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Abstract

In this paper, we determine the tight upper bound for the number of matchings
of connected n-vertex tricyclic graphs. We show that this bound is 13fn−4+16fn−5,
where fn be the nth Fibonacci number. We also characterize the n-vertex simple
connected tricyclic graph for which the bound is best possible.
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1 Introduction and preliminaries

A matching of a graph G = (V,E) is a subset M ⊆ E with the property that no two
different edges of M share a common vertex. By m(G, k) we mean the number of its
k−matchings ; matchings consisting of k edges. If n is the number of the vertices of G,
then m(G, k) = 0 when k > bn/2c. Conveniently, we set m(G, 0) = 1. The total number

of matchings of G is denoted by z(G) and z(G) =
∑bn/2c

k=0 m(G, k). It was introduced by
Hosoya [10] in 1971. He called it z-index. Later, it was renamed into Hosoya index. In
this paper we refer to this invariant as z-index. It is a prominent example of topological
indices which are of interest in combinatorial chemistry. It has applications in studies
related to physico-chemical properties such as boiling point, entropy [17], and vaporization
temperature. It has also a close relationship with the total π-electron energy [8].

Let G = (V (G), E(G)) be a simple connected graph with the vertex set V (G) and
the edge set E(G). If u and v are two adjacent vertices of the graph the edge connecting
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them is denoted by uv. Let v be a vertex of the graph, NG(v) = {u|uv ∈ E(G)} denotes
the neighbors of v, and dG(v) = |NG(v)| is the degree of v in G. An end-vertex is a vertex
of degree one. An end-edge is an edge incident with an end-vertex. A path consisting
of exactly one end-vertex is called an end-path. A connected tricyclic graph is a simple
connected graph with n vertices and n+ 2 edges, for some n > 4. It is easy to check that,
there is no n-vertex tricyclic graph for n < 4. Let x and y be two distinct vertices of
graph, an x-y-path is a path starting from x and ending in y. Let F ⊆ E(G), we denote by
G−F the subgraph of G obtained from deleting the edges in F . If F = {e} is a singleton
set, we use G − e instead of G − {e}. If W ⊆ V (G), G −W denotes the subgraph of G
obtained from deleting the vertices in W . If W = {v} is a singleton set, we use G − v
instead of G− {v}. Let G = (V (G), E(G)) and G′ = (V (G′), E(G′)) be two graphs such
that V (G) ∩ V (G′) = ∅. Suppose that v1, v2, · · · , vk ∈ V (G) and v′1, v

′
2, · · · , v′k ∈ V (G′)

(k > 1); by G B v1 = v′1, v2 = v′2, · · · , vk = v′k C G′ we mean the obtained graph from
identifying vi with v′i for all i = 1, 2, · · · , k. Suppose that Pn denotes the path on n
vertices, Cn is the cycle on n vertices and Sn is the star consisting of one vertex adjacent
to n− 1 end-vertices. Amongst all n−vertex trees, the path Pn has the greatest z-index
and the star Sn has the smallest z-index. This fact was established a long time ago [8, 9],
that is, for any tree T with n vertices, n = z(Sn) 6 z(T ) 6 z(Pn) = fn+1, where fn is the
nth Fibonacci number. Recall that the Fibonacci numbers are defined by f0 = 0, f1 = 1,
and fn = fn−1 + fn−2 for n > 2. From now on we take fi as the ith Fibonacci number.
We use the following results throughout the paper.

Lemma 1. [10] If v is a vertex and e = uv is an edge of G, then

z(G) = z(G− e) + z(G− {u, v}),

z(G) = z(G− v) +
∑

x∈NG(v)

z(G− {v, x}).

Lemma 2. [9] If G is a graph with components G1, G2, G3, ..., Gk k > 1 then
z(G) =

∏k
i=1 z(Gi).

