case where a Sylow p-subgroup P of a 2-closed
group is permutation isomorphic to Zp × (Zp o Zp) and is extracted from [12, Proposition
5.12]. We remark that Zp × (Zp o Zp) contains regular subgroups isomorphic to both
Zp × Zp2 and to Zp × Zp × Zp as Zp o Zp contains regular subgroups isomorphic to Zp2

and Zp×Zp [15, Lemma 4], and so any Cayley digraph of Zp×Zp2 that contains a Sylow
p-subgroup permutation isomorphic to Zp×(Zp oZp) is also isomorphic to a Cayley digraph
of Zp × Zp × Zp.

Lemma 14 Let H ≤ SZp×Zp2
be such that Zp× (Zp oZp). Then H is permutation isomor-

phic to X × Sp2 or C((X o Y )× Z), where X, Y, Z ≤ Sp are 2-closed and C ≤ Aut(Z3
p).

The following fact is quite well-known, and will be used implicitly throughout this
paper. It is stated and proved here for convenience and conpleteness.

Lemma 15 Let G be a regular abelian group of order n and H ≤ Sn such that G ≤ H.
Then every complete block system of H is genuine and is also formed by the orbits of some
subgroup of G.

Proof. Let B be a complete block system of H consisting of, say, m blocks of size k. We
will show that fixH(B) contains a subgroup of G of order k. Indeed, G/B is transitive and
abelian, and as a transitive abelian group is regular [24, Proposition 4.3], |G/B| = m, and
so fixG(B) has order k. Then B is formed by the orbits of fixG(B), and so of fixH(B) / H.

The following is essentially a variant of [12, Lemma 2.8].
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Lemma 16 Let G be a group and H ≤ SG such that GL ≤ H. Suppose that GL ≤ K /H
and any two regular subgroups of K isomorphic to G are conjugate in K. Then H ≤
Aut(G) ·K.

Proof. Let h ∈ H, so that h−1Kh = K and h−1GLh ≤ K is a regular subgroup
isomorphic to G. By hypothesis, there exists k ∈ K such that k−1h−1GLhk = GL.
By [6, Corollary 4.2B], we then have that hk ∈ Aut(G)·GL, so that hk = αgL, α ∈ Aut(G)
and g ∈ G. As k ∈ K, we have that h = α(gLk

−1) and gLk
−1 ∈ K, so the result follows.

2 Overgroups of some 2-closed p-subgroups

Our goal in this section is to find the overgroups of the 2-closed p-groups given in Theorem
12 parts (iv), (v), and (vi), and when the overgroups do not normalize some natural p-
subgroup, determine all such 2-closed overgroups.

The overgroups for Theorem 12 (iv) are given in Lemma 21, overgroups for Theorem
12 (v) are given in Lemma 25, while such 2-closed overgroups are given in Lemma 26. It
is then shown that every group with Sylow p-subgroup as in Theorem 12 (vi) normalizes
〈τ1, τ2〉 = (Zp × Zp2)L in Lemma 30. We begin with a technical lemma.

Lemma 17 Let H ≤ Sn·m, m ≥ 4, admit a complete block system D with blocks of size
m. If fixH(D)|D ≥ Am and fixH(D) acts faithfully on D ∈ D, then H ≤ Sn × Sm or
m = 6.

Proof. As fixH(D)|D ≥ Am is primitive, StabfixH(D)|D(d), d ∈ D, fixes exactly one point.
If m = 4, then A4 has a unique subgroup of order 4, and so by the comments following [6,
Lemma 1.6B], A4 has a unique transitive representation of degree 4. Thus fixH(D)|D is
equivalent to fixH(D)|D′ for all D,D′ ∈ D. If m ≥ 5, m 6= 6, then by [3, Table], we have
that fixH(D)|D is equivalent to fixH(D)|D′ for every D,D′ ∈ D. The result then follows
by [11, Lemma 4.1].

For the following result, let P1 = 〈τ1, τ2, τ1|B : B ∈ B1,1〉 and P2 = 〈τ1, τ2, τ
p
2 |B : B ∈

B2〉. Also, we define a minimal complete block system B of a transitive group H to be a
complete block system of H such that there is no nontrivial complete block system C ≺ B.

Lemma 18 Let H ≤ SZp×Zp2
, p ≥ 3, have Sylow p-subgroup P = P1 or P2. Then H

is imprimitive, and if D is a minimal complete block system of H, then D has blocks of
prime size.

Proof. By [24, Theorem 25.5], H is imprimitive or doubly-transitive. The primitive
groups that contain a transitive abelian subgroup are given in [19, Theorem 1.1], while
the doubly-transitive groups are given in [3, Table]. We conclude that H is imprimitive.
Let D be a minimal complete block system of H. We assume that D consists of p blocks
of size p2. By [6, Exercise 1.5.10], we have that StabH(D)|D is primitive for D ∈ D. As
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H/D ≤ Sp, we have that a Sylow p-subgroup of fixH(D) has order pp+1 as P has order
pp+2.

Suppose that fixH(D) acts faithfully on D ∈ D. Then a Sylow p-subgroup of fixH(D)|D
has order pp+1 and degree p2, and so must be Zp oZp. Perusing the list of primitive groups
that contain a transitive abelian subgroup in [19, Theorem 1.1], we see that StabH(D)|D ≥
Ap2 . As p ≥ 3, Ap2 is simple, and so fixH(D)|D ≥ Ap2 . It then follows by Lemma 17
that H is canonically isomorphic to a subgroup of Sp×Sp2 , and so has Sylow p-subgroup
isomorphic to Zp×(Zp oZp). However, P is not isomorphic to Zp×(Zp oZp), a contradiction.
We henceforth assume that fixH(D) acts unfaithfully on D ∈ D.

