
Largest and smallest minimal percolating sets in trees

Eric Riedl
Harvard University

Department of Mathematics

ebriedl@math.harvard.edu

Submitted: Sep 2, 2010; Accepted: Mar 21, 2012; Published: Mar 31, 2012

Abstract

Originally introduced by Chalupa, Leath and Reich for use in modeling dis-
ordered magnetic systems, r-bootstrap percolation is the following deterministic
process on a graph. Given an initial infected set, vertices with at least r infected
neighbors are infected until no new vertices can be infected. A set percolates if it
infects all the vertices of the graph, and a percolating set is minimal if no proper
subset percolates. We consider minimal percolating sets in finite trees. We show
that if A is a minimal percolating set on a tree T with n vertices and ` vertices of
degree less than r (leaves in the case r = 2), then (r−1)n+1

r ≤ |A| ≤ rn+`
r+1 . Moreover,

we show that the difference between the sizes of a largest and smallest minimal
percolating sets is at most (r−1)(n−1)

r2
. Finally, we describe O(n) algorithms for

computing the largest (for r = 2) and smallest (for r ≥ 2) minimal percolating sets.

1 Introduction

In this paper we study the following deterministic process on a graph G, known as r-
neighbor bootstrap percolation. Let A0 = A be a subset of the vertices of G, and for
each t ≥ 1, let At = At−1 ∪Bt, where Bt is the set of vertices with at least r neighbors in
At−1. We write 〈A〉 = ∪∞t=0At, and say that A percolates if 〈A〉 = V (G). We think of the
process as modeling the spread of infection, with A the set of initially infected vertices
and 〈A〉 the set of eventually infected vertices. A set A is a minimal percolating set if
A percolates but no proper subset of A percolates. Note that such sets must exist, as
〈G〉 = G. It turns out that minimal percolating sets are not necessarily all the same size.
In this paper, we concern ourselves with the following questions: given a certain finite
graph, what are the sizes of the largest and smallest minimal percolating sets? What
bounds can we prove on the sizes of these sets? Can we provide examples of such sets?
This paper considers these questions for trees.

Bootstrap percolation was introduced in 1979 by Chalupa, Leath, and Reich in [9]
who were motivated by applications to disordered magnetic systems. It can be used to

the electronic journal of combinatorics 19 (2012), #P64 1

model many different real-world phenomena, including magnetic matericals, fluid flow
in rocks, and computer storage systems. For more details on applications of bootstrap
percolation, see the survey article by Adler and Lev [1]. Theoretical work on r-bootstrap
percolation has focused mostly on variants of the following probabilistic question. Given
a graph G, choose a randomly infected set of of vertices A by letting each v ∈ G be in A
independently with probability p. Then what is pc(G, r) = inf{p |P(Apercolates) ≥ 1/2}?
Aizenman and Lebowitz and Cerf and Cirillo did foundational work for the problem on
grids [n]d in [2, 7], and Cerf and Manzo [8] proved that

pc([n]d, r) = Θ

(
1

log(r−1) n

)d−r+1

,

where log(r)(x) is log(log(· · · log(x))) (r times). Holroyd [10] found more precise estimates
for r = 2, d = 2 and Balogh, Bollobás, Duminil-Copin and Morris [3, 4] found precise
asymptotics for all r and d. Balogh, Bollobás and Morris also found asymptotic results
for d � log(n), and n and d both increasing [5]. Balogh, Peres and Pete found pc for
infinite trees in [6].

Write m(G, r) for the size of a smallest minimal percolating set, and E(G, r) for the
size of a largest minimal percolating set under r-bootstrap percolation. In this paper we
bound m and E. As seen in many cases (such as [11]), information about the size and
structure of minimal percolating sets can often be both useful in answering the original
probabilistic percolation questions and interesting in terms of gaining insight into the
percolation process. Minimal percolating sets are crucial to understanding the structure
of percolating sets, as any percolating set necessarily contains a minimal percolating set.
Bounding the maximum and minimum sizes of minimal percolating sets is a basic first
step in investigating minimal percolating sets. Moreover, studying E and m gives a sense
of how badly the greedy algorithm could fail in minimizing the number of sites required
for percolation.

Less work has been done on the extremal problem than on the probabilistic problem.
It is a folk-lore fact that for r = 2, the smallest minimal percolating set in the n× n grid
has size n. Pete [12] computes m([n]d, r) up to a constant factor for every fixed d and
r, and proves more precise estimates in special cases. Morris [11], answers a question of
Bollobás and finds asymptotic bounds for the size of a largest minimal percolating set in
[n]2, showing that it lies between 4n2

33
and n2

6
. We investigate E and m for finite trees.

Since trees are a diverse family of graphs, it is difficult to find a simple formula for E and
m. Indeed, there is no known simple numerical characterization of trees which can be
used to determine the sizes of their minimal percolating sets. Candidates such as number
of vertices or degree sequence simply do not carry enough information. For example, the
graphs in Figure 1 have the same number of vertices and the same degree sequence but
different smallest minimal percolating set sizes.

Our main results are bounds on the sizes of minimal percolating sets and O(n) algo-
rithms for computing the sizes of minimal percolating sets. More specifically, in Section 2
we use an edge-counting technique to obtain three bounds on sizes of minimal percolating
sets, which when combined give the following.

the electronic journal of combinatorics 19 (2012), #P64 2

Figure 1: Smallest minimal percolating sets in two trees with the same numbers of vertices
and degree sequences but different sizes of the smallest minimal percolating set.

Main Theorem. Let T be a tree with n vertices and ` leaves. Then

(r − 1)n+ 1

r
≤ m(T, r) ≤ E(T, r) ≤ rn+ `

r + 1

and

E(T, r)−m(T, r) ≤ (r − 1)(n− 1)

r2
.

