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Abstract

We prove that the total number Sn,132(q) of copies of the pattern q in all 132-
avoiding permutations of length n is the same for q = 231, q = 312, or q = 213.
We provide a combinatorial proof for this unexpected threefold symmetry. We then
significantly generalize this result by proving a large family of non-trivial equalities
of the type Sn,132(q) = Sn,132(q

′).

Dedicated to the memory of Herb Wilf

1 Introduction

1.1 Background and Definitions

Let q = q1q2 . . . qk be a permutation in the symmetric group Sk. We say that the per-
mutation p = p1p2 . . . pn ∈ Sn contains a q-pattern if and only if there is a subsequence
pi1pi2 . . . pik of p whose elements are in the same relative order as those in q, that is,

pit < piu if and only if qt < qu

whenever 1 ≤ t, u ≤ k. If p does not contain q, then we say that p avoids q. For instance,
214653 contains 231 (consider the third, fourth, and sixth entries), but avoids 4321. See
Chapter 14 of [1] for an introduction to pattern avoiding permutations, and Chapters 4
and 5 of [2] for a somewhat more detailed treatment.

It is straightforward to compute, using the linear property of expectation, that the
average number of q-patterns in a randomly selected permutation of length n is 1

k!

(

n
k

)

,
where k is the length of q.
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Joshua Cooper [5] has raised the following interesting family of questions. Let r be a
given permutation pattern. What can be said about the average number of occurrences
of q in a randomly selected r-avoiding permutation of a given length? Equivalently, can
we determine the total number Sn,r(q) of all q-patterns in all r-avoiding permutations of
length n?

1.2 Earlier Results

In [4], the present author found formulae for the generating functions of the sequence
Sn,132(q) for the cases of monotone q, that is, for q = 12 · · · k and q = k(k − 1) · · · 1, for
any k. He also proved that if n is large enough, then for any fixed k, among all patterns
q of length k, it is the monotone decreasing pattern that maximizes Sn,132(q) and it is the
monotone increasing pattern that minimizes Sn,132(q).

1.3 The Outline of our Paper

In this paper, we first present a computational proof of the surprising fact that for all n,
the equalities

Sn,132(231) = Sn,132(312) = Sn,132(213) (1)

hold. The first equality is trivial, since taking the inverse of a 132-avoiding permutation
keeps that permutation 132-avoiding, and turns 231-patterns into 312-patterns. However,
the second equality is non-trivial. (The reverse or complement of a 132-avoiding per-
mutation is not necessarily 132-avoiding.) In particular, if a(p) denotes the number of
213-copies in p, and b(p) denotes the number of 231-copies in p, then the statistics a(p)
and b(p) are not equidistributed over the set of all 132-avoiding permutations of length n,
but their average values are equal over that set.

In other words, we will prove that a randomly selected non-monotonic pattern of length
three in a 132-avoiding permutation is equally likely to be a 231-pattern, a 312-pattern,
or a 213-pattern. It is well-known (see Chapter 14 of [1]) that 132-avoiding permutations
of length n are counted by the Catalan numbers cn =

(

2n
n

)

/(n+ 1), and as such, they are
one of more than 150 distinct kinds of objects counted by those numbers. However, we
do not know of any other example when a natural statistic on objects counted by Catalan
numbers shows a similar threefold symmetry.

In the next part of the paper we provide a bijective proof of (1). Finally, we will
significantly generalize this result by showing more than ch−2 pairs of patterns q and q′

of length h that behave as 213 and 231, that is, for which Sn,132(q) = Sn,132(q
′), and the

equality is non-trivial.
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2 Arguments Using Generating Functions

Let dn be the total number of inversions (in other words, copies of the pattern 21) in all
132-avoiding n-permutations. It is proved in [4] that

D(x) =
∑

n≥1

dnx
n =

x

1− 4x
·
(

1√
1− 4x

− 1−
√
1− 4x

2x

)

. (2)

2.1 Counting Copies of 213

Let an be the total number of all 213-patterns in all 132-avoiding permutations of length
n. Clearly, then a0 = a1 = a2 = 0.

