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Let X be a finite set and let F C 2% be a family of subsets of X. In the biased (a : b)
Maker-Breaker game (X, F), two players, called Maker and Breaker, take turns in claiming
previously unclaimed elements of X, with Breaker going first. In each turn, Breaker claims
b elements of X, and then Maker claims a elements. The game ends as soon as every
element of X is claimed by either player. Maker wins the game (X, F) if, by the end of
the game, he is able to fully claim some F' € F; otherwise Breaker wins the game. If
Maker has a strategy to win against any strategy of Breaker, then we say that the game
is Maker’s win; otherwise we say it is Breaker’s win. The set X will be referred to as the
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board of the game, and the elements of F will be referred to as the winning sets. The
natural numbers a and b are called the bias of Maker and Breaker, respectively.

In this paper, our attention is dedicated to the biased Maker-Breaker Connectivity
game on F(K,) with parameters a and b, that is, the board of this game is the edge set
of K, the complete graph on n vertices, and the winning sets are all spanning connected
subgraphs of K,,. From now on we will denote this game by 7,,.

It is easy to see that the (1 : 1) game 7, is Maker’s win, if n > 4. In fact, the outcome
of the (1 : 1) Connectivity game is known even when the board is the edge set of an
arbitrary graph G — it was proved in [9] that this game is Maker’s win if and only if G
admits two edge disjoint spanning trees. This led Chvétal and Erdds [4] to introduce
biased games, that is, games for which (a,b) # (1, 1). Since the (1 : 1) game 7, is an easy
Maker’s win, to give Breaker more power they studied the biased (1 : b) games for b > 1.

Chvéatal and Erdds [4] have observed that Maker-Breaker games are bias monotone,
that is, if some Maker-Breaker (1 : b) game (X, F) is Breaker’s win, then the (1 : b+ 1)
game (X, F) is Breaker’s win as well. Since, unless ) € F, the (1 : |X|) game (X, F)
is clearly Breaker’s win, it follows that, unless ) € F or F = () (we refer to these cases
as degenerate), there exists a unique non-negative integer by such that the (1 : b) game
(X, F) is Maker’s win if and only if b < by. This value of by is known as the threshold
bias of the game (X, F). Chvétal and Erdds [4] proved that the threshold bias of 7, is
between (1/4 —e)n/Inn and (14 ¢)n/Inn. They conjectured that the upper bound is in
fact asymptotically best possible. This was verified by Gebauer and Szabé [6].

Assume that the (1 : b) game 7T, is being played, but instead of playing optimally (as is
always assumed in Game Theory), both players play randomly (they will thus be referred
to as RandomMaker and RandomBreaker, and the resulting game will be referred to as
the Random Connectivity game). It follows that the graph built by RandomMaker by
the end of the game is a random graph G(n, | (5)/(b+1)]). It is well known that almost
surely such a graph is connected if | (3)/(b+ 1)] > (1/2 + ¢)nlnn and disconnected if
[(5)/(b+1)] < (1/2 = &)nlnn. Hence, almost surely RandomBreaker wins the game
if b > (14 &)n/Ilnn but loses if b < (1 — &)n/Inn, just like when both players play
optimally. This remarkable relation between positional games and random graphs, first
observed in [4], has come to be known as the probabilistic intuition or Erdds paradigm.
Much of the research in the theory of positional games has since been devoted to finding
the threshold bias of certain games and investigating the probabilistic intuition. Many of
these results can be found in [2].

While (a : b) games, where a > 1, were studied less than the case a = 1, they
are not without merit. Indeed, the small change of going from ¢ = 1 to a = 2 has a
considerable impact on the outcome and the course of play of certain positional games
(see [2]). Moreover, it was shown in [1] that the acceleration of the so-called diameter-
2 game partly restores the probabilistic intuition. Namely, it was observed that, while
G(n,1/2) has diameter 2 almost surely, the (1 : 1) diameter-2 game (that is, the board is
E(K,) and the winning sets are all spanning subgraphs of K, with diameter at most 2)
is Breaker’s win. On the other hand, it was proved in [1] that the seemingly very similar
(2 : 2) game is Maker’s win. Further examples of (a : b) games, where a > 1, can be found
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in [2, 1, 5].

Similarly to the (1 : b) game, one can define the generalized threshold bias for the
(a :b) game as well. Given a non-degenerate Maker-Breaker game (X, F) and a > 1, let
bo(a) be the unique non-negative integer such that the (a : b) game (X, F) is Maker’s win
if and only if b < by(a). In this paper we wish to estimate by(a) for the Connectivity game
T, and for every a.