We exhibit infinite families for which all of the bounds are sharp except for the bound
on E(T, r) −m(T, r) with r = 2; in this case we exhibit an infinite family of graphs for
which E(T, r) −m(T, r) is within 1 of the bound. We prove our main theorem in three
parts. Proposition 3 is the lower bound on m(T, r), Theorem 4 is the upper bound on
E(T, r) and Theorem 5 is the bound on E(T, r)−m(T, r). In Section 3 we describe O(n)
algorithms for computing m(T, r) for all r ≥ 2 and E(T, 2).

2 Bounds

In this section we give some bounds on the maximum and minimum size of a minimal
percolating set, as well as the difference between them. Throughout we let |T | = n unless

otherwise stated. We give three main bounds. First, we show m(T, r) ≥ (r−1)n+1
r

. Note
that this is sharp for a complete r-ary tree. Second, if ` is the number of vertices of degree
less than r, we show E(T, r) ≤ rn+`

r+1
. Finally, we show E(T, r)−m(T, r) ≤ (r−1)(n−1)

r2
.

In order to prove our results, we need to define the notion of a wasted edge. Let G be
a graph and fix a percolating set A on G. Intuitively, some of the edges of G are “used,”
and are necessary for A to percolate, whereas others are “wasted,” because we can remove
them and the graph will still percolate.

We now make this intuitive notion precise. We give each edge of our graph one of two
designations: wasted or used, and we give each used edge a direction. Start with a set A of
initially infected vertices. Each time a new vertex v is infected in the percolation process,
choose r of the edges connecting v to infected vertices and call them used, directing

the electronic journal of combinatorics 19 (2012), #P64 3

Figure 2: A choice of wasted edges in a broom.

them toward v. Continue this process until all of the vertices are infected. Call all of
the undirected edges wasted. Note that it is impossible to give an edge more than one
direction, as directions are only given to edges incident to uninfected vertices, and once
an edge is given a direction, both of the vertices it is incident to are infected. If G is a
graph and A a percolating set, then given a choice of wasted edges, A will percolate in
G minus the wasted edges. See Figure 2 for an example of a choice of wasted edges in
a “broom.” Let w be the number of wasted edges. Now, in most cases there is freedom
involved in choosing wasted and used edges, and it is not immediately clear that w is
well-defined. The next proposition shows that it is.

Proposition 1. Let G be a graph with e(G) edges and let A be a percolating set in G.
Then w, the number of wasted edges, is well defined for any choice of used edges, and

w = e(G)− r(|G| − |A|).

Proof. Each vertex v of G\A is infected by exactly r used edges directed toward v. Since
each edge is given only one direction, we know that there are exactly r(|G| − |A|) used
edges. Hence, there are e(G)− r(|G| − |A|) wasted edges.

Corollary 2. If T is a tree with |T | = n, and w is the number of edges wasted for a
percolating set A, then

w = −(r − 1)n− 1 + r|A|.

As an immediate application of the notion of wasted edges, we deduce a lower bound
on m(T, r) for trees.

Proposition 3. Let T be a tree, |T | = n > 2. Then

m(T, r) ≥ (r − 1)n+ 1

r

with equality if and only if there exists a minimal percolating set with no wasted edges.

the electronic journal of combinatorics 19 (2012), #P64 4

Note that this bound is sharp. For example, if r = 2, paths with an odd number of
vertices and complete binary trees both have m(T) = n+1

2
. For r > 2, complete (r−1)-ary

and r-ary trees have m(T) = (r−1)n+1
r

. Indeed, for complete r-ary trees, m(T) = E(T),
so this also gives a sharp lower bound for E(T, r).

Proof. The number of wasted edges is clearly nonnegative:

w = −(r − 1)n− 1 + r|A| ≥ 0.

Thus,
r|A| ≥ (r − 1)n+ 1

which gives

|A| ≥ (r − 1)n+ 1

r
.

Note that while we are only concerned with trees in this paper, the idea of the above
proof of Proposition 3 works for any graph G, giving m(G, r) ≥ |G| − e(G)

r
.

We now turn to upper bounds on the size of minimal percolating sets. For r > 2, paths
are an example of trees for which E(T, r) = m(T, r) = |T |. For r = 2, we have trivially
that E(T, 2) ≤ |T | − 1 for |T | > 2, as any tree of size at least 3 must have a vertex of
degree at least 2, so it is impossible for V (G) to be a minimal percolating set. However,
for stars we have E(T, 2) = m(T, 2) = |T | − 1. Hence, the sharp upper bounds which
hold for all trees are not particularly interesting. Note, however, that these examples all
have lots of vertices of degree less than r, which forced the sizes of minimal percolating
sets to be large. If we keep track of how many such vertices we have, we can get a more
interesting bound.

Theorem 4. Let G be a graph with ` vertices of degree less than r, |G| = n. Then

E(G, r) ≤ rn+ `

r + 1
.

Proof. The key observation is that if A is a minimal percolating set, and v ∈ A of degree
at least r, then v must be incident with at least one used edge. Since a used edge is
incident with at most one vertex in A, this means that the number of used edges is at
least the number of vertices in A of degree greater than or equal to r. Thus,

r(n− |A|) ≥ |A| − `

or

|A| ≤ rn+ `

r + 1
.

the electronic journal of combinatorics 19 (2012), #P64 5

Figure 3: Example of graph with maximum E(T,4)−m(T,4)
n−1 .

The bound in Theorem 4 is sharp (up to integer parts) for paths, stars, and brooms
(paths with some number of pendant edges attached to one of the leaves) for r = 2. For
r ≥ 3, the result is sharp for paths, stars (up to integer parts) and for graphs obtained
by attaching r − 1 pendant edges to each leaf in a star with r leaves.