As D is genuine, D is formed by the orbits of some subgroup of 〈τ1, τ2〉 of order p2, and
so D is formed by the orbits of 〈τa1 τ2〉 or 〈τ1, τ

p
2 〉 for some a ∈ Zp. Then 〈τ p2 〉 is contained

in every subgroup of 〈τ1, τ2〉 of order p2. Let D1 and D2 be two distinct complete block
systems of 〈τ1, τ2〉 with blocks of size p2. Considering intersections of blocks chosen from
D1 and D2, we see that each such intersection has at most p elements contained in it,
every element of Zp × Zp2 is contained in such an intersection, and there are at most p2

such intersections. We conclude that each such intersection has order exactly p (and as
〈τ p2 〉 ≤ fixH(D1) ∩ fixH(D2) each such intersection is an orbit of 〈τ p2 〉).

Let D ∈ D. Then for some D′ 6= D, D′ ∈ D, there exists γ ∈ fixH(D) such that
γ|D = 1 but γ|D′ 6= 1. Then 〈γ〉fixH(D), the normal closure of 〈γ〉 in fixH(D), is normal
in fixH(D), so the orbits of 〈γ〉fixH(D)|D′ form a complete block system of fixH(D)|D′ , and
so have order p or p2. We conclude that some element δ of fixH(D) that is the identity
on D has order p on D′. After an appropriate conjugation by an element of fixH(D), if
necessary, we may assume that this element is in P . If P = P1 then the only nontrivial
elements that fix a point are contained in 〈τ1|B : B ∈ B1,1〉, while if P = P2 then the only
nontrivial elements that fix a point are contained in 〈τ p2 |B : B ∈ B2〉. In the former case,
let B ∈ B1,1 such that δ|B is semiregular of order p while in the latter case let B ∈ B2 such
that δ|B is semiregular of order p. If P = P1 and D 6= B1,1 or P = P2 and D 6= B2, then by
arguments in the preceding paragraph |D∩B| = p for every B ∈ B1,1 if P = P1 or B ∈ B2

if P = P2. We conclude that δ is not the identity on any block of D, a contradiction.
Thus if P = P1 then D = B1,1 while if P = P2 then D = B2.

As P = P1 and D = B1,1 or P = P2 and D = B2, for some element τ ∈ 〈τ1, τ2〉
we have that τ |D′ ∈ P (τ = τ1 if P = P1 while τ = τ p2 if P = P2) for some D′ ∈ D.
Then τ |D ∈ fixH(D)|D′ for every D ∈ D. As a normal subgroup of a primitive group is
transitive [24, Theorem 8.8], the normal closure of 〈τ |D〉 in fixH(D) is transitive on D and
the identity on any block of D not D. We conclude that the order of fixH(D) is divisible
by (p2)p, and so 2p = p+ 1 or p = 1, a contradiction.

Definition 19 For a permutation group H ≤ SΩ, we define the support of H, denoted
supp(H), to be the set of all x ∈ Ω such that there exists h ∈ H such that h(x) 6= x.

Lemma 20 Let H ≤ SZp×Zp2
have Sylow p-subgroup P = 〈τ1, τ2, τ

p
2 |B : B ∈ B2〉. Then

βHβ−1 ≤ {(i, j) 7→ (ω(i), αj + a + pbi) : ω ∈ Sp, α ∈ Z∗p2 , a, bi ∈ Zp} for some β ∈
Aut(Zp × Zp2).
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Proof. By Lemma 18 we have that H admits a genuine complete block system D with
blocks of prime size formed by the orbits of some subgroup K of 〈τ1, τ2〉. Thus K = 〈τ p2 〉
or 〈τ1τ

ap
2 〉, where a ∈ Zp. As τ2|B ∈ P for every B ∈ B2, it cannot be the case that

K = 〈τ1τ
ap
2 〉 (as this would imply that fixP (D) = 〈τ1τ

ap
2 〉 / P , which is not true), so that

D is formed by the orbits of 〈τ p2 〉. Observe that 〈τ p2 |B : B ∈ B2〉 is a Sylow p-subgroup
of fixH(D), so if h ∈ H there exists g ∈ fixH(D) such that (hg)−1〈τ p2 |B : B ∈ B2〉(hg) =
〈τ p2 |B : B ∈ B2〉. As g fixes each block of D and D ≺ B2, we have that g fixes each block
of B2. Now, if B ∈ B2 and h ∈ H, then (hg)−1τ p2 |B(hg) = τxp2 |B′ for some B′ ∈ B2 and
x ∈ Z∗p. We conclude that hg maps the support of τ p2 |B to the support of τ p2 |B′ , and so
hg(B) = B′. As g(B) = B, h(B) = B′. Thus B2 is a complete block system of H as well.

Now, a Sylow p-subgroup of StabH(B2)|B, B ∈ B2, must be cyclic of order p2 as a
Sylow p-subgroup of fixP (B2)|B = 〈τ2〉|B, B ∈ B2, and the fact that StabP (B) = fixP (B2)
as P/B2 has order p and so is regular. As the blocks of D contained within a block
B ∈ B2 form a complete block system of StabH(B2)|B, StabH(B2)|B is imprimitive. By
Theorem 7 we have that StabH(B2)|B has a unique Sylow p-subgroup, which is 〈τ2〉|B, and
so StabH(B2) ≤ {x 7→ ax+ b : a ∈ Z∗p2 , b ∈ Zp2} as this latter group is the normalizer of a
regular cyclic subgroup in Sp2 by [6, Corollary 4.2B]. Additionally, as a Sylow p-subgroup
of StabH(B2)|B has order p2, if x 7→ ax+b is contained in StabH(B2)|B, then gcd(|a|, p) = 1.
By the Embedding Theorem [21, Theorem 1.2.6], we have that h(i, j) = (ω(i), αij + ci),
ω ∈ Sp, αi ∈ Z∗p2 of order relatively prime to p, and ci ∈ Zp2 . As fixP (D) has order pp

and |P | = pp+2, we have that a Sylow p-subgroup of H/D has order p2 and, as B2 is a
complete block system of H, H/D is imprimitive. By [15, Theorem 4 and Lemma 1], we
have that H/D is conjugate to a subgroup of Sp × Sp.