There are three ways that a 132-avoiding permutation p of length n can contain a
213-pattern q. Either q is entirely on the left of the entry n, or q is entirely on the right
of n, or q ends in n.

For n ≥ 3, this leads to the recurrence relation

an =
n

∑

i=1

ai−1cn−i +
n

∑

i=1

ci−1an−i +
n

∑

i=3

di−1cn−i.

Let A(x) (resp. C(x)) be the ordinary generating function for the sequence of the
numbers an (resp. cn). Then the last displayed formula yields the functional equation

A(x) = 2xA(x)C(x) + xD(x)C(x),

which is equivalent to

A(x) =
xD(x)C(x)

1− 2xC(x)
=

x

2(1− 4x)2
+

x− 1

2(1− 4x)3/2
+

1

2(1− 4x)
. (3)

From here, we get that if n ≥ 3, then

an =
n

2
4n−1 +

1

2
4n − (2n+ 1)

(

2n− 1

n− 1

)

+ (2n− 1)

(

2n− 3

n− 2

)

,

which simplifies to

an = (n+ 4) · 22n−3 − (2n+ 1)

(

2n− 1

n− 1

)

+ (2n− 1)

(

2n− 3

n− 2

)

. (4)

2.2 Counting Copies of 231

Let hn be the total number of all non-inversions (in other words, copies of the pattern 12)
in all 132-avoiding permutations of length n. It is proved in [4] that

H(x) =
∑

n≥0

hnx
n =

1

2(1− 4x)
+

1

2x
− 1− x

2x
√
1− 4x

. (5)
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Let bn be the total number of all 231-copies in all 132-avoiding permutations of length
n, and let B(x) =

∑

n≥0
bnx

n.
Let

Z(x) =
∑

n≥0

ncnx
n =

∑

n≥0

(

2n

n

)

n

n+ 1
xn =

1√
1− 4x

− 1−
√
1− 4x

2x
. (6)

Note that Z(x) is the generating function for the number of entries (which are copies of
the pattern 1) in all 132-avoiding n-permutations.

If p is a 132-avoiding n-permutation, and q is a 231-pattern contained in p, then either
q is entirely on the left of the entry n, or q is entirely on the right of the entry n, or the
entry n is the largest entry of q, or the first and second entries of q form a 12-pattern on
the left of n, while the third entry of q is on the right of n.

For n ≥ 3, this leads to the recurrence relation

bn =
n

∑

i=1

bi−1cn−i +
n

∑

i=1

ci−1bn−i +
n−1
∑

i=2

(i− 1)(n− i)ci−1cn−i +
n−1
∑

i=3

hi−1cn−i(n− i).

In terms of generating functions, this yields

B(x) = 2xB(x)C(x) + xZ2(x) + xH(x)Z(x),

B(x) =
xZ2(x) + xH(x)Z(x)

1− 2xC(x)
=

xZ2(x) + xH(x)Z(x)√
1− 4x

.

Given the explicit formulae (5) and (6) for H(x) and Z(x), the last displayed equation
yields the formula

B(x) =
xD(x)C(x)

1− 2xC(x)
=

x

2(1− 4x)2
+

x− 1

2(1− 4x)3/2
+

1

2(1− 4x)
. (7)

The proof of the main result of this section is now immediate.

Theorem 1. For all positive integers n, the equalities

Sn,132(231) = Sn,132(312) = Sn,132(213)

hold.

Proof. As we mentioned in the Introduction, the first equality is trivially true since there
is a natural bijection between the 231-copies of the 132-avoiding permutation p and the
312-copies of the 132-avoiding permutation p−1. Indeed, let p = p1p2 · · · pn be a 132-
avoiding permutation, and let 1 ≤ i < j < k ≤ n. Then pipjpk is a 231-copy in p if and
only if ijk is a 312-copy in p−1.

The equality Sn,132(231) = Sn,132(213) holds since we have seen in formulae (3) and
(7) that the two sides of this equality have identical generating functions.
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3 A Bijective Proof

In this section we provide a bijective proof for the surprising identity Sn,132(213) =
Sn,132(231).