Coming back to the Random Connectivity game, its outcome depends on the number
of edges RandomMaker has at the end of the game rather than on the actual values of a
and b. Hence, if a = a(n) and b = b(n) are positive integers satisfying b < a(1 —¢)n/Inn,
for some constant € > 0, and b is not too large (clearly if for example b > (72‘)7 then
RandomBreaker wins regardless of the value of a), then almost surely RandomMaker
wins the game. Similarly, if a is not too large and b > a(l + ¢)n/Inn, then almost
surely RandomBreaker wins the game. Clearly the outcome of the random game and
of the regular game could vary greatly for large values of a and b. For example, while
Breaker wins the ((Z) : n) game 7T, in one move, the corresponding random game is
almost surely RandomMaker’s win. We prove that for all “reasonable” values of a and b,

the probabilistic intuition is maintained. In the following we state our results.

Theorem 1. Let ¢ > 0 be a real number and let n = n(e) be a sufficiently large positive
integer. If a <Inn and b > (1 + €)==, then the (a : b) game T, is Breaker’s win.

In(an)’

Note that as a approaches Inn, the lower bound on b in Theorem 1 exceeds n and is
therefore trivial. Our next theorem improves that bound for large values of a.

Theorem 2. Let € > 0 be a real number. If (1 +¢)lnn <a < 3= and

2a(n—2—|—ln’—2ﬂ )+ln’_§—a-‘—1—|—2—“

n

2a+In|[L]—1+2 ’

a

b >

then the (a : b) game T, is Breaker’s win.

Finally, for very large values of a we obtain a nontrivial bound on b which suffices to
ensure Breaker’s win.

Theorem 3. Ifa < § and b > n — 2, then the (a : b) game T, is Breaker’s win.

For Maker’s win we prove the following sufficient conditions, covering the whole range
of possible values of a.

Theorem 4. Ifa =0 (, /ﬁ) and

0 (n— o+ 550 ()

h < alnn a?lnn
Inn+a+Inlnn+4 '
or ifa=Q(/i%), a<%* and b < o smaras then the (a : b) game T, is Maker’s

win.
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A straightforward analysis of the results obtained in Theorems 1, 2, 3 and 4, yields
the following estimates for the generalized threshold bias by(a).

Corollary 5. (i) If a = o(lnn), then
an (14 o(1)) Rt < po(g) < (1 - o(1))anlna,

Inn In’n In’n

(i) Ifa=clnn for some 0 < c <1, then (1—o(1)) 4 < bo(a) < min {cn, (1 +o(1))%}.

(iii) If a = cInn for some ¢ > 1, then (1 — o(1))24 < bo(a) < (14 o(1)) 5.

(iv) Ifa=w(lnn) and a = o (\/Z%), then n — 222 < by(a) <n — (1 —0(1))%.

(v) Ifa=Q (/%) and a = o(n), then

Inn

n— (14 0(1))220/8) < po(a) < n— (1 —o(1)) M2/,

2a
(vi) Ifa=cn for0<c< o, then n—w <bp(a) <n—2—22(In(L) — 1) +o(1).

w<bo(a)<n—2.

(vii) If a=cn for & <c <3, thenn —

All lower bounds on the threshold bias by(a) in Corollary 5 are obtained via Theorem 4.
The upper bounds are obtained as follows. Theorem 1 is used in (i), Theorem 2 is used
in (4i7), (iv), (v) and (vi) and Theorem 3 is used in (viz). In (i7), the upper bound of cn
is obtained from Theorem 1, whereas the upper bound (14 0(1))2" is obtained from (i)
by the bias monotonicity of Maker-Breaker games.

< Inn

Figure 1: Leading term of the threshold bias for a = o(Inn).

Corollary 5 gives fairly tight bounds for the threshold bias on the whole range of the
bias a. In particular, for a = o(Inn), the leading term of the threshold bias is determined
exactly; this is depicted in Figure 1. Then, if a = cInn, where ¢ is a positive real number,
(#7) and (7i7) imply that the threshold bias is linear in n, and the upper bound we obtain
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Cc

o

(a(n) = clnn)

Figure 2: Bounds on the threshold bias for a = cIlnn, where ¢ is a positive real number.

is a constant factor away from the lower bound, as shown in Figure 2. If a = w(lnn)
and a = o(n), it follows by (iv) and (v) that the leading term of the threshold bias is n,
and moreover, we obtain upper and lower bounds for the second order term which are a
constant factor away from each other, see Figure 3. Finally, for a = ¢n, where 0 < ¢ < 1/2
is a real number, (vi) and (vii) imply that the threshold bias is just an additive constant
away from n as shown in Figure 4. For larger values of a we have the trivial upper bound
of by(a) < n — 1 and the same lower bound as in (vii) by monotonicity.