Recently, many researchers have offered various results about extremal problems in
computing the total number of matchings (z-index) or the total number of independent
sets (Merrifield-Simmons index) for some classes of graphs. For example trees [8, 9, 15, 21],
trees with fixed number of leaves [19, 24], trees with fixed diameters [16], trees with fixed
maximum degrees [21], quasi-trees [12], unicyclic graphs [11, 14, 18, 20, 23], bicyclic graphs
[1, 2, 3, 4], generalized-theta-graphs [6], and tricyclic graphs [5, 7, 13] are some special
classes of graphs that have been worked on. For more information, [22] is a nice survey
paper on the topics. In this paper, we show that the tight upper bound of z-index of
n-vertex tricyclic graphs is 13fn−4 + 16fn−5. We also characterize the tricyclic n-vertex
graph(graphs) with the largest z-index. The rest of the paper is organized as follows.
In Section 2, we present some useful results about the Fibonacci numbers by which we
offer some transformations for increasing the z-index. The main results are presented in
Section 3, the sharp upper bound of z-index for all n-vertex tricyclic graphs is determined
in Section 4, and the extremal graphs are also characterized in the same section.
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2 Some properties of Fibonacci numbers

The following lemmas state some facts about the Fibonacci numbers. They will be used
later in our main results.

Lemma 3. Let n be an integer number

1. If n > 5 then f1fn−1 > f3fn−3.

2. If n > 6 then f3fn−3 > fifn−i for 2 6 i 6 bn/2c and i 6= 3.

Proof. Obviously, f1fn−1 − f3fn−3 = fn−4, therefore, f1fn−1 > f3fn−3 for n > 5. It proves
the first part.

Since f3fn−3 − f2fn−2 = fn−5 > 0 for n > 6, it follows that the second part holds for
all n > 6 if i = 2. It will thus be sufficient to prove the second part for all n > 8 and
4 6 i 6 bn/2c. First, note that it is rather easy to check the following:

fi−1fn−i+1 − fifn−i = (−1)ifn−2i+1; for i > 1 and n > 2i− 1. (1)

We now complete the proof by showing f3fn−3 − fifn−i > 0 as follows.

f3fn−3 − fifn−i = (f3fn−3 − f4fn−4)
+(f4fn−4 − f5fn−5) + · · ·
+(fi−1fn−i+1 − fifn−i).

Applying (1) we deduce that

f3fn−3 − fifn−i = fn−7 − fn−9 + fn−11

−fn−13 + · · · (−1)ifn−2i+1.

= (fn−7 − fn−9)
+(fn−11 − fn−13) + · · · (−1)ifn−2i+1

> 0.

Therefore, f3fn−3 > fifn−i, which is the desired conclusion.

Lemma 4. [3] For 1 6 k 6 n, we have

fn = fkfn−k+1 + fk−1fn−k.

Let a, b, and c be three real numbers. Simply, there are exactly 13 different ar-
rangements according to their values. These arrangements are as follows. a > b > c,
a > c > b, b > a > c, b > c > a, c > a > b, c > b > a, a = b > c, c > a = b,
a = c > b, b > a = c, a > b = c, b = c > a, and a = b = c. Let n be a specific
integer number, for every pair of integer numbers m, l > 2 with m + l = n we define
h(m, l) = afm−1fl−1 + bfm−2fl−1 + cfm−1fl−2. By the following theorem, we find a pair
(m, l) in which h takes its maximum for every arrangement of a, b and c.
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Theorem 5. Let a, b and c be three real numbers. Assume that n > 7 is a specific integer
number. Define h(m, l) = afm−1fl−1 + bfm−2fl−1 + cfm−1fl−2 for every pair of integer
numbers m, l > 2 satisfying m+ l = n.

According to the values of a, b and c
Case 1) if a > b > c, then h(n − 2, 2) > h(n − 4, 4) > h(m, l); equality holds if and

only if l = 4.
Case 2) If a > c > b, then h(2, n − 2) > h(4, n − 4) > h(m, l); equality holds if and

only if m = 4.
Case3) If b > a > c, then h(n − 2, 2) > h(3, n − 3) > h(m, l); equality holds if and

only if m = 3.
Case 4) If b > c > a, then h(3, n− 3) > h(m, l); equality holds if and only if m = 3.
Case 5) If c > a > b, then h(2, n − 2) > h(n − 3, 3) > h(m, l); equality holds if and