3.1 Binary Plane Trees

In our proof, we will identify a 132-avoiding permutation p with its binary plane tree T (p)
using a very well-known bijection. We will briefly describe this bijection now. For more
details, the reader may consult Chapter 14 of [1]. The tree T (p) will be a binary plane
tree, that is, a rooted unlabeled tree in which each vertex has at most two children, and
each child is a left child or a right child of its parent, even if it is the only child of its
parent.

The root of T (p) corresponds to the entry n of p, the left subtree of the root corresponds
to the string of entries of p on the left of n, and the right subtree of the root corresponds
to the string of entries of p on the right of n. Both subtrees are constructed recursively,
by the same rule. Note that since p is 132-avoiding, the position of the entry n of p
determines the set of entries that are on the left (resp. on the right) of n. In fact, if n is in
the ith position, the set of entries on the left of n must be {n− i+1, n− i+2, · · · , n−1},
and the set of entries on the right of n must be {1, 2, · · · , n− i}.

We point out that in the process of constructing T (p), each vertex of T (p) is associated
to an entry of p. Indeed, each vertex is added to T (p) as the root of a subtree S, and so
each vertex is associated to the entry that is the largest among the entries that belong to
S. However, it is important to point out that T (p) is an unlabeled tree since the way in
which the entries of p correspond to the vertices of T (p) is completely determined by the
unlabeled tree T (p) as long as p is 132-avoiding.

See Figure 1 for an illustration.

6

7

8

2

3

4

5

1

Figure 1: The tree T (p) for p = 67823415, and the entries of p associated to the vertices
of T (p).

Note that in order to get p from T (p), it suffices to read the vertices of T (p) in-order,
that is, by first reading the left subtree of the root, then the right subtree of the root, and
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then the right subtree of the root. The respective subtrees are read recursively, by this
same rule. Therefore, it is meaningful to talk about the first, second, etc, last vertex of
T (p), since that means the first, second, etc, last vertex of T (p) in the in-order reading.

A left descendant (resp. right descendant) of a vertex x in a binary plane tree is a
vertex in the left (resp. right) subtree of x. The left (resp. right) subtree of x does not
contain x itself.

It is straightforward to see that pipj is a 12-pattern in p if and only if pi is a left-
descendant of pj in T (p). On the other hand, pjpi is a 21-pattern in p if and only if
either pi is a right descendant of pj in T (p) or there is a vertex x in T (p) so that pj
is a left descendant of x and pi is a right descendant of x. In the previous section we
gave an exhaustive list of the ways in which 213-patterns and 231-patterns can occur in
a 132-avoiding permutation. The reader is invited to translate that list into the language
of binary plane trees.

3.2 Our Bijection

Let p be a 132-avoiding n-permutation, and let Q be an occurrence of the pattern 213 in
p. Let Q2, Q1, Q3 be the three vertices of T (p) that correspond to Q, going left to right.
Let us color these three entries black. There are then two possibilities.

1. Either Q1 is a right descendant of Q2 and Q2 is a left descendant of Q3, or

2. there exists a lowest left descendant Qx of Q3 so that Q2 is a left descendant of Qx

and Q1 is a right descendant of Qx.

Let An be the set of all binary plane trees on n vertices in which three vertices forming
a 213-pattern are colored black. Let Bn be the set of all binary plane trees on n vertices
in which three vertices forming a 231-pattern are colored black.

Now we are going to define a map f : An → Bn. We will then prove that f is a
bijection. The map f will be defined differently in the two cases described above.

• Case 1. If T ∈ An is in the first case, then let f(T ) be the tree obtained by
interchanging the right subtree of Q2 and the right subtree of Q3. Keep all three
black vertices Qi black, even as Q1 gets moved.

See Figure 2 for an illustration.

Note that in f(T ), in the set of black vertices, there is one that is an ancestor of
the other two, namely Q3.

• Case 2. If T ∈ An is in the second case, then let f(T ) be the tree obtained by
interchanging the right subtrees of the vertices Qx and Q3, and coloring Q2, Qx and
Q1 black. See Figure 3 for an illustration.