Inn <« <«<n

Figure 3: Bounds on the threshold bias for « = w(Inn) and a = o(n).

For the sake of simplicity and clarity of presentation, we do not make a particular
effort to optimize some of the constants obtained in our proofs. We also omit floor and
ceiling signs whenever these are not crucial. Most of our results are asymptotic in nature
and whenever necessary we assume that n is sufficiently large. Throughout the paper, In

THE ELECTRONIC JOURNAL OF COMBINATORICS 19 (2012), #P61 5



n— 2 ln(lc/c)+4

Figure 4: Bounds on the threshold bias for a = ¢n, where 0 < ¢ < 1/2 is a real number.

stands for the natural logarithm.

Our graph-theoretic notation is standard and follows that of [10]. In particular, we
use the following. For a graph G, V(G) and E(G) denote its sets of vertices and edges
respectively, v(G) = |V(G)| and e(G) = |E(G)|. For a vertex u € V(G), dg(u) denotes
the degree of u in G. At any point during the game 7, we denote by M (respectively B)
the graph which is spanned by the edges Maker (respectively Breaker) has claimed thus
far.

For every positive integer j, we denote the jth harmonic number by Hj, that is,
H; =%"1_,1/i, for every j > 1. We will make use of the following known fact,

Inj+1/2 < H; <Inj+ 2/3 for sufficiently large j. (1)

The rest of the paper is organized as follows. In Section 2 we analyze the (a : b)
Box Game — a classical game, introduced in [4] in order to analyze Breaker’s strategy in
Connectivity game. In Section 3 we prove Theorems 1, 2 and 3. In Section 4 we prove
Theorem 4. Finally, in Section 5 we present some open problems.

2 (a:b) Box Game

In order to present Breaker’s winning strategy for the (a : b) Maker-Breaker Connectivity
game, we first look at the so-called Box Game. The Box Game was first introduced by
Chvatal and Erdés in [4]. A hypergraph H is said to be of type (k,t) if |H| = k, its
hyperedges €1, e, ..., e, are pairwise disjoint, and the sum of their sizes is Zle lei| = t.
Moreover, the hypergraph # is said to be canonical if ||e;| — |ej|| < 1 holds for every
1 < i,j5 < k. The board of the Box Game B(k,t,a,b) is a canonical hypergraph of
type (k,t). This game is played by two players, called BoxMaker and BoxBreaker, with
BoxMaker having the first move (in [4] the first player is actually BoxBreaker, but the
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version where BoxMaker is the first player is more suitable for our needs). BoxMaker
claims a vertices of H per move, whereas BoxBreaker claims b vertices of H per move.
BoxMaker wins the Box Game on H if he can claim all vertices of some hyperedge of H,
otherwise BoxBreaker wins this game.

In [7], Hamidoune and Las Vergnas have provided a sufficient and necessary condition
for BoxMaker’s win in the Box Game B(k, t, a, b) for positive integers k, a, b and t = kb+1.
This result can be extended to all positive integers k,¢,a and b. Unfortunately, this
condition can rarely be used in practise. A more applicable criterion for BoxMaker’s win
was also provided in [7], but it turns out to be not so tight for certain values of a and
b. Hence, in this section, we derive a sufficient condition for BoxMaker’s win in the Box
Game B(k,t,a,b) which is better suited to our needs. In particular, it enables us to
improve the additive constant in part (vi) of Corollary 5. Furthermore, it improves the
low order terms of the bound obtained in Theorem 2. We will apply this new criterion
whenever we use the Box Game in our solutions.

Given positive integers a and b, we define the following function,

(k—1)(a+1) , if1<k<b

f(k;a,b) = ka  ifb<ks20
V(f(k_l;;a’?w_bw otherwise

First we prove the following technical result.
Lemma 6. Let a,b and k be positive integers satisfying k > b and a —b —1 > 0, then

[k/b]—1
k(a—b—1) 1
k:a,b) > ka—1+ ———= —. 2
7j=2
Proof. 1f b < k < 2b, then the assertion of the lemma holds since ka > ka — 1.
Otherwise, let © = [k/b] — 2. Note that z is the unique positive integer for which
b<k—xb<2b. Forevery 0 <y < x we have

k ok (k= yb)(f(k—(y+ Dbia,b) +a—D)
k—yb'ﬂk_yb’“’b)_k—yd k—(y+1)b J
ko ((k—yb)(f(k— (y+1)b;a,b) +a—b)
zk—yb( k—(y+1)b _1>
_ k(a—1b) k
T k—(y+1)b k—yb
k