only if l = 3.
Case 6) If c > b > a, then h(n− 3, 3) > h(m, l); equality holds if and only if l = 3.
Case 7) If a = b > c, then h(n− 2, 2) > h(n− 4, 4) = h(3, n− 3) > h(m, l); equality

holds if and only if l = 4 or m = 3.
Case 8) If c > a = b, then h(2, n − 2) = h(n − 3, 3) > h(m, l); equality holds if and

only if m = 2 or l = 3.
Case 9) If a = c > b, then h(2, n− 2) > h(4, n− 4) = h(n− 3, 3) > h(m, l); equality

holds if and only if m = 4 or l = 3.
Case 10) If b > a = c, then h(3, n− 3) = h(n− 2, 2) > h(m, l); equality holds if and

only if m = 3 or l = 2.
Case 11) If a > b = c, then h(2, n − 2) = h(n − 2, 2) > h(4, n − 4) = h(n − 4, 4) >

h(m, l); equality holds if and only if m = 4 or l = 4.
Case 12) If b = c > a, then h(3, n− 3) = h(n− 3, 3) > h(m, l); equality holds if and

only if m = 3 or l = 3.
Case 13) If a = b = c, then h(m, l) is constant for all m and l.

Proof. Proof of Case 1). We first prove this case for l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= (a− b)fm−1fl−1 + bfm+l−3

+(b− c)fm−2fl−3 + cfm+l−4

= (a− b)fm−1fl−1 + bfn−3

+(b− c)fm−2fl−3 + cfn−4.

According to Lemma 3 the above expression is maximum, if and only if l − 3 = 1 (i.e.
l = 4).
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Now, suppose that l = 2.

h(n− 2, 2)− h(n− 4, 4) = afn−3 + bfn−4

−2afn−5 − 2bfn−6 − cfn−5
= afn−6 + bfn−7 − cfn−5
> cfn−6 + cfn−7 − cfn−5 = 0,

it follows that, h(n− 2, 2) > h(n− 4, 4), and this completes the proof for Case 1.
Proof of Case 2). Argument similar to that in the proof of Case 1 proves this case.
Proof of Case 3). We first prove the case for l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= afm+l−3 + (b− a)fm−2fl−2

+(b− c)fm−2fl−3 + cfm+l−4

= afn−3 + (b− a)fm−2fl−2

+(b− c)fm−2fl−3 + cfn−4.

According to Lemma 3 the above expression is maximum, if and only if m − 2 = 1
(i.e. m = 3).

Now, let us suppose that l = 2.

h(n− 2, 2)− h(3, n− 3) = afn−3 + bfn−4

−afn−4 − bfn−4 − cfn−5
= afn−5 − cfn−5
= (a− c)fn−5 > 0,

therefore, h(n− 2, 2) > h(3, n− 3), and the theorem is also proved for this case.
Proofs of Cases 4,5 and 6 follow by the same method as in the proof of Case 3. Proof of
Case 7). To prove this case we first suppose that l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= bfm+l−3 + (b− c)fm−2fl−3 + cfm+l−4

= bfn−3 + (b− c)fm−2fl−3 + cfn−4.

According to Lemma 3 the above expression takes its maximum, if and only ifm−2 = 1
(i.e. m = 3) or l − 3 = 1 (i.e. l = 4).

We can conclude that h(n− 2, 2) > h(n− 4, 4) = h(3, n− 3) for l = 2, similar to that
in the proof of Case 3.
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Proof of Case 8). First, suppose that l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= bfm+l−3 + bfm+l−4 + (c− b)fm−1fl−2
= bfm+l−2 + (c− b)fm−1fl−2
= bfn−2 + (c− b)fm−1fl−2.

According to Lemma 3 the above expression is maximum, if and only if m − 1 = 1
(i.e. m = 2) or l − 2 = 1 (i.e. l = 3).

Now, suppose that l = 2.

h(n− 2, 2)− h(2, n− 2) = afn−3 + bfn−4

−afn−3 − cfn−4
= (b− c)fn−4 < 0,

it follows that, h(2, n− 2) = h(n− 3, 3) > h(n− 2, 2).
Proof of Case 9). The proof of this case is similar to the proof of Case 7.
Proof of Case 10). The proof of this case can be done similar to the proof of Case 8.
Proof of Case 11). We first suppose that l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= (a− b)fm−1fl−1 + bfm+l−3 + bfm+l−4

= (a− b)fm−1fl−1 + bfm+l−2

= (a− b)fm−1fl−1 + bfn−2.