Note that in f(T ), there is no black vertex that is an ancestor of the other two black
vertices. Also note that in f(T ), the lowest common ancestor of Qx and Q1 is Q3.
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Q
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3

1

QQ

3

2 1

T f(T)

Figure 2: Interchanging the right subtrees of Q2 and Q3.

Q Q Q

Q Q

Q3
Q

2 1 2

x

3

1
Qx

f(T)T

Figure 3: Interchanging the right subtrees of Qx and Q3.

It is a direct consequence of our definitions that if T ∈ An, then f(T ) = Bn. Now we
are in a position to prove the main result of this section.

Theorem 2. The map f : An → Bn defined above is a bijection.

Proof. Let U ∈ Bn. We will show that there is exactly one T ∈ An so that f(T ) = U
holds. This will show that f has an inverse, proving that f is a bijection.

By definition, three nodes of U are colored black, and the entries of the permutation
corresponding to U form a 231-pattern. Let K2, K3, and K1 denote these three vertices,
from left to right. There are two possibilities for the location of the Ki relative to each
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other. We will show that in both cases, U has a unique preimage under f , essentially
because swapping two subtrees is an involution.

1. If K3 is an ancestor of both other black vertices, then f(T ) = U implies that T
belongs to Case 1. In this case, the unique T ∈ An satisfying f(T ) = U is obtained
by swapping the right subtrees of K3 and K2, and keeping all three black vertices
black, even if K1 got moved.

2. If K3 is not an ancestor of both other black vertices and then f(T ) = U implies
that T belongs to Case 2. In this case, let Kx be the smallest common ancestor of
K3 and K1. Then the unique T ∈ An satisfying f(T ) = U is obtained by swapping
the right subtrees of K3 and Kx, and coloring Kx black instead of K3, while keeping
K1 and K2 black.

This completes the proof.

4 A Generalization

In this section, we will significantly generalize the result of the previous section. The
key observation is that in the proof of Theorem 2, the left subtrees of Q1 and Q2 never
changed.

In order to state our result, we announce the following definitions.

Definition 3. Let q be a pattern of length k and let t be a pattern of length m. Then
q ⊕ t is the pattern of length k +m defined by

(q ⊕ t)i =







qi if i ≤ k,

ti−k + k if i > k.

In other words, q⊕t is the concatenation of q and t so that all entries of t are increased
by the size of q.

Example 4. If q = 3142 and t = 132, then q ⊕ t = 3142576.

Definition 5. Let q be a pattern of length k and let t be a pattern of length m. Then
q ⊖ t is the pattern of length k +m defined by

(q ⊖ t)i =







qi +m if i ≤ k,

ti−k if i > k.

In other words, q⊖t is the concatenation of q and t so that all entries of q are increased
by the size of t.

Example 6. If q = 3142 and t = 132, then q ⊖ t = 6475132.
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Now we are ready to state and prove the most general result of this paper.

Theorem 7. Let q and t be any non-empty patterns that end in their largest entry. Let

iu denote the increasing pattern 12 · · · u. Then for all positive integers n, we have

Sn,132((q ⊖ t)⊕ iu) = Sn,132((q ⊕ iu)⊖ t),

where 1 denotes the pattern consisting of one entry.

In particular, the result of the previous section is the special case of Theorem 7 in
which q = t = iu = 1 (the one-entry pattern 1).

Example 8. If q = 3124, t = 213, and u = 2, then Theorem 7 says that

Sn,132(645721389) = Sn,132(645789213).

Proof. (of Theorem 7) Note that we can assume that q and t are both 132-avoiding, since
otherwise the statement of Theorem 7 is trivially true as both sides are equal to 0.

Let k denote the length of q, let m denote the length of t. Similarly to the proof of
Theorem 2, let An be the set of all binary plane trees on n vertices in which h vertices
forming a ((q⊖ t)⊕ iu)-pattern are colored black, and let Bn be the set of all binary plane
trees on n vertices in which h vertices forming a ((q ⊕ iu)⊖ t)-pattern are colored black.