Applying the substitution rule (3) repeatedly for every 0 < y < x and using the fact
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that ﬁ - f(k — xb; a,b) = ka, we obtain

f(k;a,b) > ka 1+U€§Qk( 5
=1 1 k b
[k/b]— 1
>ka—1+k(a—b—1) ; — (4)

Since — > (Wbl]fi)b holds for every 1 <i < [k/b] — 2, it follows by (4) that

[k/b] -2

flk;a,0) > ka—14+k(a—b—1) Z m
ke /b]—1

1
=ka—14+k(a—0b—1) Z I

J
I
k(a—b—1)
>

2
/b]—1 1
Jj=2 J

]
Lemma 7. Ift < f(k;a,b) + a, then BoxMaker has a winning strategy for B(k,t,a,b).

Proof. We prove this lemma by induction on k.

If 1 <k<b thent < f(k;a,b) +a=(k—1)(a+1)+a=k(a+1)— 1. Since the
board is a canonical hypergraph, it follows that there exists a hyperedge of size at most
a. In his first move, BoxMaker claims all vertices of such a hyperedge and thus wins.

If b < k < 2b, then t < f(k;a,b) + a = ka + a. In his first move, BoxMaker
claims a vertices such that the resulting hypergraph is canonical of type (k,t’), where
t' =1t —a < ka. It follows that every hyperedge is of size at most a. Subsequently, in
his first move, BoxBreaker claims b < k vertices. Hence, there must exist an hyperedge
which BoxBreaker did not touch in his first move. In his second move, BoxMaker claims
all free vertices of such an hyperedge and thus wins.

Assume then that & > 2b and assume that the assertion of the lemma holds for
every ki < k, that is, if t; < f(k1;a,b) + a, then BoxMaker has a winning strategy
for B(ky,t1,a,b). In his first move, BoxMaker claims a vertices such that the resulting
hypergraph is canonical of type (k,t"), where t' =t —a < f(k;a,b). Subsequently, in his
first move, BoxBreaker claims b board elements. Let ey, ..., e, be arbitrary k—b winning
sets which BoxBreaker did not touch in his first move. Since BoxMaker’s first move results
in a canonical hypergraph, it follows that ¢ := Zfz_lb el < EL (P +b) < B+

Moreover, it follows by the definition of f that f(k;a,b) < % (f(k—b;a, bf—l— a—"b),
implying that f(k —0b;a,b) > % - f(k;a,b) +b—a >t —a. Hence, in order to prove that
BoxMaker has a winning strategy for B(k,t,a,b), it suffices to prove that BoxMaker has
a winning strategy for B(k — b, %, a,b). This however follows by the induction hypothesis

since k — b < k and since, as noted above, t < f(k — b;a,b) + a. m
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3 Breaker’s strategy for the (a : b) Connectivity Game

Proof of Theorem 1. Our proof relies on the approach of Chvétal and Erdds [4], who
proved the special case a = 1.

For technical reasons we will assume that ¢ < 1/3. This is allowed by the bias
monotonicity of Maker-Breaker games.

Before we describe Breaker’s strategy in detail, we give its outline. Breaker’s goal is to
isolate some vertex u € V(K,) in Maker’s graph. His strategy consists of two phases. In

the first phase, he claims all edges of a clique C on k := {mw vertices, such that

no vertex of C' is touched by Maker, that is, dy/(v) = 0 for every v € C. In the second
phase, he claims all free edges which are incident with some vertex v € C'.

Breaker’s strategy:

First Phase. For every ¢ > 1, just before Breaker’s ith move, let C; denote the
largest clique (breaking ties arbitrarily) in Breaker’s graph such that dy;(v) = 0 for every
v € C;. Let /; be the largest integer for which b; < b, where b; := (“;Zi) + (a+ 6;)|Cy].
If |C;| > k, then the first phase is over and Breaker proceeds to the second phase of
his strategy. Otherwise, in his ith move, Breaker picks a + ¢; vertices ui,...,u} 4y, Of
V(K,) \ V(C;) such that dy(u}) = 0 for every 1 < j < a+ £;, and then he claims all
edges of {(u},ul,) 11 <ji <jo <a+L}U{(ujw):1<j<a+l;, weV(C)} He
then claims additional b — b; arbitrary edges; We will disregard these additional edge in
our analysis.

Since b > (“1') + (a + 1)(k — 1), it follows that ¢; > 1 as long as |C;| < k. Since
Maker can touch at most a vertices of C; in his ith move, it follows that |C; 1| > |Ci| + ¢,
assuming that, before Breaker’s ith move, there are at least a+/¢; vertices in V(K,,)\V(C;)
which are isolated in Maker’s graph.