Assume for the moment that H/D ≤ Sp × Sp. Then αi ≡ αi′ (mod p) and ci ≡
ci′ (mod p) for every i, i′ ∈ Zp. We may thus assume without loss of generality that
ci ≡ 0 (mod p) for every i ∈ Zp. As τ p2 |B ∈ H for all B ∈ B2, we may assume without loss
of generality that ci = 0 for all i ∈ Zp. Equivalently, ci = a+ pbi for some a, bi ∈ Zp.

If αk = c + bp for some b, c ∈ Zp with b 6= 0, then αp
k ≡ cp (mod p2), and so p divides

|αk|, which is not possible. Hence αk = c for all k ∈ Zp. The result will then follow
provided there exists β ∈ Aut(Zp × Zp2) such that βHβ−1/D ≤ Sp × Sp.

Now, as H/D is conjugate in Sp2 to a subgroup of Sp × Sp, there exists δ ∈ SZp×Zp2

such that δHδ−1 ≤ {(i, j) 7→ (ω(i), αj + a + pbi : ω ∈ Sp, a, bi ∈ Zp} = L. By [8,
Lemma 8] (we remark that the statement of [8, Lemma 8] holds for a Cayley graph
Γ, but the proof only really depends on a Sylow p-subgroup of Aut(Γ) being P ) there
exists γ ∈ L such that γδ〈τ1, τ2〉δ−1γ−1 = 〈τ1, τ2〉, and, of course, γδHδ−1γ−1 ≤ L. As
γδ〈τ1, τ2〉δ−1γ−1 = 〈τ1, τ2〉, by [6, Corollary 4.2B], γδ ∈ Aut(Zp×Zp2) · 〈τ1, τ2〉, so we may
assume that γδ = β ∈ Aut(Zp × Zp2). Then βHβ−1/D ≤ Sp × Sp and the result follows.

Lemma 21 Let H ≤ SZp×Zp2
have Sylow p-subgroup P = 〈τ1, τ2, τ

p
2 |B : B ∈ B2〉. Also

suppose that H ≤ {(i, j) 7→ (ω(i), αj+a+pbi) : ω ∈ AGL(1, p), α ∈ Z∗p2 , a, bi ∈ Zp}. Then
H = A · P for some A ≤ Aut(Zp × Zp2).
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Proof. Straightforward computations will show that if h ∈ H then h normalizes 〈τ2〉,
and as each ω ∈ AGL(1, p), we see that h−1τ1h ∈ 〈τ1, τ

p
2 |B : B ∈ B〉. We conclude

that H normalizes P . By [8, Lemma 8], we have that any two transitive subgroups of P
isomorphic to Zp × Zp2 are conjugate in P . The result follows then follows from Lemma
16.

This completes our consideration of overgroups of p-groups given in Theorem 12 (iv),
and we now begin to consider the overgroups of those p-groups given in Theorem 12 (v).

Lemma 22 Let H ≤ SZp×Zp2
be transitive with Sylow p-subgroup P = 〈τ1, τ2, τ1|B : B ∈

B1,1〉. Assume that H admits a complete block system D with blocks of prime size and
H/D is imprimitive. Then H admits a complete block system with blocks formed by the
orbits of 〈τ1〉.

Proof. Suppose that D is formed by the orbits of K 6= 〈τ1〉, where K ≤ 〈τ1, τ2〉. Then
a Sylow p-subgroup of H/D is isomorphic to Zp o Zp, and so admits a unique complete
block system F of p blocks of size p. As a Sylow p-subgroup of H is P , F must be formed
by the orbits of 〈τ1〉/D. Then H admits a complete block system E consisting of p blocks
of size p2 induced by F , so that E is formed by the orbits of 〈τ1, τ

p
2 〉. Hence E = B1,1.

Then τ1|B ∈ fixH(B1,1) for every B ∈ B1,1. Let B ∈ B1,1, and L = 〈τ1|B〉StabH(B). Note
that every element of order p of L fixes all points outside B. The only elements of P
with this property are elements of 〈τ1|B : B ∈ B1,1〉, as P admits a complete block system
L formed by the orbits of 〈τ1〉 and P/L ∼= Zp2 . If L|B is transitive, then L|B contains
a transitive Sylow p-subgroup, say PB. We conclude that 1Sp o PB ≤ H, and so a Sylow
p-subgroup of H has order at least p · (p2)p. However, P has order p2 · pp and so p = 1,
a contradiction. Thus L|B is intransitive, and so the orbits of L|B form a complete block
system of StabH(B)|B, which is necessarily formed by the orbits of 〈τ1|B〉. By [6, Exercise
1.5.10], the set of all blocks conjugate to an orbit of 〈τ1|B〉 forms a complete block system
of H, and so H admits a complete block system formed by the orbits of 〈τ1〉.

Lemma 23 Let p ≥ 5 and H ≤ SZp×Zp2
be transitive with Sylow p-subgroup P =

〈τ1, τ2, τ1|B : B ∈ B1,1〉. Assume that H admits a complete block system D with blocks of
prime size and H/D is primitive. Then D is formed by the orbits of 〈τ1〉.

