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Abstract

We show an inequality involving the third largest or second smallest dual eigen-
values of Q-polynomial association schemes of class at least three. Also we char-
acterize dual-tight Q-polynomial association schemes of class three. Our method is
based on tridiagonal matrices and can be applied to distance-regular graphs as well.

1 Introduction

Q-polynomial association schemes are defined by Delsarte in [10] as a framework to study
design theory uniformly, and are studied in the last two decades from the viewpoints of
structure theory [6, 27, 28, 30], imprimitive cases [8, 18, 19], the dual version of Bannai-Ito
conjecture [21], hemisystems [24], spherical designs [26].

This concept is regarded as a dual object to distance-regular graphs (equivalently P -
polynomial association schemes). Many examples of Q-polynomial association schemes
that are neither P -polynomial nor duals of translation P -polynomial association schemes
are obtained from spherical designs [2, 11]. Small class Q-polynomial association schemes
are attached to several combinatorial objects: linked systems of symmetric designs for
3 class Q-antipodal case [7, 19, 25], certain equiangular line sets for 3 class Q-bipartite
case [19, 25], real mutually unbiased bases for 4 class, Q-antipodal and Q-bipartite case
[1, 18, 25]. Thus Q-polynomial association schemes of small class are of particular interest
to research. The aim of this paper is to pursue this research direction further.

It was proven in [17] that for a distance-regular graph of diameter D ≥ 2 and distinct
eigenvalues k = θ0 > θ1 > · · · > θD, the following inequality holds:

(θ1 + 1)(θD + 1) ≤ −b1, (1.1)

here we use the standard notation of distance-regular graphs, see [4]. Moreover equality
holds if and only if the diameter is two, meaning the graph is strongly regular.
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In [16], the following “fundamental bound” for distance-regular graphs of diameter D
was given; (

θ1 +
k

a1 + 1

)(
θD +

k

a1 + 1

)
≥ − ka1b1

(a1 + 1)2
. (1.2)

A distance-regular graph is tight if it is nonbipartite and equality holds in (1.2). Tight
distance-regular graphs have been extensively studied in several papers, e.g. [12, 15,
22, 23]. In particular, Jurǐsić and Koolen showed the following characterization in [15,
Theorem 3.2]: A nonbipartite distance-regular graph of diameter three is tight if and only
if it is a Taylor graph.

Our main results are Theorem 4.1, the dual result to (1.1), and Theorem 5.1, the dual
result to [15, Theorem 3.2].

One of the methods to study Q-polynomial association schemes is investigation of the
tridiagonal matrix of the first Krein matrix. An advantage of the above is to give a unifying
way to study distance-regular graphs as well as Q-polynomial association schemes. In the
present paper, we demonstrate how results on tridiagonal matrices derive a unifying proof
of results both for distance-regular graphs and for Q-polynomial association schemes. The
original proofs of (1.1) and [15, Theorem 3.2] are based on combinatorial methods, but
our method is based only on tridiagonal matrices obtained from the first intersection
matrix or the first Krein matrix. It implies that our way presents alternative proofs of
these results for distance-regular graphs. In fact our method yields new inequalities for
eigenvalues of regular or distance-regular graphs in Theorems 3.1, 3.2.

2 Preliminaries

2.1 Eigenvalues of tridiagonal matrices

Let D be a positive integer at least two. Let B = (bij)0≤i,j≤D be a nonnegative tridiagonal
matrix with positive superdiagonal and subdiagonal entries of size D+ 1. We set αi = bii
for 0 ≤ i ≤ D, βi = bi,i+1 for 0 ≤ i ≤ D − 1 and γi = bi,i−1 for 1 ≤ i ≤ D. We also set
γ0 = 0 and βD = 0. Throughout this paper, we consider the following condition:

α0 = 0, γ1 = 1, αi + βi + γi = κ(0 ≤ i ≤ D), (2.1)

where κ is a positive number. It is well known that all eigenvalues of B are distinct and
real, and κ is the largest eigenvalue. Let θ0 = κ > θ1 > · · · > θD be the eigenvalues of B.
By [4, p.123], θ1, . . . , θD are the eigenvalues of the D ×D tridiagonal matrix