According to Lemma 3 the above expression takes its maximum, if and only if m− 1 = 1
(i.e. m = 2).
Now, suppose that l = 2.

h(2, n− 2)− h(n− 2, 2) = afn−3 + cfn−4

−afn−3 − bfn−4 = 0,

it follows that, h(2, n− 2) = h(n− 2, 2).
Proof of Case 12). At first, suppose that l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

= afm+l−3 + (b− a)fm−2fl−2 + bfm+l−4

= afn−3 + (b− a)fm−2fl−2 + bfn−4.
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According to the Lemma 3 the above expression is maximum, if and only if m − 2 = 1
(i.e. m = 3) or l − 2 = 1 (i.e. l = 3).
Now, suppose that l = 2.

h(3, n− 3)− h(n− 2, 2) = afn−4 + bfn−4 + cfn−5

−afn−3 − bfn−4
= −afn−5 + cfn−5

= (c− a)fn−5 > 0.

Therefore h(3, n− 3) > h(n− 2, 2), which completes the proof for Case 12.
Proof of Case (13). In this case we show that for all m and l, h(m, l) = afn−2. First,

suppose that l > 3.

h(m, l) = afm−1fl−1 + bfm−2fl−2

+bfm−2fl−3 + cfm−1fl−2

+bfm+l−3 + bfm+l−4

= bfm+l−2 = bfn−2.

Now, suppose that l = 2.

h(n− 2, 2)− h(m, l) = afn−3 + bfn−4 − bfn−2
= bfn−2 − bfn−2 = 0,

and then the proof is completed.

3 How can the number of matchings be increased?

This section is devoted to the results by which one can construct a simple connected
tricyclic graph with a larger z-index from a non-extremal one. We call them the increasing
transformations. Some useful increasing transformations for z-index are presented here.

Transformation I. [21] Let G be a non-trivial connected graph and choose u ∈ V (G).
Suppose that H1 denotes the graph obtained from identifying u with the vertex vk of a
simple path v1v2 · · · vn, 1 < k < n; and H2 is obtained from H1 by deleting vk−1vk and
adding v1vn, then z(H1) < z(H2) (see Fig 1).

Transformation II. [1] Let P = uu1u2 · · ·utv be a path in G, where the degrees of
u1, · · · , ut in G are 2. Assume that K1 denotes the graph obtained from identifying u
with the vertex vk of a simple path v1v2 · · · vk and identifying v with the vertex vk+1 of
another simple path vk+1vk+2 · · · vn, 1 < k < n. Now suppose that K2 is obtained from
K1 by deleting vk−1vk and adding v1vn; K3 is obtained from K1 by deleting vk+1vk+2 and
adding v1vn, then z(K1) < z(K2) or z(K1) < z(K3) (see Fig 2).
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Figure 2: Transformation II

Transformation III. [1] Let P = u0u1u2 · · ·ut+1 be a path or a cycle (if u0 = ut+1)
in G, where t > 1 and the degrees of u1, · · · , ut in G are 2. Suppose that F1 denotes
the graph obtained from identifying ur (0 6 r 6 t) with the vertex vk of a simple path
v1v2 · · · vk (k > 2); F2 is obtained from F1 by deleting urur+1 and adding ur+1v1, then
z(F1) < z(F2) (see Fig 3).

Transformation A. Let H � P3 be a simple graph, where u and v are two non-
isolated and non-adjacent vertices of it. Suppose that Gs denotes the graph obtained from
identifying u with the vertex w0 of a cycle w0w1 · · ·wr−1w0 (r > 4) and identifying v with
the vertex ws (1 < s < r−1) of the cycle. G1 is obtained from Gs by deleting edges w0w1

and wsws+1 and adding edges w0ws and ws+1w1 (see Fig. 4).

Lemma 6. If Gs and G1 are the graphs introduced in Transformation A, then z(Gs) <
z(G1).