We have just given bounds on both m(T, r) and E(T, r) separately. We now bound
their difference. Since the possible difference in sizes will obviously grow with |T |, we
consider the largest possible difference as a function of n = |T |.

Theorem 5. For any tree T with |T | = n > 1 we have

E(T, r)−m(T, r) ≤ (r − 1)(n− 1)

r2
.

Before embarking on the proof of Theorem 5, we give some examples to show that
the above bound is sharp. Construct the following tree T . Start with a vertex c. Then
attach r vertices to c. Finally, attach r − 1 vertices to each new vertex. For r = 2 this
is simply P5. Now, for these trees, we have E(T, r) = r2 (given by the set T \ c) and
m(T, r) = r(r − 1) + 1 (given by the set consisting of c and the leaves of T). Thus,
E(T,r)−m(T,r)

|T |−1 = r−1
r2

. See Figure 3.
The next natural question to ask is whether there is an infinite family of graphs that

have E(T,r)−m(T,r)
|T |−1 = r−1

r2
. For r > 2, the answer to this question is yes. We construct our

family inductively. Suppose T1 and T2 are two trees with maximal E(Ti, r) − m(Ti, r).
Let w1 be a leaf of T1 and let w2 be a leaf of T2. Then the tree obtained by identifying
w1 and w2 into one vertex (of degree 2) will be another tree which satisfies the equality.

For r = 2, the above construction will not work. For r > 2, vertices of degree 2
“behave like leaves” in the sense that they must be infected in any minimal percolating
set, but for r = 2, this is certainly not the case. We do not know of an infinite family of
graphs which satisfy the equality for r = 2. However, we can display an infinite family of

the electronic journal of combinatorics 19 (2012), #P64 6

Figure 4: Example of 6 P5’s joined together at their leaves.

graphs which get arbitrarily close to the (perhaps more natural) bound E(T,2)−m(T,2)
n

< 1
4
.

Take k P5’s and choose a leaf of each P5. Glue all of the P5’s togehter by identifying
these leaves into a single vertex v. Then the resulting graph will have E(T, 2) = 3k (the
minimal percolating set consists of all leaves, neighbors of leaves and neighbors of v) and
m(T, 2) = 2k + 1 (the minimal percolating set consists of v, all leaves, and all vertices of

distance 2 from v). Thus, for this tree E(T,2)−m(T,2)
n

= k−1
4k+1

, which gets arbitrarily close to
1
4

as k gets large.
In proving Theorem 5, we first show the result for a large class of trees, then extend

the result to all trees. Before proceeding, we introduce some terminology. Recall that 〈A〉
is the set of vertices eventually infected by an initial set A. In case the ambient graph is
not obvious, we write 〈A〉G for the set of vertices in G eventually infected by A under the
percolation process. A vertex v is said to be traceable back to leaves if v ∈ 〈L〉, where L
is the set of leaves. Note that leaves are trivially traceable back to leaves. We now prove
a crucial lemma.

Lemma 6. Let T be a tree with |T | > 2 such that no nonleaf is traceable back to leaves,
and every nonleaf has degree at least r. Let A be a minimal percolating set. Then a
fraction of at most r−1

r
of the edges of T are wasted. That is, w ≤ (n−1)(r−1)

r
.

Proof. First, we show that we can choose a set of wasted edges such that every wasted
edge is incident with a nonleaf in A. Suppose we are given a choice of wasted edges such
that k wasted edges that are incident with a nonleaf in A, with k strictly less than the
total number of wasted edges. We construct a choice of wasted edges such that k + 1
wasted edges are incident with a nonleaf in A.

Let e be a wasted edge that is not incident to a nonleaf in A. Since n > 2, e will be
incident with at least one nonleaf, so let v be a nonleaf incident with e. Let Ω be the set

the electronic journal of combinatorics 19 (2012), #P64 7

of directed paths of used edges from nonleaf vertices in A to v. Since v is not traceable
back to leaves, Ω is non-empty, so choose a path (v0, · · · , vd) ∈ Ω, with v0 a nonleaf in
A, vd = v. We now exhibit a choice of wasted edges with k + 1 wasted edges incident
with a nonleaf in A: take the original choice of wasted edges, except designate e as used
and direct it toward v, reverse the direction of every edge vivi+1 for 1 ≤ i ≤ d − 1 and
designate v0v1 as wasted. This will be a legal choice of wasted and used edges, and since
v0 is a nonleaf in A, we will have exactly one more wasted edge which is incident with a
nonleaf in A.

Now, any vertex v ∈ A is adjacent to at most r − 1 wasted edges, since if v were
adjacent to r or more, A \ v would percolate, which contradicts the minimality of A.
Thus, if B ⊂ A is the set of nonleaves, then

w ≤ (r − 1)|B|.

Let u be the number of used edges. Then every vertex of B is incident with at least one
used edge, and since edges between two elements of A cannot be used, we have

u ≥ |B|.

Thus w ≤ (r − 1)u. Now, since u+w
n−1 = 1, we have w ≤ (n−1)(r−1)

r
.

Now we use the above result to prove an upper bound for E(T, r) for the specific class
of trees to which we have restricted ourselves.

Proposition 7. Let T be a tree with no vertices traceable back to leaves and with the
property that every nonleaf has degree at least r. Then

E(T, r) ≤ (r2 − 1)n+ 1

r2
.

Proof. Let A be a minimal percolating set with |A| = E(T, r). From Lemma 6, we have

rw ≤ (n− 1)(r − 1).

Using Proposition 1 we have

−r(r − 1)n− r + r2|A| ≤ nr − n− r + 1

|A| ≤ (r2 − 1)n+ 1

r2
.