Let T ∈ An. Let Qb be the kth black vertex of T in the in-order reading, let Qa be
the (k +m)th black vertex of T , and let Qc be the rightmost black vertex of T . We are
now going to construct a bijection F : An → Bn. The construction is analogous to the
one that we saw before Theorem 2.

1. If Qa is a right descendant of Qb, then let F (T ) be the tree obtained from T by
swapping the right subtree of Qb and the right subtree of Qc. Note that in F (T ),
the black vertices form a (q⊖ t)⊕ iu-pattern, and that Qc is an ancestor of all other
black vertices in F (T ). See Figure 4 for an illustration.

2. Otherwise, there exists a lowest vertex Qx ∈ T so that Qb is a left descendant of Qx

and Qa is a right descendant of Qx. Note that in this case, it follows that Qx is not
black. Now let F (T ) be the tree obtained from T by swapping the right subtree of
Qx and the right subtree of Qc, and by coloring Qx black, instead of Qc. Note that
again, in F (T ), the black vertices form a (q ⊖ t)⊕ iu-pattern. Also note that there
is no black vertex in F (T ) that would be an ancestor of all other black vertices. See
Figure 5 for an illustration.

It is straightforward to show that F : An → Bn is a bijection. Indeed, let U ∈ Bn. If
there is a black vertex in U that is an ancestor of all other black vertices, then U could
only be obtained by the first rule, otherwise U could only be obtained by the second
rule. The unique preimage F−1(U) is then obtained by swapping the appropriate right
subtrees. In the first case, swap the right subtrees of Ub and Uc, where Ub is the kth and
Uc is the (k + u)th black vertex of U in the in-order reading. In the second case, let Ux

be the (k + 1)st black vertex of U , let Ua be the last black vertex of U , and let Uc be the
lowest common ancestor of Ux and Ua. Then the unique preimage F−1(U) is obtained by
swapping the right subtrees of Ux and Uc, and coloring Uc black instead of Ux.
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Qc Qc

Figure 4: Interchanging the right subtrees of Qb and Qc, and turning a copy of 341256
into a copy of 345612.

Note that by transitivity, Theorem 7 implies the following.

Corollary 9. Let q, t, and iu be as in Theorem 7, and let 1 ≤ v < u. Then we have

Sn,132((q ⊕ iv)⊖ t)⊕ iu−v) = Sn,132((q ⊖ t)⊕ iu).

Proof. Theorem 7 shows that both sides are equal to Sn,132((q ⊕ iu)⊖ t).

5 Further Directions

Formula (4) implies that Sn,132(213) ∼ C14
nn, while the generating functions computed

in [4] imply that Sn,132(321) ∼ C24
nn3/2 and Sn,132(123) ∼ C34

nn1/2, where the Ci are
positive constants. So occurrences of non-monotone patterns of length three are infinitely
rare compared to occurrences of 321, and infinitely frequent compared to occurrences of
123; the frequency of non-monotone patterns is halfway between the two extremes.

While precise formulae like the ones given in earlier sections of this paper may not be
obtainable for longer patterns, comparative results as the ones described in the previous
paragraph may be possible to prove even for such patterns.

If we set u = 1 and h = k +m+ 1, then Theorem 7 provides

h−1
∑

i=2

ci−2ch−i−1 = ch−2

non-trivial examples of two patterns s and s′ for which Sn,132(s) = Sn,132(s
′) for all n.

Other choices of u provide additional such pairs. However, it seems that there are other
pairs of patterns whose total number of copies in all 132-avoiding permutations agree. We
hope to discuss such pairs in an upcoming paper.
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Q
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x
Qx

f(T)T
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bQ

Qa

c

QaQb

Figure 5: Interchanging the right subtrees of Qx and Qc, coloring Qx black instead of Qc,
and turning a copy of 341256 into a copy of 345612.

Are there any other such pairs? Are there any such pairs when 132 is replaced by
another pattern r? Are there any patterns r and r′ for which Sn,r(u) = Sn,r′(u

′) for all n
and the equality is non-trivial?

Finally, how do the permutation statistics studied in this paper translate to the other
150 families of objects counted by the Catalan numbers listed in [7]?
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