It follows from the definition of ¢; that, if |C;| < -2 — %22 then ¢; > 3. Similarly, if

|C’|_a—+2—a—Jrl then /; >2and1f|C’|<k<a—+1—a then£ > 1. Hence, Breaker’s

clique reaches size k within at most

b b b
3a+3)  2a+2)(a+3)  (atDat2)

moves. Since Maker can touch at most 2a vertices in a single move, it follows that during
the first phase, the number of vertices which are either in Breaker’s clique or have positive
degree in Maker’s graph is at most

(2a 4+ 3) + (2a+1) <n,

(2a+2) +

3(a+3) 2(a+2)(a+3) (a+1)(a+2)

where this inequality follows since a < Inn and € < 1/3.

Hence, for as long as |C;| < k, there are vertices of degree 0 in M [V (K,,)\ V(C;)] and
thus Breaker can follow the proposed strategy throughout the first phase.

Second Phase. Let C be the clique Breaker has built in the first phase, that is, |C] > k,
dp(v) = 0 holds for every v € V(C), and (u,v) € E(B) holds for every u,v € V(C). In
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this phase Breaker will isolate some vertex v € V(C') in Maker’s graph; the game ends
as soon as he achieves this goal (or as soon as E(B U M) = E(K,), whichever happens
first). In order to do so, he restricts his attention to the part of the board spanned by
the free edges of Fy := {(u,v) : u € V(C),v € V(K,)\ V(C)}. In order to choose which
edges of Ej to claim in each move, he consults an auxiliary Box Game B(k,k(n — k), b, a)
assuming the role of BoxMaker.

Since [{(u,v) € E(K,)\ (E(M)U E(B)) : v € V(K,)} < n —k holds for every
u € V(C), it follows that, if BoxMaker has a winning strategy for B(k,k(n — k),b,a),
then Breaker, having built the clique C, has a winning strategy for the (a : b) Connectivity
game on K.

Finally, since £ > a and b —a — 1 > 0, it follows by Lemmas 6 and 7 that, in order to
prove that BoxMaker has a winning strategy for B(k, k(n — k), b, a), it suffices to prove

that a1
k(b—a—1) "o~
kn—k) <kb—14 M0=a=1) 3

a -
=2

1
l

+b. (5)

The latter inequality can be easily verified given our choice of k, the assumed bounds
[k/a]—1
on a and b, and by applying (1) to >~ + while using the inequality Inn+1/2 > In(n+1)
i=2
which holds for every n > 2.

]

Proof of Theorem 2. Breaker aims to win Connectivity game on K, by isolating a
vertex in Maker’s graph. While playing this game, Breaker plays (in his mind)
an auxiliary Box Game B(n,n(n — 1),b,2a) (assuming the role of BoxMaker). Let
V(K,) ={v1,...,v,} and let ey, eq, ..., e, be an arbitrary ordering of the winning sets of
B(n,n(n —1),b,2a). In every move, Breaker claims b free edges of K, according to his
strategy for B(n,n(n —1),b,2a). That is, whenever he is supposed to claim an element
of e;, he claims an arbitrary free edge (v;,v;); if no such free edge exists, then he claims
an arbitrary free edge. Whenever, Maker claims an edge (v;,v;) for some 1 < i < j <mn,
Breaker (in his mind) gives BoxBreaker an arbitrary free element of e; and an arbitrary
free element of e;. Note that every edge of K,, which Maker claims translates to two board
elements of B(n,n(n —1),b,2a). This is why BoxBreaker’s bias is set to be 2a. It is thus
evident that if BoxMaker has a winning strategy for B(n,n(n — 1),b,2a), then Breaker
has a winning strategy for the (a : b) Connectivity game on K.

By Lemma 7, in order to prove that BoxMaker has a winning strategy for
B(n,n(n —1),b,2a), it suffices to prove that n(n — 1) < f(n;b,2a) + b.

Since b — 2a — 1 > 0 and n > 2a, it follows by Lemma 6, (1) and the fact that for
n>2Inn+1/2>In(n+ 1) that

f(n;b,2a)2nb—1+won [ﬁ-‘ —1).

a 2a
Hence, it suffices to prove that

n(n—l)SMOn {ﬁ-‘ —1>—|—nb—1+b.
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It is straightforward to verify that the above inequality holds for

2a(n =2+ [£])+In[g] 142

= 2a+ln’—2"—a-‘—1+%“

]

Proof of Theorem 3. In his first move, Breaker claims the edges of some graph of positive
minimum degree. This is easily done as follows. If n is even, then Breaker claims the
edges of some perfect matching of K, and then he claims additional b—n/2 arbitrary free
edges. If n is odd, then Breaker claims the edges of a matching of K, which covers all
vertices of K,, but one, say u. He then claims a free edge (u,x) for some x € V(K,) and
additional b — (n — 1)/2 — 1 arbitrary free edges.