B̃ =


−γ1 β1
γ1 κ− β1 − γ2 β2

γ2
. . . . . .
. . . . . . βD−1

γD−1 κ− βD−1 − γD

 . (2.2)
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We define F0(x) = 1 and Fi(x) to be the characteristic polynomial of the principal sub-
matrix of B̃ consisting of the first i rows and first i columns, for 1 ≤ i ≤ D. Then we can
easily find that F1(x) = x+ 1 and

Fi(x) = (x− κ+ βi−1 + γi)Fi−1(x)− βi−1γi−1Fi−2(x)

for i = 2, . . . , D, and thus FD(x) =
∏D

i=1(x− θi). By [3, Remark (5), p.203], all roots of
Fi(x) are real and distinct for each 1 ≤ i ≤ D. For 1 ≤ i ≤ D, let αi,1 > · · · > αi,i be the
roots of Fi(x). Since F1(x) = x+ 1, α1,1 = −1. The polynomial Fi−1(x) has a root in the
open interval (αi,j+1, αi,j) for each 1 ≤ j ≤ i− 1, namely αi,j+1 < αi−1,j < αi,j holds. The
following is used to prove Theorem 2.2.

Lemma 2.1. Let a, b, c, d be real numbers satisfying a ≤ b < c ≤ d, and define f(x) =
(x − a)(x − d) and g(x) = (x − b)(x − c). Then f(t) ≤ g(t) holds for any t ∈ [b, c].
Moreover equality holds for some t ∈ (b, c) if and only if a = b and c = d.

Proof. Follows from the facts that g(x) − f(x) is a polynomial of degree one and that
f(b) ≤ g(b), f(c) ≤ g(c).

The following theorem shows a relation between eigenvalues of B and entries of B.

Theorem 2.2. Let D be a positive integer at least two and B a (D + 1) × (D + 1)
tridiagonal matrix satisfying (2.1). Let θ0 = κ > θ1 > · · · > θD be the eigenvalues of B.

(1) (θ1 + 1)(θD + 1) ≤ −β1 holds with equality if and only if D = 2.

(2) Assume that D ≥ 3 holds. If β2 +γ3 ≥ κ+1 holds, then (θ1 +1)(θD−1 +1)(θD +1) ≥
−β1(κ + 1 − β2 − γ3). If β2 + γ3 ≤ κ + 1 holds, then (θ1 + 1)(θ2 + 1)(θD + 1) ≤
−β1(κ+ 1− β2 − γ3). Moreover equality holds in either case if and only if D = 3.

Proof. (1): Applying Lemma 2.1 to (a, b, c, d) = (θD, α2,2, α2,1, θ1), f(x) = (x−θ1)(x−θD)
and g(x) = F2(x), f(t) ≤ g(t) holds for any t ∈ [α2,2, α2,1]. In particular, by α2,2 < α1,1 =
−1 < α2,1, f(−1) ≤ g(−1) i.e., (θ1 + 1)(θD + 1) ≤ −β1 holds.

Moreover (θ1 + 1)(θD + 1) = −β1 holds if and only if θ1 = α2,1 and θD = α2,2 hold by
Lemma 2.1. This is equivalent to F2(x) = FD(x) i.e., D = 2.

(2): Assume that β2 + γ3 ≥ κ + 1 holds. This condition is equivalent to F3(−1) ≤ 0,
namely α3,2 ≤ −1 ≤ α3,1. Using Lemma 2.1 for (a, b, c, d) = (θD−1, α3,2, α3,1, θ1), f(x) =
(x−θ1)(x−θD−1) and g(x) = (x−α3,1)(x−α3,2), f(t) ≤ g(t) holds for any t ∈ [α3,2, α3,1].
In particular, (θ1+1)(θD−1+1) ≤ (α3,1+1)(α3,2+1) holds. From θD ≤ α3,3 < −1 we have
(θ1+1)(θD−1+1)(θD+1) ≥ (α3,1+1)(α3,2+1)(α3,3+1) = −F3(−1) = −β1(κ+1−β2−γ3).
The statement under the assumption β2 + γ3 ≤ κ+ 1 can be similarly proven.