Proof. Assume D is not formed by the orbits of 〈τ1〉, so that a Sylow p-subgroup of H/D
is ZpoZp. AsH/D is primitive and ZpoZp contains a regular subgroup isomorphic to Zp2 , we
have that H/D is doubly-transitive as Zp2 is a Burnside group [6, Theorem 3.5A]. Perusing
the list of doubly-transitive groups of degree p2 [19, Theorem 1.1] (or [16, Theorem 3]) that
contain a regular cyclic subgroup and observing that no doubly-transitive group of prime-
squared degree contained in any PΓL(n, k) contains a Sylow p-subgroup isomorphic to
Zp oZp by Lemma 8, we have that Ap2 ≤ H/D. Thus Ap oAp ≤ H/D and Ap is nonsolvable
as p ≥ 5. Let L ≤ H be maximal such that L/D = Ap o Ap. Then L/D is imprimitive,
and so by Lemma 22, L admits a complete block system I formed by the orbits of 〈τ1〉.
Then a Sylow p-subgroup of L/I is cyclic of order p2 as P/I is cyclic. As L/D = Ap oAp,
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L/D admits a complete block system E necessarily formed by the orbits of 〈τ1〉/D, and so
L admits a complete block system F consisting of p blocks of size p2 formed by the orbits
of 〈τ1, τ

p
2 〉. Note that I ≺ F . As Ap = (L/D)/E = L/F , we have that L/I is nonsolvable

as p ≥ 5. As a Sylow p-subgroup of L/I, is cyclic and imprimitive, by Theorem 7 we have
that L/I contains a normal transitive cyclic subgroup, a contradiction as the normalizer
of a p2-cycle in Sp2 is isomorphic to {x 7→ ax+ b : a ∈ Z∗p2 , b ∈ Zp2} by [6, Corollary 4.2B].

Definition 24 View each element of Zp × Zp2 uniquely as (i, j + kp), where i, j, k ∈ Zp.
Define α2 : Zp×Zp2 by α2(i, j+kp) = (i+k, j+kp). Note that α−1

2 (i, j+kp) = (i−k, j+kp).
Straightforward computations will then show that α−1

2 τ2α2(i, j + kp) = (i, j + 1 + kp) if
j 6= p − 1 while α−1

2 τ2α2(i, p − 1 + kp) = (i − 1, (k + 1)p). Then B1,1 = {Bj : j ∈ Zp},
where Bj = {(i, j + kp) : i, k ∈ Zp}. We then have that α−1

2 τ2α2 = τ2(τ−1
1 |Bp−1). It is not

hard to see that α2 commutes with τ1|B for every B ∈ B1,1 and α−1
2 τ p2α2 = τ−1

1 τ p2 . Then
α2 normalizes 〈τ1|B, τ2 : B ∈ B1,1〉. We now view Zp × Zp2 in the usual fashion. For
a ∈ Zp∗, define ā : Zp × Zp2 7→ Zp × Zp2 by ā(i, j) = (a−1i, j). Note that ā−1τ1ā = τa1 and
ā commutes with τ2.

Lemma 25 Let H ≤ SZp×Zp2
be transitive with Sylow p-subgroup P = 〈τ1, τ2, τ1|B :

B ∈ B1,1〉. If p ≥ 5, then for c = 0 or 1, and a ∈ Z∗p, α−c2 ā−1Hāαc
2 ≤ {(i, j) 7→

(βj (mod p)(i), αj + b) : βj (mod p) ∈ Sp, α ∈ Z∗p2 , b ∈ Zp2}.

Proof. By Lemma 18, we have that H is imprimitive and a minimal complete block
system D of H has blocks of size p formed by the orbits of some subgroup K ≤ G. As
H/D is imprimitive or primitive, by Lemma 22 or 23, respectively, we have that H admits
a complete block system formed by the orbits of 〈τ1〉. We thus assume without loss of
generality that D is formed by the orbits of 〈τ1〉.

As D is formed by the orbits of 〈τ1〉, and a Sylow p-subgroup of fixH(D) is 〈τ1|B :
B ∈ B1,1〉, by Lemma 10 B1,1 is a complete block system of H. Thus H/D is imprimitive.
Also, a Sylow p-subgroup of H/D is regular and cyclic as a Sylow p-subgroup of P/D is
regular and cyclic. By Theorem 7 we conclude that H/D contains a normal regular cyclic
subgroup, and so if h ∈ H, then h(i, j) = (βj(i), αj + b), βj ∈ Sp, α ∈ Z∗p2 of order not
divisible by p, and b ∈ Zp2 .

As B1,1 is a complete block system of H and as P is a Sylow p-subgroup of H, we
have that a Sylow p-subgroup of StabH(B)|B is elementary abelian and StabH(B)|B is
imprimitive, B ∈ B1,1. By [15, Theorem 4], we have that StabH(B)|B is permutation
isomorphic to a subgroup of Sp×Sp, and so StabH(B)|B admits a complete block system
E consisting of p blocks of size p and no block of E is contained inD. By [6, Exercise 1.5.10],
H admits a complete block system F whose blocks consist of those blocks conjugate in
H to a block of E . Then F is genuine, being formed by the orbits of 〈τ c1τ

ap
2 〉, c = 0, 1,

a ∈ Z∗p, and if c = 0, then we may and do take a = 1. If c = 1, then α−c2 ā−1τ1āα
c
2 = τa1

and α−c2 τap2 αc
2 = τ−a1 τap2 . Thus α−1

2 ā−1τ1τ
ap
2 āα2 = τap2 . Also, α2 normalizes P as does ā.
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We may then assume without loss of generality that F is formed by the orbits of 〈τ p2 〉 by
replacing H with α−c2 ā−1Hāαc

2 for c = 0, 1. Then StabH(B)|B ≤ Sp × Sp.
Now let h ∈ H. Then h(i, j) = (βj(i), αj + b), where βj ∈ Sp, α ∈ Z∗p2 has order

relatively prime to p, and b ∈ Zp2 . Also, h−1〈τ1, τ2〉h ≤ H and is a regular subgroup iso-
morphic to Zp×Zp2 . Setting K = (〈τ1, τ2, h

−1〈τ1, τ2〉h〉)(2), we see that a Sylow p-subgroup
of K is either 〈τ1, τ2〉 or P by Theorem 12. In the latter case, by [8, Lemma 9], and in the
former case by a Sylow Theorem, there exists k ∈ K such that k−1h−1〈τ1, τ2〉hk = 〈τ1, τ2〉.
Then kh normalizes 〈τ1, τ2〉. Observe now that 〈τ1, τ2, h

−1〈τ1, τ2〉h〉 ≤ Zp2 oSp as H/D has a
normal cyclic Sylow p-subgroup of order p2, in which case K ≤ Zp2 oSp as Zp2 oSp is 2-closed.
ThusK/D = 〈τ2〉/D, and so by replacing k with τ d2 k for appropriate d ∈ Z, we may assume
without loss of generality that k ∈ fixK(D). Let B′ ∈ B1,1. Then there exists eB′ ∈ Z such

that khτ
eB′
2 (B′) = B′, and there exists dB′ ∈ Zp such that τ

−dB′
2 (khτ

eB′
2 )τ

dB′
2 stabilizes B.