In his first move, Maker cannot touch all vertices of K, since 2a < n. Let w € V(K,,)
be an isolated vertex in Maker’s graph after his first move. Since dg(w) > 1 and b > n—2,
Breaker can claim all free edges which are incident with w in his second move and thus
win.

]

4 Maker’s strategy for the (a : b) Connectivity Game

Proof of Theorem 4. Our proof relies on the approach of Gebauer and Szabd [6], who
proved the special case a = 1. First, let us introduce some terminology. For a vertex
v € V(K,) let C(v) denote the connected component in Maker’s graph which contains
the vertex v. A connected component in Maker’s graph is said to be dangerous if it
contains at most 2b/a vertices. We define a danger function on V(K,,) in the same way
it was defined in [6],

[ dp(v), if C(v) is dangerous,
D(v) = { —1, otherwise.

We are now ready to describe Maker’s strategy.

Maker’s strategy: Throughout the game, Maker maintains a set A C V(K,,) of
active vertices. Initially, A = V(K,).

For as long as Maker’s graph is not a spanning tree, Maker plays as follows. For
every i > 1, Maker’s ith move consists of a steps. For every 1 < j < a, in the jth step
of his ¢th move Maker chooses an active vertex vgj ) whose danger is maximal among all
active vertices (breaking ties arbitrarily). He then claims a free edge (x,y) for arbitrary
vertices © € C’(vi(j)) and y € V(K,) \ C(vl@). Subsequently, Maker deactivates vi(j), that
is, he removes vi(j ) from A. If at any point during the game Maker is unable to follow the
proposed strategy, then he forfeits the game.

Note that by Maker’s strategy his graph is a forest at any point during the game.
Hence, there are at most n — 1 steps in the entire game. It follows that the game lasts at
most ("T_lw rounds.
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In order to prove Theorem 4, it clearly suffices to prove that Maker is able to follow the
proposed strategy without ever having to forfeit the game. First, we prove the following
lemma.

Lemma 8. At any point during the game there is exactly one active vertex in every
connected component of Maker’s graph.

Proof. Our proof is by induction on the number of steps » which Maker makes throughout
the game.

Before the game starts, every vertex of K, is a connected component of Maker’s graph,
and every vertex is active by definition. Hence, the assertion of the lemma holds for r = 0.

Let r > 1 and assume that the assertion of the lemma holds for every ' < r. In the rth
step, Maker chooses an active vertex v and then claims an edge (z,y) such that z € C(v)
and y ¢ C(v) hold prior to this move. By the induction hypothesis there is exactly one
active vertex z € C(y) and v is the sole active vertex in C'(v). Since Maker deactivates
v after claiming (z,y), it follows that z is the unique active vertex in C'(z) U C(y) after
Maker’s rth step. Clearly, every other component still has exactly one active vertex. [

We are now ready to prove that Maker can follow his strategy (without forfeiting the
game) for n — 1 steps. Assume for the sake of contradiction that at some point during
the game Maker chooses an active vertex v € C' and then tries to connect C' with some
component of M \ C, but fails. It follows that Breaker has already claimed all the edges
of K,, with one endpoint in C and the other in V' \ C. Assume that Breaker has claimed
the last edge of this cut in his sth move. As noted above, s < PTAW must hold. It follows
that |C| < 2b/a as otherwise Breaker would have had to claim at least 22(n — 22) > sb
edges in s moves. It follows that at any point during the first s rounds of the game there
is always at least one dangerous connected component.

In his sth move, Breaker claims at most b edges. Hence, just before Breaker’s sth move
eg(V(C),V(K,)\V(C)) > |C] (n — |C]) — b must hold. In particular, dg(v) > n— 2 —b,
where v is the unique active vertex of C. Since Maker did not connect C' with M \C in his
(s — 1)st move, it follows that, just before this move, there must have been at least a + 1

active vertices v, vy, ..., v, such that the components C, C(vy),...,C(v,) were dangerous
and dg(u) > n — %” — b for every u € {v,vy,...,0,}.