Equality holds in either case if and only if θ1 = α3,1, θD = α3,3, namely D = 3.
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2.2 Graphs

Let Γ be a connected simple k-regular graph with vertex set V (Γ) and edge set E(Γ). We
denote the adjacency matrix of Γ by A and let θ0 = k > θ1 > · · · > θD be the distinct
eigenvalues of A in descending ordering. Let ∂ be the path-length distance on Γ. Assume
Γ is neither complete nor empty. Fix a vertex x ∈ V (Γ), we define

Γi(x) = {y ∈ V (Γ) | ∂(x, y) = i}

for 0 ≤ i ≤ Dx, where Dx = max{∂(x, y) | y ∈ V (Γ)}. The diameter of Γ is defined to
be max{Dx | x ∈ V (Γ)}. Then the graph Γ has a distance partition π(x) with respect
to x i.e., π(x) = {Γ0(x),Γ1(x), . . . ,ΓDx(x)}. Let the characteristic matrix S = Sx be
the |V (Γ)| × (Dx + 1) matrix with i-th column as the characteristic vector of Γi(x) for
0 ≤ i ≤ Dx. We define the quotient matrix B = B(x) of A with respect to π(x) as
STSB = STAS. Note that the matrix B is a nonegative tridiagonal matrix with positive
superdiagonal and subdiagonal entries. The entries of B are denoted by αi(x), βi(x), γi(x).

Since the graph Γ is k-regular, the quotient matrix B satisfies the condition (2.1).
We will then use the matrix B̃ defined in (2.2) to obtain a result for graphs in the next
section.

For a vertex x ∈ V (Γ), a graph Γ is called distance-regular around x if the numbers
γi(x, y) := |Γi−1(x)∩Γ1(y)|, αi(x, y) := |Γi(x)∩Γ1(y)|, βi(x, y) := |Γi+1(x)∩Γ1(y)| depend
only on x and the distance i = ∂(x, y), not on the particular choice of y ∈ Γi(x), for
0 ≤ i ≤ Dx. The graph Γ is called distance regularised if Γ is distance-regular around
all vertices in Γ. The distance regularised graph is distance-regular if the parameters
γi(x, y), αi(x, y), βi(x, y) depend only on i = ∂(x, y), not on x nor y. A distance-regular
graph of diameter two is called strongly regular. The graph Γ is called distance-biregular
if the graph Γ is distance-regularised, bipartite and the vertices in the same color class
have the same intersection array.

It was proven in [13] that a distance regularized graph Γ is either distance-regular or
distance-biregular. If the valencies on each bipartition are equal for a distance biregular
graph, then it is distance-regular, see [9, Lemma 1]. We will use the following lemma by
Haemers.

Lemma 2.3. (See [14, Corollary 2.3,Theorem 7.3]) Let Γ be a connected regular graph
having distinct eigenvalues θ0 > θ1 > · · · > θD and let B be the quotient matrix of the
distance partition with respect to a vertex x ∈ V (Γ) having distinct eigenvalues τ0 > τ1 >
· · · > τDx.

(1) The eigenvalues of B interlace the eigenvalues of A. In particular θ1 ≥ τ1 and
τDx ≥ θD.

(2) If θ1 = τ1 and θD = τDx hold, then Γ is distance-regular around x.
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3 Inequalities for eigenvalues of k-regular graphs

Let Γ be a regular, connected simple graph with valency k with the adjacency matrixA and
the quotient matrix B = B(x) of the distance partition π = {Γ0(x),Γ1(x), . . . ,ΓDx(x)}
for any x ∈ V (Γ).

Let θ0 = k > θ1 > · · · > θD be the distinct eigenvalues of A, and let τ0 > τ1 > · · · > τDx

be the eigenvalues of B(x). Since the graph Γ is assumed to be k-regular, the quotient
matrix B(x) has the largest eigenvalue k.

By Theorem 2.2, we have (τ1 + 1)(τDx + 1) ≤ −β1(x). Applying Lemma 2.1 for
(a, b, c, d) = (θD, τDx , τ1, θ1) again, we have

(θ1 + 1)(θD + 1) ≤ −β1(x). (3.1)

If equality is attained in (3.1) for each x ∈ V (Γ), then τ1 = θ1, τDx = θD and Dx = 2
for each x ∈ V (Γ). In particular the diameter of Γ is two. By Lemma 2.3, Γ is distance-
regular around all vertices in V (Γ) with the same valency. Therefore the graph Γ is
strongly regular.