Corollary 8. For trees T with every nonleaf having degree at least r and no nonleaf
vertices traceable back to leaves,

E(T, r)−m(T, r) ≤ (r − 1)(n− 1)

r2
.

the electronic journal of combinatorics 19 (2012), #P64 8

Proof. Simply subtract the inequalities from Proposition 3 and Proposition 7.

Proof of Theorem 5. Now, we finally extend our result to general trees T using Corollary
8. First, we dispose of the condition that no nonleaves are traceable back to leaves.
Suppose, to get a contradiction, that T is a smallest tree with E(T, r) − m(T, r) >
(r−1)(|T |−1)

r2
such that every nonleaf of T has degree at least r. Then (since by Corollary

8 any such tree T must have a vertex traceable back to leaves) there is a vertex v ∈ T
with at least r pendant edges. Let L be the set of leaves attached to v. Let T ′1, . . . , T

′
k be

the connected components of T \ (v ∪ L). Let Ti be T ′i with one leaf wi adjoined to the
unique neighbor of v in Ti. Note that all nonleaves in Ti have degree at least r.

Now, there is a canonical bijection between minimal percolating sets on the disjoint
union of the Ti’s and minimal percolating sets of T . Take a minimal percolating set A
of T . Note that v /∈ A. For each i, set Ai = (A ∩ Ti) ∪ wi. Then each Ai will be
a minimal percolating set of Ti, and similarly, given Ai which are minimal percolating
sets in the Ti, L ∪ ∪i(Ai \ wi) will be a minimal percolating set in T . Thus, we have
|T | =

∑
i(|Ti| − 1) + 1 + |L|, while E(T, r)−m(T, r) =

∑
i(E(Ti, r)−m(Ti, r)). Hence,

E(T, r)−m(T, r)

|T | − 1
=

∑
i(E(Ti, r)−m(Ti, r))∑

i(|Ti| − 1) + |L|
<

∑
i(E(Ti, r)−m(Ti, r))∑

i(|Ti| − 1)

≤ max
i

{
E(Ti, r)−m(Ti, r)

|Ti| − 1

}
Thus, one of the Ti also satisfies E(Ti, r)−m(Ti, r) >

(r−1)(|Ti|−1)
r2

. However, this contra-
dicts minimality of T , as |Ti| < |T |. Thus, our result holds for all trees in which every
nonleaf has degree at least r.

Now we dispose of the condition that every nonleaf of T has degree at least r, so this
paragraph applies only for r > 2. To get a contradiction, find a smallest tree T such that
E(T, r) − m(T, r) > (r−1)(|T |−1)

r2
. By the result of the previous paragraph, we can find

a vertex v of T of degree 1 < d < r. Thus, v will have to be infected in any minimal
percolating set. Let T1, . . . , Tn be the connected components of T \ v with an extra leaf
wi added to the vertex connected to v.

As above, there is a canonical bijection between minimal percolating sets in the disjoint
union of the Ti’s and minimal percolating sets of T . Namely, given a minimal percolating
set A of T , (A ∩ Ti) ∪ wi will be a minimal percolating set for each of the Ti, and if
Ai are minimal percolating sets for each of the Ti, v ∪ ∪i(Ai \ wi) will be a minimal

percolating set of T . Now, consider the quantity E(T,r)−m(T,r)
|T |−1 . We have E(T, r)−m(T, r) =∑

i(E(Ti, r)−m(Ti, r)). Moreover, |T | =
∑

i(|Ti| − 1) + 1. Thus, we have

E(T, r)−m(T, r)

|T | − 1
=

∑
i(E(Ti, r)−m(Ti, r))∑

i(|Ti| − 1)
≤ max

i

{
E(Ti, r)−m(Ti, r)

|Ti| − 1

}
.

Thus, one of the Ti also satisfies E(Ti, r) −m(Ti, r) >
(r−1)(|Ti|−1)

r2
. This contradicts the

minimality of T . Hence, our result holds for all trees.

the electronic journal of combinatorics 19 (2012), #P64 9

3 Algorithms

In this section, we describe algorithms to compute m(T, r) and E(T, 2). The basic idea
of the algorithms is to recursively solve the problem by finding and modifying certain
specific subtrees. Note that in general, extremal (that is, largest and smallest) minimal
percolating sets are not unique, and if we run our algorithm in a slightly different order
we could end up with a different extremal minimal percolating set, although the size will
of course be the same.

Before presenting the algorithms, we need to define a few terms. We say that H is a
trailing path (or a trailing Pk) if H is a path of length k − 1 and is connected to G \ H
by a single edge going from one of the ends of the path to the rest of the graph. We say
that H is a trailing star if H is a K1,` with H connected to G \H by a single edge from
the center vertex of the star H.

We will also need the notion of a pseudo-star. We say that a tree H with center vertex
v is a pseudo-star with center v if every vertex of H has distance at most 2 from v. Define
a trailing pseudo-star to be a subtree that is a pseudo-star connected to the rest of G by
a single edge from the center v of the pseudo-star. Note that stars are pseudo-stars, and
trailing stars are trailing pseudo-stars. A straight pseudo-star is a pseudo-star for which
every vertex except the center has degree at most 2, while a branched pseudo-star is any
pseudo-star which is not straight.

We describe two different algorithms, mSet and ESet, for computing m(T, r) and
E(T, r) respectively. Both of the algorithms presented consist of the same basic steps.
Note Step 1 is unnecessary in the case where r = 2, and hence is unnecessary for our
algorithm ESet.

Step 1 Repeatedly perform the reduction procedure (to be described) until every vertex
has degree 1 or at least r.

Step 2 Identify a trailing star or pseudo-star that can be reduced (we will describe below
which trailing subgraphs can be reduced in which instances).

Step 3 Form the graph T ′ by modifying the trailing star, pseudo-star or path (in a
manner that will be described below).