For every 1 <1 < s, let M; and B; denote the ith move of Maker and of Breaker, respec-
tively. By Maker’s strategy v%l), .. v§ ), vél), e ,vé“), e ,vil_)l, ey § )1 are of maximum

degree in Breaker’s graph among all active vertices at the appropriate time, that is, just
before Maker’s jth step of his ith move, dB(vl(] )) is maximal among all active vertices.
Let v, be an active vertex of maximum degree in Breaker’s graph just before Maker’s
sth move. Note that, for every u € {v§1), . v§ ), vél), . ,véa), . ,vil_)l, . ,v§“>l, Vs
if u is active, then C(u) is a dangerous component. For every 1 < i < s—1,

let As i = {vs PR § )z, e él)l, . ,vg@l,vs} denote the subset of vertices of

{vl ey g (@) vé ). ,vé ). ,vgl_)l, o ,vi‘i)l, vs} that are still active just before Maker’s

(s — z)th move and let A, = {v,}. For every A C V, let Dy, (A) = Z”% denote the
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average danger value of the vertices of A, immediately before Breaker’s move B;. The
average danger Dy, (A) is defined analogously.

Since Maker always deactivates vertices of maximum danger, thus reducing the average
danger value of active vertices, we have the following lemma.

Lemma 9. Dy, ,(As—;) > Dp, .., (As_is1) holds for every 1 <i<s—1.

Proof. Letu € As_;1 = {vs PP ,vi‘i)iﬂ, . ,vil_)l, . ,vé’i)l, vs} be an arbitrary vertex.

Since C(u) is a dangerous component immediately before B; .1, the danger D(u) does
not change during M,_;. It follows that Dy, ,(As_iz1) = Dp, ., (As_it1)-
Note that the vertices contained in A, ;1 were still active before M,_;.

Following his strategy, Maker deactivated all the vertices of {vs PR ,Ug@i},
because their danger values were the largest among all the active vertices of
{vi?i, ey ga)z’ . ,vgl_)l, . ,vga)l, vs}. It follows that min{D(vil_)i), ...,D(v ga)z)} >
max{D(0,"; 1), D07 0), - Do), . D), D(ws)}, and thus Dy, (As-y) 2
D, ,(As_iv1), as claimed. O

The following lemma gives two estimates on the change of the danger value caused by
Breaker’s moves.

Lemma 10. The following two inequalities hold for every 1 <i < s —1.

(2) ﬁMS,i(Asfz) — 535% (Asfi) < .2b < %

— ai+1 ai

(17) Define a function g : {1,...,s} — N by setting g(i) to be the number of edges with
both endpoints in A; which Breaker has claimed during the first i — 1 mowes of the
game. Then,

D D b+a’(i—1)+a+(3) +gls—i+1)—g(s—i
Du (As ) — D, (A, ) < 2 <i+ﬁ ) —g(s—i)

Proof.
(i) The components C(v™M), ..., C@™),....Cc(w™),...,C(W,),C(v,) are danger-

ous before Maker’s (s — i)th move. During Breaker’s moves, the components
of Maker’s graph do not change. Hence, the change of the danger values of
the vertices of As_;, caused by Breaker’s (s — ¢)th move, depend solely on the
change of their degrees in Breaker’s graph. In his (s — i)th move, Breaker
clalms b edges and thus the increase of the sum of the degrees of the vertices of
{US PR sa)“ o ,vgl)l, . E,a)l, vs} is at most 2b. The size of A,_; is ai + 1. Thus

Dp. ,(A,_;) increases by at most = during Bs_;.

(17) Let p denote the number of edges (:U y) claimed by Breaker during B,_; such that

{z,y} C A, andlet ¢ = b—p. Hence, the increase of thesum ., dp(u) during
B,_; is at most 2p+q = p+b. It follows that DBs_i(AS_Z) increases by at most :Z%pl

during B,_;. It remains to prove that p < a?(i—1)+a+ (5) +g(s—i+1) — g(s —1).
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During his first s —¢ — 1 moves, Breaker has claimed exactly g(s—1) edges with both
their endpoints in A, ;. Hence, during his first s — ¢ moves, Breaker has claimed
exactly g(s — i) + p edges with both their endpoints in A;_;. Exactly g(s —i+1)
Vg Z} There

} Moreover,

of these edges have both their endpoints in A;_; 11 = As_; \ {vgl PR

can be at most (;) edges connecting two vertices of {v ().

each vertex of {vs iy Ug l} is adjacent to at most a(i — 1) + 1 vertices of A;_;11.
Combining all of these observations, we conclude that g(s —i) +p < g(s —i+ 1)+
a*(i — 1) +a+ (3), entailing p < (3) + a*(i — 1) +a+ g(s —i+ 1) — g(s — i) as

claimed.
O
Clearly, before the game starts D(u) = dp(u) = 0 holds for every vertex u. In
particular Dg, (A;) = 0. Using our assumption that Breaker wins the game, we will
obtain a contradiction by showing that Dp, (A1) > 0
Note that, as previously observed, Dp_ (As) > n—=2—b. We will use this fact, Lemma 9,

Lemma 10, the inequalities 15 < - and b+a?(i — 1)+a+ (5)+g(s—i+1)— g(s—z) >0
(which hold for every 1 < ¢ < s — 1), and (1), in order to reach the aforementioned
contradiction.