Then τ
−dB′
2 (khτ

eB′
2 )τ

dB′
2 |B ≤ Sp×Sp. As τ

−dB′
2 kτ

dB′
2 |B ≤ Sp×Sp as τ

−dB′
2 kτ

dB′
2 ∈ StabH(B),

we see that τ
−dB′
2 hτ

e′B
2 τ

dB′
2 |B ≤ Sp × Sp for every B ∈ B1,1. As τ2(i, j) = (i, j + 1), we

conclude that hτ eB2 |B′ ≤ Sp × Sp. Hence if i ≡ i′ (mod p), then βi = βi′ , and the result
follows.

Lemma 26 Let H ≤ SZp×Zp2
be transitive and 2-closed with Sylow p-subgroup P =

〈τ1, τ2, τ1|B : B ∈ B1,1〉. If H ≤ {(i, j) 7→ (βj (mod p)(i), αj + b) : βj (mod p) ∈ AGL(1, p),
α ∈ Z∗p2 , b ∈ Zp2}, then there exists D ≤ Z∗p and A ≤ Aut(Zp × Zp2) such that H =
A · {(i, j) 7→ (dj (mod p)i+ cj (mod p), j + b) : dj (mod p) ∈ D, cj (mod p) ∈ Zp, and b ∈ Zp2}.

Proof. First observe that H admits a complete block system B of p2 blocks of size
p formed by the orbits of 〈τ1〉. As H ≤ {(i, j) 7→ (βj (mod p)(i), αj + b) : βj (mod p) ∈
AGL(1, p), α ∈ Z∗p2 , b ∈ Zp2} we have that fixH(B)|B ≤ AGL(1, p). Let fixH(B)|B =
D ·(Zp)L, where D ≤ Z∗p. We observe that such a D exists as fixH(B)|B has a unique Sylow
p-subgroup (Zp)L, and [6, Corollary 4.2B]. Define an equivalence relation ≡ on the blocks
of B by B ≡ B′ if and only if whenever h ∈ fixH(B) then h|B is a p-cycle if and only if h|B′
is also a p-cycle. Clearly the equivalence classes of ≡ form B1,1 as 〈τ1|B1,1 : B1,1 ∈ B1,1〉
is a Sylow p-subgroup of fixH(B). By Lemma 10 we have that if h ∈ fixH(B), then
h|B1,1 ∈ fixH(B) for every B1,1 ∈ B1,1, where as usual h|B1,1 is the permutation equal
to h on B1,1 and the identity on every other block of B1,1. Thus fixH(B) = {(i, j) 7→
(dj (mod p)i+ cj (mod p), j) : dj (mod p) ∈ D, cj (mod p) ∈ Zp}. Furthermore, as 〈τ2〉/B / H/B
and fixH(B) / H, we have that K = {(i, j) 7→ (dj (mod p)i + cj (mod p), j + b) : dj (mod p) ∈
D, cj (mod p) ∈ Zp, and b ∈ Zp2} / H.

Now let h ∈ H. Then h−1〈τ1, τ2〉h ≤ K and is contained in a Sylow p-subgroup of K.
Hence there exists k1 ∈ K such that k−1

1 h−1〈τ1, τ2〉hk1 ≤ P . By [8, Lemma 9], there exists
k2 ∈ P such that k−1

2 k−1
1 h−1〈τ1, τ2〉hk1k2 = 〈τ1, τ2〉. The result then follows by Lemma

16.

This completes our consideration of overgroups of p-groups given in Theorem 12 (v),
and we now begin to consider the overgroups of those p-groups given in Theorem 12 (vi).
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Lemma 27 Let γ : Zp×Zp2 7→ Zp×Zp2 by γ(i, j) = (i+ [aj (mod p)], j+ ibp), a, b ∈ Z∗p,
and P = 〈τ1, τ2, γ〉 be of order p4. Then the only nontrivial complete block systems of P
are formed by the orbits of 〈τ p2 〉 and 〈τ1, τ

p
2 〉.

Proof. Straightforward computations will show that γ−1(i, j) = (i − [aj (mod p)], j −
[i− (aj (mod p))]bp). Then γ−1τ1γ = τ1τ

−bp
2 , while γ−1τ2γ = τ−a1 τ 1+abp

2 . Then P admits
a complete block system B formed by the orbits of 〈τ p2 〉 as Z(P ) = 〈τ p2 〉 where Z(P )
is the center of P . Also, K = 〈τ1, τ

p
2 , γ〉 / P as it is a subgroup of index p (or just

using direct computation) in P , and so P admits B1,1 as a complete block system. Note
that any subgroup L of P of order p3 different from 〈τ1, τ2〉 must contain a subgroup of
〈τ1, τ2〉 of order p2, so L contains either 〈τ1, τ

p
2 〉 or 〈τ c1τ2〉. In the latter case, as L / P

as L is of index p in P , γ−1τ c1τ2γ = τ c−a1 τ
1+bp(a−c)
2 is contained in L. If c 6= a, then

L ≥ 〈τ c1τ2, τ
c−a
1 τ

1+bp(a−c)
2 〉 = 〈τ1, τ2〉, a contradiction. If c = a, then L contains τ2 as well,

and L contains all of 〈τ1, τ2〉, again a contradiction. Thus L contains 〈τ1, τ
p
2 〉. As if D

is a complete block system of P with blocks of size p2, then P/D has order p, we must
have that D is formed by the orbits of a subgroup of P of order p3 that is intransitive,
and contains 〈τ1, τ

p
2 〉, and so must be B1,1. By Lemma 15, any complete block system D

of P with blocks of prime size is formed by the orbits of 〈τ p2 〉 or 〈τ1τ
cp
2 〉 for some c ∈ Zp.