Step 4 Set A′ = mSet(T ′, r) or A′ = ESet(T ′, r).

Step 5 Modify A′ (in a manner that will be described below) to obtain A, a smallest or
largest minimal percolating set of T .

Step 6 Output A.

Steps 4 and 6 are self-explanatory. Steps 2, 3 and 5 depend on the specifics of r and
whether or not we are computing m(T, r) or E(T, r), and we elaborate on them in detail
below. The purpose of Step 1 is to ensure that every non-leaf has degree at least r, and
it is simple enough that we describe it now.

the electronic journal of combinatorics 19 (2012), #P64 10

Step 1 is performed as follows. Iterate through each vertex v of degree less than r.
Let T ′i be the connected components of T \ v. Let Ti be T ′i ∪ wi, where wi is a single
leaf attached to the unique neighbor of v in T ′i . Perform the algorithm on all of the
Ti, obtaining minimal percolating sets Ai ∪ wi. Let A = v ∪ ∪Ai be the output of the
algorithm.

3.1 m(T, r)

Because the proofs of the algorithms are often long and a bit tedious, we sketch many
of them. We start by elaborating on step 2. When computing m(T, r), we reduce by
identifying trailing stars, so in order to implement step 2, we need to know that we can
always identify trailing stars, and prove that we can do so efficiently.

Lemma 9. Every tree has a trailing star.

Proof. Find a longest path in T , with v the second-to-last vertex of the path. Then v will
be the center of a trailing star.

The above proof suggests an algorithm for identifying trailing stars, and this is essen-
tially the method we adopt. However, because the proof of O(n) runtime is somewhat
intricate, we defer discussion of this until after describing Steps 3 and 5.

Steps 3 and 5 divide into the following two cases, depending on the number of leaves
of the trailing star. Let v be the center vertex of the trailing star identified in Step 2, and
L the set of leaves of the trailing star.

Case A: |L| < r. Note that because of Step 1, this implies |L| = r − 1. In the case of
r = 2, this is simply a trailing P2. When performing Step 3 in this case, we set
T ′ = T \ (v ∪ L). When performing Step 5 in this case, we set A = A′ ∪ L.

Case B: |L| ≥ r. When performing Step 3 in this case, we set T ′ = T \ L. When
performing Step 5 in this case, we set A = A′ ∪L \ v. Note that v is a leaf in T ′, so
v will always be in A′.

This gives a complete description of how to perform our algorithm for m(T, r). Because
the proof that our algorithm works is tedious and relatively intuitive, we merely sketch
the proofs. We start with Case B.

Lemma 10. Given a graph T with a trailing star v ∪ L (v the center, L the leaves) with
|L| ≥ r, and given a smallest minimal percolating set A′ for T ′ = T \ L, we then have
A′ ∪ L \ v is a smallest minimal percolating set for T .

Proof. In any minimal percolating set of T , every vertex of L must be infected. The
vertices of L alone are sufficient to infect v. Thus, when constructing a minimal percolating
set of T , we can “imagine” that v is a leaf and that the vertices of L do not exist.

The proof for Case A requires one auxiliary lemma.

the electronic journal of combinatorics 19 (2012), #P64 11

Lemma 11. If T is a tree and w is a leaf, then m(T \w, r) ≤ m(T, r) ≤ m(T \w, r) + 1.

Proof. The first inequality holds because given a minimal percolating set A of T , we can
construct a percolating set A′ of T \w of size |A| by taking A′ = A∪ v \w, where v is the
unique neighbor of w. The second inequality holds because given a minimal percolating
set A′ of T \ v, A′ ∪ v will be a percolating set of T .

Now we prove our algorithm works for Case A.

Lemma 12. If T is a tree with trailing star v ∪ L (v the center, L the set of leaves) and
|L| = r − 1, and if A′ is a smallest minimal percolating set for T ′ = T \ (v ∪ L), then
A′ ∪ L is a smallest minimal percolating set for T .

Proof. We see immediately tha A′∪L must percolate and that L must be in any minimal
percolating set, so our only concern is that there might be some minimal percolating set
A of T which contains v and has size strictly smaller than |A′|+ |L|. By Lemma 11 this
is impossible, since A \ L will be a minimal percolating set of T \ L.

Thus, we have shown that our algorithm does indeed produce a smallest minimal
percolating set. Moreover, it is clear that each step reduces the number of edges by at
least one, and the time taken at each step is linear in the number of edges removed, so
the time spent on each step is linear in the number of edges. It remains to sketch how to
quickly identify trailing stars.

Proposition 13. It is possible to efficiently identify trailing stars so that the algorithm
mSet runs in O(n) time.

Proof. Note that the total time taken to perform Step 1 is linear in the number of edges,
so the total time spent on Step 1 is O(n). Note also that Step 1 preserves the number of
edges, so repeatedly applying Step 1 will not cause the problem to grow too much.

At the very beginning of the algorithm (before doing any recursion), make a list
VertList of all of the non-leaves, and for each vertex in VertList, make a list of its non-leaf
neighbors. This entire process grows linearly with the number of edges of the tree, and
so will take O(n) time. Note that a trailing star can be characterized as a non-leaf with
exactly one non-leaf neighbor. Let CurrentVert be the first element of VertList.

Check if CurrentVert has only one non-leaf neighbor. If not, continue and set Cur-
rentVert to be the next element in VertList. If so, we have identified a trailing star. Set
CurrentVert to the next element of VertList, perform Steps 3-5 and update VertList and
the lists of non-leaf neighbors. Now, in forming T ′, we remove precisely one non-leaf
neigbor from a vertex CheckVert. Check to see if CheckVert is the center of a trailing
star. If so, reduce, update VertList and the lists of non-leaf neighbors, and find the new
CheckVert. If not, continue with VertList, checking to see if CurrentVert is a trailing star.
After we have gone completely through VertList, we will be done.

the electronic journal of combinatorics 19 (2012), #P64 12

3.2 E(T, r)

In this section, we only consider the case r = 2. As in our algorithm for m(T, r), we begin
by proving that we may always apply Step 2. However, in this case the three types of
trailing subgraphs are trailing stars, trailing P3’s and trailing straight pseudo-stars.