Proof. Repeated application of Lemma 1 and use of Lemma 3 enable us to prove the
assertion.

Although, Transformation A is a new increasing transformation for z-index, there are
many increasing transformations to be presented here by the following theorem. Before
stating the theorem, let us introduce a notation. Let m > 2, n > 2 be two integer numbers.
Suppose that u, v, w and z are four distinct vertices of G. By Gu,v

w,z(m, l), we denote the
graph obtained from identifying the vertices u and v with the end-vertices of a path on m
vertices, and identifying the vertices w and z with the end-vertices of a path on l vertices.
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Theorem 7. Let G be a simple graph and u, v, w and z be four distinct vertices of G.
Suppose that α = z(G), β = z(G− u) + z(G− v), γ = z(G− w) + z(G− z), δ = z(G−
{u,w})+z(G−{v, w})+z(G−{u, z})+z(G−{v, z}), ζ = z(G−{u, v}), η = z(G−{w, z}),
λ = z(G − {u, v, w}) + z(G − {u, v, z}), µ = z(G − {u,w, z}) + z(G − {v, w, z}) and
τ = z(G− {u, v, w, z}).
Suppose that n > 6 be an integer number and m, l > 2 integer numbers satisfying m+l = n.
Case 1) Suppose that α− δ + τ + ζ + η > β − λ− ζ > γ − µ− η.

1.a) If wz is an edge of G, then z(Gu,v
w,z(n − 4, 4)) > z(Gu,v

w,z(m, l)); equality holds if
and only if l = 4.

1.b) If wz is not an edge of G, then z(Gu,v
w,z(n − 2, 2)) > z(Gu,v

w,z(n − 4, 4)) >
z(Gu,v

w,z(m, l)); equality holds if and only if l = 4.
Case 2) Suppose that α− δ + τ + ζ + η > γ − µ− η > β − λ− ζ.

2.a) If uv is an edge of G, then z(Gu,v
w,z(4, n−4)) > z(Gu,v

w,z(m, l)); equality holds if and
only if m = 4.

2.b) If uv is not an edge of G, then z(Gu,v
w,z(2, n − 2)) > z(Gu,v

w,z(4, n − 4)) >
z(Gu,v

w,z(m, l)); equality holds if and only if m = 4.
Case 3) Suppose that β − λ− ζ > α− δ + τ + ζ + η > γ − µ− η.

3.a) If wz is an edge of G, then z(Gu,v
w,z(3, n − 3)) > z(Gu,v

w,z(m, l)); equality holds if
and only if m = 3.

3.b) If wz is not an edge of G, then z(Gu,v
w,z(n − 2, 2)) > z(Gu,v

w,z(3, n − 3)) >
z(Gu,v

w,z(m, l)); equality holds if and only if m = 3.
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Case 4) If β−λ−ζ > γ−µ−η > α−δ+τ+ζ+η, then z(Gu,v
w,z(3, n−3)) > z(Gu,v

w,z(m, l));
equality holds if and only if m = 3.
Case 5) Suppose that γ − µ− η > α− δ + τ + ζ + η > β − λ− ζ.

5.a) If uv is an edge of G, then z(Gu,v
w,z(n−3, 3)) > z(Gu,v

w,z(m, l)); equality holds if and
only if l = 3.

5.b)If uv is not an edge of G, then z(Gu,v
w,z(2, n−2)) > z(Gu,v

w,z(n−3, 3)) > z(Gu,v
w,z(m, l));

equality holds if and only if l = 3.
Case 6) If γ−µ−η > β−λ−ζ > α−δ+τ+ζ+η, then z(Gu,v

w,z(n−3, 3)) > z(Gu,v
w,z(m, l));

equality holds if and only if l = 3.
Case 7) Suppose that α− δ + τ + ζ + η = β − λ− ζ > γ − µ− η.

7.a) If wz is an edge of G, then z(Gu,v
w,z(n− 4, 4)) = z(Gu,v

w,z(3, n− 3)) > z(Gu,v
w,z(m, l));

equality holds if and only if l = 4 or m = 3.
7.b) If wz is not an edge of G, then then z(Gu,v

w,z(n − 2, 2)) > z(Gu,v
w,z(n − 4, 4)) =

z(Gu,v
w,z(3, n− 3)) > z(Gu,v

w,z(m, l)); equality holds if and only if l = 4 or m = 3.
Case 8) Suppose that α− δ + τ + ζ + η = β − λ− ζ < γ − µ− η.