If the latter case occurs, then note that the orbits of γ are not contained in the orbits of
〈τ1τ

cp
2 〉 for any c ∈ Zp (the orbit of 〈γ〉 that contains (1, 1) also contains (1 + a, 1 + bp)

and (1 + 2a, 1 + 2bp+ abp), for example), and so fixP (D) has order p. Thus if D is formed
by the orbits of 〈τ1τ

cp
2 〉, then 〈τ1τ

cp
2 〉 / P . However, γ−1τ1τ

cp
2 γ = τ1τ

cp−bp
2 . Thus D is not

formed by the orbits of 〈τ1τ
cp
2 〉 and so D is formed by 〈τ p2 〉. The result then follows.

Lemma 28 Let γ : Zp×Zp2 7→ Zp×Zp2 by γ(i, j) = (i+ [aj (mod p)], j+ ibp), a, b ∈ Z∗p,
and P = 〈τ1, τ2, γ〉 be of order p4. Let H ≤ SZp×Zp2

have Sylow p-subgroup P and admit
B1,1 as a complete block system. Then there exists K ≤ H with Sylow p-subgroup P such
that K/B1,1 = H/B1,1 and K also admits a complete block system formed by the orbits of
〈τ p2 〉.

Proof. Let L = 〈τ1, τ
p
2 , γ〉, so that L is a Sylow p-subgroup of fixH(B1,1). Let h ∈ H, so

that h−1Lh ≤ fixH(B1,1) is also a Sylow p-subgroup of fixH(B1,1). Hence there exists βh ∈
fixH(B1,1) such that β−1

h h−1Lhβh = L, so that hβh normalizes L and hβh/B1,1 = h/B1,1.
Let K = 〈hβh : h ∈ H〉, so that K/B1,1 = H/B1,1 and L / K. Note that the center Z(L)
of L is 〈τ p2 〉 and, as the center of a group is characteristic, 〈τ p2 〉 / K so that K admits the
required complete block system.

Lemma 29 Let p ≥ 3, γ : Zp × Zp2 7→ Zp × Zp2 by γ(i, j) = (i + [aj (mod p)], j + ibp),
a, b ∈ Z∗p, and P = 〈τ1, τ2, γ〉 be of order p4. If H ≤ SZp×Zp2

with Sylow p-subgroup P ,

then H admits a complete block system formed by the orbits of 〈τ p2 〉 or 〈τ1, τ2〉 / H.

Proof. Examining the list of primitive groups that contain a regular abelian subgroup
given by [19, Theorem 1.1], we see that H is not primitive. As any complete block system
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of H is also a complete block system of P , by Lemma 27 we have that either the result
follows or B1,1 is the only nontrivial complete block system of H. By [6, Exercise 1.5.10]
we have that StabH(B)|B is primitive for every B ∈ B1,1. Additionally, StabH(B)|B
contains a Sylow p-subgroup of order p3 with a normal elementary abelian subgroup of
order p2 (and does not contain a regular cyclic subgroup as p ≥ 3 - see [15, Lemma 4]).
By [19, Theorem 1.1], we have that StabH(B)|B ≤ AGL(2, p) for every B ∈ B1,1. By the
Embedding Theorem [21, Theorem 1.2.6], we have that H is permutation isomorphic to
a subgroup of H/B1,1 o AGL(2, p).

By Lemma 28, there exists P ≤ K ≤ H such that K/B1,1 = H/B1,1 and the orbits of
〈τ p2 〉 form a complete block system E of K. Then K/E has a Sylow p-subgroup of order p3

that contains a regular elementary abelian subgroup and is imprimitive. By [15, Theorem
4] and [15, Lemma 6], we have that K/B1,1 is permutation isomorphic to a subgroup of
AGL(1, p). Hence H is permutation isomorphic to a subgroup of AGL(1, p) o AGL(2, p).

As H ≤ AGL(1, p) o AGL(2, p), we have that H normalizes L = 〈τ1|B, τ p2 |B : B ∈
B1,1〉∩H. Also, 〈L, P 〉 ≤ Zpo(ZpoZp), a Sylow p-subgroup of Sp3 , so L is contained in P , and
so L is contained in fixP (B1,1). As |StabP (0, 0)| = p and StabP (0, 0) = StabfixP (B1,1)(0, 0)
(as P/B1,1 has order p and so is regular) also stabilizes only the points (0, kp), k ∈ Zp,
fixP (B1,1) contains p2 distinct subgroups of order p that are stabilizers of points, and as the
identity is contained in all of them, these subgroups contain p3−(p2−1) distinct elements.
Thus fixP (B) only contains p2 − 1 nontrivial semiregular elements, and so 〈τ1, τ

p
2 〉 is the

only semiregular elementary abelian subgroup of fixP (B1,1). Also observe that if h ∈ H,
then h−1〈τ1, τ

p
2 〉h ≤ L is a semiregular elementary abelian subgroup of fixP (B1,1), and so

is 〈τ1, τ
p
2 〉. Thus 〈τ1, τ

p
2 〉 / H.

Let h ∈ H. As H/B1,1 ≤ AGL(1, p), there exists a ∈ Z∗p such that τa2 h
−1τ2h/B1,1 = 1.