Lemma 14. Every tree contains a trailing star, a trailing P3 or a trailing straight pseudo-
star.

Proof. Let v be the third-to-last vertex in a longest path in T . If the degree of v is 2,
then either v is part of a trailing P3 or one of the neighbors of v is the center of a trailing
star. If the degree of v is greater than 2, then v is the center of a trailing pseudo-star. If
the trailing pseudo-star is straight, then we are done. If it is branched, then one of the
neighbors of v will be a trailing star.

The proof that we can always efficiently identify trailing stars and psuedo-stars is simi-
lar enough to Proposition 13 that we omit it, although there are a few extra complications
(we need to look for vertices that have only one non-leaf neighbor and that are not part
of a trailing P2).

Now we elaborate on how to perform Steps 3 and 5. There are four different cases.

Case A: Trailing star v ∪ L, with v the center vertex and L the set of leaves. When
performing Step 3 in this case, let T ′ = T \L. When performing Step 5 in this case,
let A = A′ ∪ L \ v.

Case B: Trailing straight pseudo-star with at least 2 leaves attached directly to the center
vertex, with v the center vertex of the pseudo-star, S the rest of the vertices of the
pseudo-star, and L ⊂ S the set of leaves of the pseudo-star. When performing Step
3 in this case, let T ′ = T \S. When performing Step 5 in this case, let A = A′∪L\v.

Case C: Trailing P3, with u the leaf, v the unique neighbor of u and w the third vertex of
the pseudo-star. When performing Step 3, let T ′ = T \ {u, v, w}. When performing
Step 5, let A = A′ ∪ {u, v}.

Case D: Trailing straight pseudo-star with at most one leaf attached directly to the
center vertex, with v the center vertex, S the rest of the pseudo-star, L ⊂ S the set
of leaves of the pseudo-star. When performing Step 3 in this case, let T ′ = T ∪u\S,
where u is a leaf attached directly to v. When performing step 5, there are two cases.
If v ∈ A′, then let A = A′ ∪ X \ {u, v}, where X ⊂ S is a set containing L which
contains precisely two neighbors of v. (Thus, X will be either L union one non-leaf
or it will be L union two non-leaves.) If v /∈ A′, then let A = A′ ∪ Y \ u, where
Y ⊂ S is a set containing L which contains precisely one neighbor of v. (Thus, Y
will be either L, or it will be L union one non-leaf.) Note that in general there will
be many possible choices for X and Y , and different choices will lead to different
largest minimal percolating sets (although all such sets will of course have the same
size).

the electronic journal of combinatorics 19 (2012), #P64 13

The proofs of Cases A and B are essentially the same as the proof of Case A in the
mSet lemma, and so we omit them. Thus, it remains to prove the correctness of Cases C
and D. We need the analogue of Lemma 11 (we only require the second inequality, but we
prove both for completeness, and because the proof of the first is easier). We need some
terminology for this Lemma. We say that a subtree T ′ ⊂ T is internally spanned by a set
A ⊂ T if 〈A ∩ T ′〉T ′ = T ′.

Lemma 15. Let T be a tree and v a leaf. Then E(T \ v, 2) ≤ E(T, 2) ≤ E(T \ v, 2) + 1.

Proof. The proof of both inequalities requires a careful analysis of what U = T \ 〈A \ w〉
looks like, where A is a minimal percolating set and w ∈ A is any vertex. It is not hard
to see that U will be a connected subgraph of T containing w, that is, U is a subtree
containing w. Moreover, it is also not too hard to see that since T is a tree (and hence
there is a unique path between any two vertices), every vertex in U except possibly for
w will have precisely 1 neighbor in 〈A \ w〉. Conversely, it is clear that if A is a minimal
percolating set and S ⊂ A is a nonempty subset satisfying U = T \ 〈A \ S〉 is a subtree
such that every vertex in U has precisely 1 neighbor in T \U , then |S| = 1 (because if we
add a vertex of U to A we will infect all of T).

We now turn to the first inequality. Let A′ ⊂ T \ v be a largest minimal percolating
set. Then if A′ ∪ v is a minimal percolating set in T , we are done, so suppose not. Let
X ⊂ A′ be a set of vertices such that A′ ∪ v \ X is a minimal percolating set of A. We
see that U = T \ 〈A′ \X〉T is a subtree of T such that every vertex of U except for v has
precisely 1 neighbor in \〈A′ \X〉. Thus, U \ v = 〈A′ \X〉T ′ is a subtree of T ′ such that
every vertex has degree 1. Since A′ is minimal, this shows |X| = 1, which proves the first
inequality.

Now let us consider the second inequality. Let T be a minimal counterexample, i.e. a
smallest tree such that E(T, 2) > E(T \ v, 2) + 1. Let A be a largest minimal percolating
set of T . Let w be the unique neighbor of v. If w ∈ A, then we see that A \ v is a
largest minimal percolating set of T \ v which would prove the result, so suppose w /∈ A.
If A ∪ w \ v were minimal, we would be done, so we may suppose that A ∪ w \ v is not
minimal. Let T1, · · · , Tk be the connected components of T \ {v, w}, and let Ai = A∩ Ti.
Then we see that precisely one of the Tk, say T1, is internally spanned (there must be
at least one since A percolates, and there must be at most one since A ∪ w \ v is not
minimal). By applying the lemma to w ∪ T1, we may find a set A′1 ⊂ T1 such that w ∪A′1
is a minimal percolating set of w ∪ T1 of size at least |A1|. Then w ∪ A′1 ∪

⋃k
i=2Ai is a

minimal percolating set of T \ v of size at least |A| − 1.