8.a) If uv is an edge of G, then z(Gu,v
w,z(n−3, 3)) > z(Gu,v

w,z(m, l)); equality holds if and
only if l = 3.

8.b) If uv is not an edge of G, then z(Gu,v
w,z(2, n − 2)) = z(Gu,v

w,z(n − 3, 3)) >
z(Gu,v

w,z(m, l)); equality holds if and only if m = 2 or l = 3.
Case 9) Suppose that α− δ + τ + ζ + η = γ − µ− η > β − λ− ζ.

9.a) If uv is an edge of G, then z(Gu,v
w,z(4, n− 4)) = z(Gu,v

w,z(n− 3, 3)) > z(Gu,v
w,z(m, l));

equality holds if and only if m = 4 or l = 3.
9.b) If uv is not an edge of G, then z(Gu,v

w,z(2, n−2)) > z(Gu,v
w,z(4, n−4)) = z(Gu,v

w,z(n−
3, 3)) > z(Gu,v

w,z(m, l)); equality holds if and only if m = 4 or l = 3.
Case 10) Suppose that α− δ + τ + ζ + η = γ − µ− η < β − λ− ζ.
10.a) If wz is an edge of G, then z(Gu,v

w,z(3, n − 3)) > z(Gu,v
w,z(m, l)); equality holds if

and only if m = 3.
10.b) If wz is not an edge of G, then z(Gu,v

w,z(3, n − 3)) = z(Gu,v
w,z(n − 2, 2)) >

z(Gu,v
w,z(m, l)); equality holds if and only if m = 3 or l = 2.

Case 11) Suppose that α− δ + τ + ζ + η > β − λ− ζ = γ − µ− η.
11.a) If wz and uv are edges of G, then z(Gu,v

w,z(4, n − 4)) = z(Gu,v
w,z(n − 4, 4)) >

z(Gu,v
w,z(m, l)); equality holds if and only if m = 4 or l = 4.
11.b) If wz and uv are not edges of G, then z(Gu,v

w,z(2, n − 2)) = z(Gu,v
w,z(n − 2, 2)) >

z(Gu,v
w,z(4, n− 4)) = z(Gu,v

w,z(n− 4, 4)) > z(Gu,v
w,z(m, l)); equality holds if and only if m = 4

or l = 4.
11.c) If wz is an edge of G and uv is not edge of G, then z(Gu,v

w,z(2, n− 2)) = z(Gu,v
w,z(n−

4, 4)) > z(Gu,v
w,z(m, l)); equality holds if and only if m = 2 or l = 4.

11.d) If uv is an edge of G and wz is not edge of G, then z(Gu,v
w,z(4, n − 4)) =

z(Gu,v
w,z(n− 2, 2)) > z(Gu,v

w,z(m, l)); equality holds if and only if m = 4 or l = 2.
Case 12) If α − δ + τ + ζ + η < β − λ − ζ = γ − µ − η, then z(Gu,v

w,z(3, n − 3) =
z(Gu,v

w,z(n− 3, 3) > z(Gu,v
w,z(m, l); equality holds if and only if m = 3 or l = 3.

Case 13) If α − δ + τ + ζ + η = β − λ − ζ = γ − µ − η, then z(Gu,v
w,z(m, l)) is constant

for all m and l.
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Proof. Suppose that the leaves of the paths Pm and Pl are identified with u, v, w and z.
Let Ĝ = Gu,v

w,z(m, l). At first by recursively use of the first part of Lemma 1 and deleting
the four edges of the aforementioned paths incident with the vertices u, v, w and z, we
have

z(Ĝ) = αfm−1fl−1 + βfm−2fl−1 + γfm−1fl−2

+δfm−2fl−2 + ζfm−3fl−1 + ηfm−1fl−3

+λfm−3fl−2 + µfm−2fl−3 + τfm−3fl−3

By using the Lemma 4

z(Ĝ) = αfm−1fl−1 + (β − λ)fm−2fl−1

+λfm+l−4 + (γ − µ)fm−1fl−2 + µfm+l−4

+(δ − τ)fm−2fl−2 + τfm+l−5

+ζ(fm−3fl−2 + fm−3fl−3)