As 〈τ1, τ
p
2 〉 ≤ h−1〈τ1, τ2〉h we have that τ2 and h−1τ2h centralize 〈τ1, τ

p
2 〉. Thus τa2 h

−1τ2h
centralizes 〈τ1, τ

p
2 〉. As a transitive abelian group is self-centralizing [6, Theorem 4.2A

(v)], we have that τa2 h
−1τ2h|B ∈ 〈τ1, τ

p
2 〉|B for every B ∈ B1,1. Thus τa2 h

−1τ2h ∈ L and so
τa2 h

−1τ2h ∈ P . Finally, observe that the centralizer in fixP (B1,1) of 〈τ1, τ
p
2 〉 is 〈τ1, τ

p
2 〉, and

so τa2 h
−1τ2h ∈ 〈τ1, τ

p
2 〉. Thus h−1〈τ1, τ2〉h = 〈τ1, τ2〉 and the result follows.

Lemma 30 Let p ≥ 5 be prime, and γ : Zp × Zp2 7→ Zp × Zp2 by γ(i, j) = (i +
[aj (mod p)], j + ibp), a, b ∈ Z∗p, and P = 〈τ1, τ2, γ〉 be of order p4. If H ≤ SZp×Zp2

with Sylow p-subgroup P , then 〈τ1, τ2〉 / H.

Proof. In view of Lemma 29, we may assume without loss of generality that H admits a
complete block system B formed by the orbits of 〈τ p2 〉. Then 〈τ p2 〉 is a Sylow p-subgroup of
fixH(B) as 〈τ p2 〉 is a Sylow p-subgroup of fixP (B). By [11, Lemma 4.2], one of the following
is true:

i. fixH(B) is cyclic and semiregular of order p,

ii. H is permutation isomorphic to a subgroup of Sp2 × Sp. Furthermore, there exists
J ≤ Sp2 and K ≤ Sp such that J ×K / H, or
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iii. fixH(B) does not act faithfully on B ∈ B and a Sylow p-subgroup of fixH(B) is not
semiregular.

Note that (iii) cannot occur as a Sylow p-subgroup of fixH(B) is 〈τ p2 〉, while H cannot be
permutation isomorphic to a subgroup of Sp2 ×Sp as P is not. Thus fixH(B) is cyclic and
semiregular of order p. Note that H/B is of degree p2 and has Sylow p-subgroup of order
p3 with a transitive elementary abelian subgroup 〈τ1, τ2〉/B. By [15, Theorem 4], we have
that 〈τ1, τ2〉/B / H/B as p ≥ 5, and so fixH(B) = 〈τ p2 〉. Thus 〈τ1, τ2〉 / H as required.

3 Automorphism groups of Cayley digraphs of Zp ×
Zp2

The following result appears in [13, Lemma 28] with the additional hypothesis that G
contains a regular cyclic subgroup. This hypothesis was essentially not used in the proof
of [13, Lemma 28], and we have the following result.

Lemma 31 Let G ≤ Smk be 2-closed. If G admits a genuine nontrivial complete block
system B consisting of m blocks of size k such that fixG(B)|B is primitive and fixG(B) does
not act faithfully on B ∈ B, then G = G1 ∩G2, where G1 = Sr oH1 and G2 = H2 o Sk, H1

is a 2-closed group of degree mk/r, H2 is a 2-closed group of order m, and r|m.

We now prove the main result of this paper, and note that in the statement of this
result, α2 and ā are as defined in Definition 24.

Theorem 32 Let p ≥ 5 be prime, and H ≤ SZp×Zp2
be a 2-closed group that contains

the left regular representation of Zp × Zp2. Then one of the following is true for some
α1 ∈ Aut(Zp × Zp2), A ≤ Aut(Zp × Zp2) of order relatively prime to p, D ≤ Z∗p, and
E ≤ Z∗p2 of order relatively prime to p:

1. H = SZp×Zp2
,

2. (Zp × Zp2)L / H,

3. α−1
1 Hα1 = Sp × B, where B ≤ N(p2) is 2-closed of order dividing (p− 1)p2 and so

has a cyclic Sylow p-subgroup,

4. H is permutation isomorphic to X ×Sp2 or C((X oY )×Z), where X, Y, Z ≤ Sp are
2-closed and C ≤ Aut(Z3

p).

5. α−1
1 Hα1 = H1 oH2 or H2 oH1 where H1 is a 2-closed group of degree p and H2 is a

2-closed group of degree p2,

6. α−1
1 Hα1 = {(i, j) 7→ (ω(i), αj + a+ pbi) : ω ∈ Sp, α ∈ E, a ∈ Zp2 , bi ∈ Zp},

7. α−1
1 Hα1 = A · P , where P = 〈τ1, τ2, τ

p
2 |B : B ∈ B2〉,
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8. α−c2 α1Hα
−1
1 αc

2 = {(i, j) 7→ (ωj (mod p)(i), αj + b) : ωj (mod p) ∈ Sp, α ∈ E, b ∈ Zp2},
c = 0, 1, and α1 = ā for some a ∈ Z∗p, or

9. α−c2 α−1
1 Hα1α

c
2 = A · {(i, j) 7→ (dj (mod p)i + cj (mod p), j + b) : dj (mod p) ∈ D,

cj (mod p) ∈ Zp, and b ∈ Zp2}, for c = 0, 1, and α1 = ā for some a ∈ Z∗p.

Proof. Let P be a Sylow p-subgroup of H that contains 〈τ1, τ2〉. By Theorem 12, there
exists α1 ∈ Aut(Zp × Zp2) such that one of the following is true:

(i) H = SZp×Zp2
,

(ii) P = (Zp × Zp2)L,

(iii) P = α−1
1 〈τ1, τ2, τ

p
2 |B : B ∈ B1,1〉α1

∼= Zp × (Zp o Zp),

(iv) P = α−1
1 〈τ1, τ2, τ

p
2 |B : B ∈ B2〉α1,

(v) P = α−1
1 〈τ1, τ2, τ1|B : B ∈ B1,1〉α1,

(vi) if γ : Zp × Zp2 7→ Zp × Zp2 by γ(i, j) = (i + [aj (mod p)], j + ibp), a, b ∈ Z∗p, then

P = α−1
1 〈τ1, τ2, γ〉α1, and |P | = p4,

(vii) α−1
1 Pα1 = P1 o P2, where P1 is 2-closed p-group of degree p2 and contains a regular

subgroup isomorphic to Zp2 or Z2
p, and P2 ≤ Sp is cyclic of order p,

(viii) α−1
1 Pα1 = P1 o P2, where P2 ≤ Sp is cyclic of order p, and P1 ≤ Sp2 is 2-closed
p-subgroup of degree p2 and contains a regular subgroup isomorphic to Zp2 .