Note that while the first inequality can be proved in exactly the same fashion for
general r, the second inequality is false for general r. For example, consider the following
tree T . Start with a vertex c, adjoin r− 1 neighbors to it, then adjoin r− 1 leaves to each
neighbor of c. The vertex c will be infected in any percolating set, and c and the leaves
will infect all of T , so E(T, r) = (r− 1)2 + 1 = r2− 2r+ 2. However, if we adjoin a single
additional leaf v to c, then we have a minimal percolating set of T ∪ v given by all of the
leaves and all of the neighbors of c. Thus, E(T ∪ v, r) = r(r − 1) + 1 = r2 − r + 1.

the electronic journal of combinatorics 19 (2012), #P64 14

The failure of this lemma for general r prevents us from easily extending our algo-
rithm for E(T, 2) to general r. In fact, without this lemma (or possibly a much more
lengthy analysis of various trailing subgraphs), it is difficult to imagine what a linear-time
algorithm for computing E(T, r) would look like.

Using Lemma 15 we can prove the correctness of our algorithm for Case C.

Lemma 16. If {u, v, w} ⊂ T is a trailing P2 with u the leaf, v the unique neighbor
of u, then any set of the form {u, v} ∪ A′, with A′ a largest minimal percolating set of
T \ {u, v, w}, is a largest minimal percolating set of T .

Proof. It is clear that any set of the form {u, v} ∪ A′ will be a minimal percolating set
of T , and it is also clear that all such sets will have size E(T \ {u, v, w}, 2) + 2. Thus, it
remains to show E(T, 2) ≤ E(T \ {u, v, w}, 2) + 2.

Now, it is clear that for any minimal percolating set A of T , either {u, v} ⊂ A or
{u,w} ⊂ A. We wish to bound the size of a minimal percolating set A of T which
contains {u,w}. If {u,w} ⊂ A, then A consists of u and a minimal percolating set of
T \ {u, v}, so |A| ≤ 1 + E(T \ {u, v}, 2) ≤ 2 + E(T \ {u, v, w}, 2) by Lemma 15. Thus,
E(T, 2) = E(T \ {u, v, w}, 2) + 2.

Finally, we prove the correctness of our algorithm for Case D.

Lemma 17. Let T be a tree with a trailing straight pseudo-star with at most one leaf
attached to the center vertex. Let v be the center vertex, S the rest of the pseudo-star,
and L ⊂ S the set of leaves. Let T ′ = T \ S ∪ u, where u is a single leaf connected to v.
Then given any largest minimal percolating set A′ of T ′, the method described in Case D
yields a largest minimal percolating set of T .

Proof. The point of the proof is that, with respect to percolation, a trailing pseudo-star
with at most one leaf adjacent to the center vertex “behaves exactly like” a trailing P2.
We start by describing how a trailing P2 behaves. Given a minimal percolating set A on
a tree with a trailing P2, we know that the leaf of the P2 will be in A. If the P2 is not
internally spanned, then the leaf will be the only vertex of the trailing P2 in A. If the
P2 is internally spanned, then one aditional vertex (namely, the other vertex of the P2)
will be in A. Moreover, if T minus the P2 is internally spanned, then the P2 cannot be
internally spanned.

Now we turn our attention to trailing pseudo-stars. First note that there will be a
largest minimal percolating set of T in which v is not initially infected. To see this, note
first that v∪L internally spans the pseudo-star, so we need only show that it is possible to
choose a largest minimal percolating set B of the pseudo-star with v /∈ B. However, it is
clear that we can do this (simply choose any two neighbors of v, including any neighbors
which are leaves).

Now, since v has only one neighbor outside of the pseudo-star and because the pseudo-
star is straight, any minimal percolating set A will contain at least one neighbor of v in
the pseudo-star. Since v∪L infects the entire pseudo-star and because v is adjacent to at
most one leaf, we see that the pseudo-star will be internally spanned by A if and only if

the electronic journal of combinatorics 19 (2012), #P64 15

precisely two neighbors of v are in A. Since v is adjacent to at most one leaf, this means
that if A is any minimal percolating set in which the pseudo-star is internally spanned
and B is any minimal percolating set in which the pseudo-star is not internally spanned,
then |A∩ S| and |B ∩ S| are independent of A and B, and |A∩ S| = |B ∩ S|+ 1. This is
exactly the case for trailing P2’s, and thus, the result is proven.

This concludes the (sketch of) the proof of the correctness of the algorithm ESet.

4 Conclusion

Relatively little is known about extremal minimal percolating sets. We summarize here
what is known and suggest several natural problems to consider. It turns out that, m(T, r)
is usually easier to compute than E(T, r). This paper describes how to find m for trees.
Exact values of m are known for the n×· · ·×n grid in d dimensions [n]d with r = 2. In [12]
Pete finds estimates for m(G, r) for grids. For E(G, r), we show here how to compute
it for trees with r = 2, and in [13] E(Qn, 2) is found exactly and shown to be O(2n/4).
Additionally Morris [11] showed 4n2

33
≤ E([n]2, 2) ≤ n2

6
.

This leaves many open questions related to r-bootstrap percolation, and the following
suggestions are by no means exhaustive. We start by asking a few more questions about
finite trees. For a fixed r ≥ 2, we call a pair (a, b) possible if for every ε > 0, there is a

tree T of size n such that m(T,r)
n

is within ε of a and E(T,r)
n

is within ε of b.

Question 18. Which pairs (a, b) are possible?