Conversely when Γ is strongly regular, it is easy to see that equality holds in (3.1).
Therefore we have the following theorem.

Theorem 3.1. Let Γ be a connected regular graph and let θ0 = k > θ1 > · · · > θD be the
distinct eigenvalues of Γ. Then (θ1 + 1)(θD + 1) ≤ −β1(x) holds for any vertex x ∈ V (Γ).
Equality holds for all vertices if and only if Γ is strongly regular.

The above is a generalization of Koolen, Park and Yu’s inequality (1.1) for regular
graphs.

Applying Theorem 2.2 to distance-regular graphs of diameter at least three, we have
the following:

Theorem 3.2. Let Γ be a distance-regular graph of diameter D ≥ 3 and let θ0 = k >
θ1 > · · · > θD be the distinct eigenvalues of Γ. If b2+c3 ≥ k+1 holds, then (θ1+1)(θD−1+
1)(θD + 1) ≥ −b1(k+ 1− b2− c3). If b2 + c3 ≤ k+ 1 holds, then (θ1 + 1)(θ2 + 1)(θD + 1) ≤
−b1(k + 1− b2 − c3). Moreover equality holds in either case if and only if D = 3.

4 Inequalities for dual eigenvalues of Q-polynomial

association schemes

The reader is referred to [3, 20] for the basic notations and information on Q-polynomial
association schemes. Let (X,R) be a Q-polynomial association scheme of class D ≥ 2.
Let E0, E1, . . . , ED be the primitive idempotents of (X,R). Dual eigenvalues {θ∗h}Dh=0 of
(X,R) are defined by E1 = 1

|X|
∑D

h=0 θ
∗
hAh. We arrange the ordering of dual eigenvalues

(i.e., the ordering of the adjacency matrices of the scheme) so that θ∗0 = m > θ∗1 > · · · >
θ∗D. We define the Krein parameters qhi,j by Ei ◦Ej = 1

|X|
∑D

h=0 q
h
i,jEh, where ◦ denotes the

entrywise product of matrices. By [3, Theorem 4.1], B∗1 = (qh1,j)0≤j,h≤D has the eigenvalues
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{θ∗h}Dh=0. We apply Theorem 2.2 to the transpose of the tridiagonal matrix B∗1 to obtain
the following theorem.

Theorem 4.1. Let (X,R) be a Q-polynomial association scheme of class D ≥ 2.

(1) (θ∗1 + 1)(θ∗D + 1) ≤ −b∗1 holds with equality if and only if D = 2.

(2) Assume that D ≥ 3 holds. If b∗2+c∗3 ≥ m+1 holds, then (θ∗1 +1)(θ∗D−1+1)(θ∗D +1) ≥
−b∗1(m + 1 − b∗2 − c∗3). If b∗2 + c∗3 ≤ m + 1 holds, then (θ∗1 + 1)(θ∗2 + 1)(θ∗D + 1) ≤
−b∗1(m+ 1− b∗2 − c∗3). Moreover equality holds in either case if and only if D = 3.

Remark 4.2. In [5], Cameron and Goethals constructed Q-antipodal Q-polynomial as-
sociation schemes of class 3, which are known as linked systems of symmetric designs,
satisfying (θ∗1 + 1)(θ∗3 + 1) = −b∗1

f
f−1 with f = 22m−1 for any positive integer m.

Therefore the above inequality (1) cannot be improved for the case of class 3. These
association schemes are formally dual to the examples mentioned in [17, p.2409, Remark].