Let k= [ 24 |-

First, assume that a = o(y/n/Inn). We split the game into two parts — the main
game and the last £ moves. In these last moves, we will use a more delicate estimate on
the effect of Breaker’s move on the average danger. We distinguish between two cases.

Case 1: s < k.

2 — o bta(i—1)+a+ (9 +agls—i+1)—gls—1i)
>n—"=—b 0— 2
>n +; 2 ai

; a—1
>n——(Hy1+2+a)—a(s—1)+aH; 1 — Hy g — He

S

98—2 g(1)
__+Zaz (8—1)

b a—1
2 n — a(Hs_l +2+a) + THs_l —(I(S - 1)
(since g(s) = 0 and g(s — i) > 0)

b —1
>n——(Hs+2+a)+aTHs—as
a
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Ink — ak

b
>n——(lnk+3+a)+a
a

(since s < k)
et ()
>n— alnn 2 a?lnn (

Inn+a+Inlnn+4

n +a—1 | ( n )
N . n
alnn 2 a’lnn

> 0.

Inn—Ina—1Inlnn + a + 3)

Case 2: s > k.

3 Pus (A = D (4,) = Y (P (4,) ~ D, (A,)

b+ D+at () +gls—it1) —gls—i) _Siz_b
’ at — a3
=1 i=k
2 —1
>n——b—b—9Hk_1 ¢ Hk_l—CL(k?—l)
a

g(s) 2 g(s—i) gls—k+1) 2b
e T 2 W ) T ak—1)  q Her T i)

b -1
zn——(QHS—Hk,l—l—Q—i—a)—l—aTHk,l—a(k—l)
a
(since g(s) =0 and g(s —1i) > 0)

b —1 -1
>n——(21n(n )—lnk+a+4)+a—~lnk—ak‘
a a 2

b a—1 n n
>n— 2(lnn+ Il H+L2 0 ( )—
=" a(nn+nnn+a—|—)+ 2 "\@2lnn alnn
n— 2 4ol (S
>n— alnn 2 (a lnn)(

Inn+a+Inlnn+4

+a—l | ( n ) n
. n J—
2 a?lnn alnn

=0.

Inn+Inlnn+4+a)

Next, assume that a = Q(y/n/Inn) and a < 251, In this case, the game does not last
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long.

s—1
Dp, (A1) = Dp,(As) + Y (Dar._.(Asi) = Do, (Asign))
=1

s—1

S (Du(Asi) — D, (As))

i=1

20 s—1 5—12b
>n———0b E 0—» —
" +i:1 purllll

2b 2b
>n———b——(ns+1)

a a

2b
:n—;(2+g+lns)

2b a n—1
2n——<2+—+ln( ))
a 2 a

n a n—1
>n — 24+ —-+1In
lnn—lna—i—Z—l—% 2 a

>0.

5 Concluding remarks and open problems

Determining the threshold bias. In this paper we have tried to determine the winner
of the (a : b) Connectivity game on E(K,,) for all values of a and b. We have established
lower and upper bounds on the threshold bias by(a) for every value of a. For most values,
these bounds are quite sharp. However, for a = ¢Ilnn, where ¢ > 0 is fixed, the first order
terms in the upper bound and the lower bound differ. For that reason, we feel that an
improvement of the bounds in this case would be particularly interesting.

Analyzing other games. There are many well-studied Maker-Breaker games played
on the edge set of the complete graph for which, in the biased (a : b) version, the identity of
the winner is known for a = 1 and almost all values of b. Some examples are the Hamilton
cycle game (see [4] and [8]) and the H-game, where H is some fixed graph (see [3]). It
would be interesting to analyze these games for other values of a (and corresponding
values of b) as well.

We note that all the results of the present paper also hold for the Positive Minimum
Degree game, where Maker’s goal is to touch all n vertices of the board K,,, and Breaker’s
goal is to prevent Maker from doing so. Indeed, if Maker wins the Connectivity game,
then he clearly wins the Positive Minimum Degree game with the same parameters as well.
On the other hand, in all our results that guarantee Breaker’s win in the Connectivity
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game, we in fact prove that Breaker can isolate a vertex in Maker’s graph, which clearly
also ensures Breaker’s win in the Positive Minimum Degree game.
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