If (i) occurs, then (1) occurs. If (ii) occurs, then by Theorem 13, either (2) occurs or H
is permutation isomorphic to Sp×B, where B ≤ N(p2) has order dividing (p−1)p2, and so
has a cyclic Sylow p-subgroup. Applying Lemma 11, we see that H is also 2-closed. Note
that H admits orthogonal complete block systems B and C consisting of p blocks of size p2

and p blocks of size p formed by the orbits of the subgroups of H permutation isomorphic
to 1Sp ×B and Sp× 1Sp2

, respectively. As B and C are genuine, B is formed by the orbits

of 〈τ2τ
a
1 〉 while C is formed by the orbits of 〈τ1τ

bp
2 〉, a, b ∈ Zp. Let α1 ∈ Aut(Zp × Zp2)

such that α−1
1 〈τ2τ

a
1 〉α1 = 〈τ2〉 and α−1

1 〈τ2τ
bp
2 〉α1 = 〈τ1〉. Such an α1 exists by [5, pg. 5].

Then α−1
1 Hα1 = Sp ×B and (3) occurs. If (iii) occurs, then (4) follows by Lemma 14.

If (iv) occurs, then by Lemma 20, we have that α−1
1 Hα1 = K ≤ {(i, j) 7→ (ω(i), αj +

a + pbi) : ω ∈ Sp, α ∈ Z∗p2 , a, bi ∈ Zp2}. Then K admits B2 as a complete block system.
If K/B2 ≤ AGL(1, p), then (7) occurs by Lemma 21. If K/B2 6≤ AGL(1, p), then by
Theorem 6, we have that K/B2 is doubly-transitive with nonabelian simple socle. Let
L be the normal closure of 〈τ1, τ2〉 in K. As K/B2 is a doubly-transitive group with
nonabelian simple socle, we have that L/B2 is a nonabelian simple group, and so by
Theorem 6, L/B is doubly-transitive. By the definition of K, we have that fixL(B2)|B2

∼=
Zp2 for every B2 ∈ B2. Then fixL(B2) ≤ {(i, j) 7→ (i, j + a + bip) : a, bi ∈ Zp2}. As
〈τ p2 |B2 : B2 ∈ B2〉 = {(i, j) 7→ (i, j + bip) : b ∈ Zp2}, we conclude that K contains a
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subgroup M such that M/B2 = L/B2 and fixM(B2) = Zp2 . By [11, Corollary 6.5], we
have that M = T × Zp2 , there T ≤ Sp is a doubly-transitive nonabelian group. Then
M (2) = Sp × Zp2 by Lemma 11 and the map (i, j) 7→ (ω(i), j) is in K for every ω ∈ Sp.
Thus if (i, j) 7→ (ω(i), αj + a + pbi) ∈ K, then the map (i, j) 7→ (i, αj) ∈ K. Letting
E ≤ Z∗p2 such that fixK(B2)|B2 = E · (Zp2)L for some B2 ∈ B2, (6) holds.

If (v) occurs, then by Lemma 25 for c = 0 or 1, and a ∈ Z∗p, K = α−c2 ā−1Hāαc
2 ≤

{(i, j) 7→ (βj (mod p)(i), αj + b) : βj (mod p) ∈ Sp, α ∈ Z∗p2 , b ∈ Zp2}. Then K admits
a complete block system B formed by the orbits of 〈τ1〉. If fixK(B)|B ≤ AGL(1, p) for
every B ∈ B, then K ≤ {(i, j) 7→ (βj (mod p)(i), αj + b) : βj (mod p) ∈ AGL(1, p), α ∈
Z∗p2 , b ∈ Zp2}. Then (9) follows from Lemma 26. Otherwise, fixK(B)|B is a doubly-
transitive group with nonabelian simple socle T by Theorem 6. Define an equivalence
relation ≡ on the blocks of B by B ≡ B′ if and only if whenever k ∈ fixK(B) then k|B
is a p-cycle if and only if k|B′ is also a p-cycle. Clearly the equivalence classes of ≡
are B1,1 as 〈τ1|B1,1 : B1,1 ∈ B1,1〉 is a Sylow p-subgroup of fixH(B). By Lemma 10 we
have that if k ∈ fixK(B), then k|B1,1 ∈ fixK(B) for every B1,1 ∈ B1,1. We conclude that
{(i, j) 7→ (tj (mod p)(i), j) : tj (mod p) ∈ T} ≤ K. Then L = {(i, j) 7→ (t(i), j + b) : t ∈
T, b ∈ Zp2} ≤ K, and L = T ×Zp2 . By Lemma 11, L(2) = T (2) × (Zp2)

(2) = Sp ×Zp2 ≤ K
and so if (i, j) 7→ (βj (mod p)(i), αj + b) ∈ K, then the map (i, j) 7→ (i, αj) ∈ K. Letting
E ≤ Z∗p2 such that K/B = E · (Zp2)L, (8) occurs.

If (vi) occurs, then (2) occurs by Lemma 30. If (vii) or (viii) occur, then let D be
a color digraph such that Aut(D) = H. Then D can be written as a nontrivial wreath
product as P is a nontrivial wreath product. We conclude that H is a nontrivial wreath
product by [14, Theorem 5.7], and so (5) occurs.

Acknowledgement: The author is indebted to the anonymous referee for comments and
suggestions which made the paper both shorter and easier to read.
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