5 Tight distance-regular graphs and dual-tight

Q-polynomial association schemes

In [16], Jurǐsić, Koolen and Terwilliger showed the following “fundamental bound” for
distance-regular graphs:(

θ1 +
k

a1 + 1

)(
θD +

k

a1 + 1

)
≥ − ka1b1

(a1 + 1)2
. (5.1)

The same inequality above is proven by Pascasio [23] in character algebras. Applying
Pascasio’s result to Q-polynomial association schemes, we have the following inequality:(

θ∗1 +
m

a∗1 + 1

)(
θ∗D +

m

a∗1 + 1

)
≥ − ma∗1b

∗
1

(a∗1 + 1)2
. (5.2)

A distance-regular graph is called tight if it is nonbipartite and equality holds in (5.1), and
a Q-polynomial association scheme is called dual-tight if it is not Q-bipartite and equality
holds in (5.2). Jurǐsić and Koolen showed a characterization for the case of diameter 3 in
[15].

The following theorem is a dual to the above characterization. Our method is based
only on tridiagonal matrices obtained from polynomial association schemes, so it gives
an alternative proof of [15, Theorem 3.2] and a unifying proof for distance-regular graphs
and Q-polynomial association schemes.

Theorem 5.1. Let (X,R) be a Q-polynomial scheme of class 3. Then (X,R) is dual-tight
if and only if (X,Ri) is the incidence graph of a symmetric design for some i 6= 0.
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Proof. Suppose (X,R) is dual-tight. Then it follows that a∗3 = 0; cf. [29]1. Therefore the
Krein matrix B∗1 is

B∗1 =


0 1 0 0
m m− b∗1 − 1 c∗2 0
0 b∗1 m− b∗2 − c∗2 m
0 0 b∗2 0

 .

The characteristic polynomial φ(x) of B∗1 is

φ(x) = (x−m)(x3 + (−m+ b∗1 + b∗2 + c∗2 + 1)x2 + (b∗1b
∗
2 + b∗2 + c∗2 −mb∗2 −m)x−mb∗2).

So we obtain

θ∗1 + θ∗2 + θ∗3 = m− b∗1 − b∗2 − c∗2 − 1, (5.3)

θ∗1θ
∗
2θ
∗
3 = mb∗2. (5.4)

Pascasio [22, 23] showed that

θ∗1θ
∗
3 = mθ∗2. (5.5)

Substituting (5.5) in (5.4), we have

θ∗2
2 = b∗2. (5.6)

By the definition of dual-tightness, we have

θ∗1θ
∗
3 +

m

m− b∗1
(θ∗1 + θ∗3) = −m(b∗1 + 1)

m− b∗1
. (5.7)

Substituting (5.3) and (5.5) in (5.7), we have by a∗1 6= 0

θ∗2 = −m− b
∗
2 − c∗2

m− b∗1 − 1
. (5.8)

Comparing the coefficient of E3 in E1 ◦ E1 ◦ E3 in two ways and using a∗3 = 0, we get

q32,3 =
m(b∗2−1)

c∗2
. Since this is a nonnegative real number, we have b∗2 ≥ 1 and

b∗2
2 ≥ b∗2. (5.9)

From (5.6), (5.8) and (5.9), we have b∗2
2 ≥ (m−b∗2−c∗2)2

(m−b∗1−1)2
. Hence b∗2(m− b∗1− 1) ≥ m− b∗2− c∗2,

and we have

b∗2(m− b∗1) ≥ m− c∗2, (5.10)

1Tight distance-regular graphs of diameter D satisfy aD = 0 [16, Theorem 10.4]. Dualizing the proof,
we can show that dual-tight Q-polynomial association schemes satisfy a∗D = 0. See [29] for the details.
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with equality if and only if b∗2 = 1.

Here, because a∗3 = 0 and q32,3 =
m(b∗2−1)

c∗2
, we obtain

b∗1b
∗
2

c∗2
= m3 = q30,3 + q31,3 + q32,3 + q33,3 ≥ 1 +

m(b∗2 − 1)

c∗2
,

i.e.,

m− c∗2 ≥ b∗2(m− b∗1), (5.11)

with equality if and only if q33,3 = 0.
By (5.10) and (5.11), m − c∗2 = b∗2(m − b∗1) and b∗2 = 1 hold. Therefore (X,R) is

Q-antipodal i.e., (X,R) is a linked systems of symmetric design [7, Theorem 5.8]. And
we obtain b∗1 = c∗2, so (X,Ri) is the incidence graph of a symmetric design for some i 6= 0.

The converse follows from a straightforward calculation.
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