For example, for r = 2 we can use Proposition 3, Theorem 5, the fact that m(T, 2) ≤
E(T, 2), and the fact that E(T, 2) ≤ n to see that any possible pair must lie in the convex
hull of (1/2, 1/2), (1/2, 3/4), (3/4, 1) and (1, 1). Moreover, using Theorem 4 and the fact

that m(T, 2) ≥ ` we see that E(T, 2) − m(T,2)
3
≤ 2

3
n. Thus, any possible pair must lie

in the convex hull of (1/2, 1/2), (1/2, 3/4), (5/8, 7/8) and (1, 1). On the other hand, we
know that (1/2, 1/2), (1, 2, 3/4), and (1, 1) are possible using complete binary trees, the
extremal example for Theorem 5 and stars, and by connecting them with short paths we
know that pairs (a, b) in their convex hull must also be possible. This leaves the convex
hull of (1/2, 3/4), (5/8, 7/8), and (1, 1) as an indeterminate region which could benefit
from future study.

Another direction for future study would be to look at finer numerical invariants of
trees that the number of vertices and number of vertices of degree less than r, and see
what bounds could be proven using these invariants.

Question 19. Is there a number associated to trees (other than the number of vertices of
degree less than r) which gives a stronger upper bound on E(T, r)? Does this number give
us any more information about m(T, r)?

Another natural question to ask is whether or not it is possible to find an efficient
algorithm to compute E(T, r) for r > 2. As we mention, this question will likely be
difficult because Lemma 15 no longer holds.

the electronic journal of combinatorics 19 (2012), #P64 16

Question 20. Is there an polynomial-time algorithm for computing E(T, r) for r > 2?
Is there an O(n) algorithm?

Working in a different direction, it would also be interesting to try to apply some of
the techniques of this paper to other types of graphs with relatively few edges.

Question 21. What are m(G, r) and E(G, r) for G a unicyclic graph? Can the results
for trees be extended to an even more general class of graphs?

Most of the proofs of our m(G, r) algorithms carry through for general graphs. How-
ever, some of our E(G, 2) procedures do not carry through, because the proof of Lemma
15 does not work for non-trees.

As Balogh, Bollobàs and Morris [5] suggest, we could also consider less sparse graphs
which have more structure, such as the hypercube.

Question 22. What is m(Qn, 3)? What is E(Qn, 3)? Are there bounds for general r?

See the conclusion of [5] for a summary of what is known, and a conjecture for general
r. Finally, it would be very interesting to continue the work of Morris [11] and obtain at
least asymptotic results for E(G, r) for grids with r = 2 and d ≥ 2.

Question 23. What is E([n]d, r) asymptotically for r = 2 and d ≥ r? Can anything be
said for general r?

Acknowledgements

This research was done while I was a student at Notre Dame, as a participant in the
University of Minnesota Duluth math REU, which is run by Joe Gallian. The REU was
supported by the National Science Foundation and the Department of Defense (grant
number DMS 0754106) and the National Security Agency (grant number H98230-06-1-
0013). I would like to thank Joe Gallian for all of his help and encouragement. I would
like to thank the program advisers Nathan Kaplan and Nathan Pflueger for all their help,
especially for reading drafts of this paper. I would like to thank all of the Duluth visitors,
especially Sasha Ovetsky Fradkin, Phil Matchett Wood and Ricky Liu for their help. I
would also like to thank Robert Morris at Cambridge for talking to me about the problem.
Finally, I would like to thank the reviewer for helping with many aspects of the paper,
particularly for suggesting several of the open problems in the conclusion.

References

[1] J. Adler and U. Lev. Bootstrap percolation: visualizations and applications. Braz.
J. Phys., 33:641–644, 2003.

[2] M. Aizenman and J. L. Lebowitz. Metastability effects in bootstrap percolation. J.
Phys. A, 21(19):3801–3813, 1988.

the electronic journal of combinatorics 19 (2012), #P64 17

[3] J. Balogh, B. Bollobás, H. Duminil-Copin, and R. Morris. The sharp metastability
threshold for r-neighbor bootstrap percolation. Trans. Amer. Msth. Soc., to appear.

[4] J. Balogh, B. Bollobás, and R. Morris. Bootstrap percolation in three dimensions.
Ann. Probab., 37:1329–1380, 2009.

[5] J. Balogh, B. Bollobás, and R. Morris. Bootstrap percolation in high dimensions.
Combin. Prob. Computing, 19:643–692, 2010.

[6] J. Balogh, Y. Peres, and G. Pete. Bootstrap percolation on infinite trees and non-
amenable groups. Combin. Prob. Computing, 15:715–730, 2006.

[7] R. Cerf and E. Cirillo. Finite size scaling in three-dimensional bootstrap percolation.
Ann. Probab., 27(4):1837–1850, 1999.

[8] R. Cerf and F. Manzo. The threshold regime of finite volume bootstrap percolation.
Stochastic Process. Appl., 101(1):69–82, 2002.

[9] J. Chalupa, P. L. Leath, and G. R. Reich. Bootstrap percolation on a bethe lattice.
J. Phys. C., 12:L31–L35, 1979.

[10] Alexander Holroyd. Sharp metastability threshold for two-dimensional bootstrap
percolation. Probab. Theory Related Fields, 125(2):195–224, 2003.

[11] Robert Morris. Minimal percolating sets in bootstrap percolation. Electron. J. Com-
bin., 16(1):#R2, 20pp, 2009.

[12] Gabor Pete. Disease processes and bootstrap percolation. Thesis for diploma at the
Bolyai Institute, József Attila University, Szeged, 1997.

[13] Eric Riedl. Largest minimal percolating sets in hypercubes under 2-bootstrap per-
colation. Electron. J. Combin., 17(1):#R80, 13pp, 2010.

the electronic journal of combinatorics 19 (2012), #P64 18