+η(fm−2fl−3 + fm−3fl−3)

= αfm−1fl−1 + (β − λ− ζ)fm−2fl−1

+(λ+ ζ)fm+l−4 + (γ − µ− η)fm−1fl−2

+(µ+ η)fm+l−4 + (δ − τ − ζ − η)fm−2fl−2

+(τ + ζ + η)fm+l−5

= (α− δ + τ + ζ + η)fm−1fl−1

+(β − λ− ζ)fm−2fl−1 + (γ − µ− η)fm−1fl−2

+(λ+ ζ + µ+ η)fm+l−4 + (τ + ζ + η)fm+l−5

+(δ − τ − ζ − η)fm+l−3

= (α− δ + τ + ζ + η)fm−1fl−1

+(β − λ− ζ)fm−2fl−1 + (γ − µ− η)fm−1fl−2

+(λ+ ζ + µ+ η)fn−4 + (τ + ζ + η)fn−5

+(δ − τ − ζ − η)fn−3

= (α− δ + τ + ζ + η)fm−1fl−1

+(β − λ− ζ)fm−2fl−1 + (γ − µ− η)fm−1fl−2 + k,

where k is a constant and equal to (λ+ζ+µ+η)fn−4+(τ+ζ+η)fn−5+(δ−τ−ζ−η)fn−3.
Therefore, by Theorem 5, the assertion is immediately proved.

Let Pm = v1v2 · · · vm (m > 2) be a path and Cl = w1w2 · · ·wlw1 be a cycle, by PCm,l,
we mean Pm B vm = wk C Cl for some k = 1, 2, · · · , l. Obviously, PCm,l has an unique
end-vertex. Let us now state a corollary of the above theorem. We shall directly use the
corollary as an increasing transformation for z-index.
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Figure 5: Illustration Corollary 8

Corollary 8. Let u be a vertex of a simple graph G0. Suppose that m, l and n are three
integer numbers such that m > 2, l > 3, n > 6 and m + l = n. Let Gm,l(u) denotes the
graph obtained from identifying u with the end-vertex of PCm,l.
i) If 2z(G0−u) < z(G0), then z(G2,n−2(u)) > z(Gm,l(u)) with equality holding if and only
if G ∼= G2,n−2(u).
ii) If z(G0) = 2z(G0 − u), then z(Gn−4,4(u)) = z(G2,n−2(u)) > z(Gm,l(u)) with equality
holding if and only if G ∼= Gn−4,4(u) or z(G2,n−2(u)).
iii) If z(G0) < 2z(G0 − u), then z(Gn−4,4(u)) > z(Gm,l(u)) with equality holding if and
only if G ∼= Gn−4,4(u). See Figure 5.

4 Constructing the extremal graphs

We are now in a position to construct the n-vertex connected tricyclic graph with the
largest z-index. For cases n = 4, n = 5, and n = 6 there are a few n-vertex tricyclic graphs.
Therefore, we can determine the extremal ones for these cases by a direct comparison of
their z-indices. The extremal graphs and their z-indices are depicted in Fig. 9. It will
thus be sufficient to determine the extremal n-vertex tricyclic graph for every n > 7. Let
us first consider some notations and definitions. We call a tricyclic graph an elementary
tricyclic graph if it has no end-vertex. A path is called a k-path if all its internal vertices
are of degree k. If G is an elementary tricyclic graph, its skeleton is a multiple graph
obtained by replacing every maximal 2-path by an edge. We denote the skeleton of G by
S(G).

Definition 9. Let G1 and G2 be two elementary tricyclic graphs. We say G1 and G2 are
related with respect to ∼ and write G1 ∼ G2 if their skeleton are isomorphic.

Relation ∼ is easily seen to be an equivalence relation. For n > 7 the set of n-vertex
elementary tricyclic graphs consists of 15 distinct equivalence classes [7]. These 15 classes
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 1.1 1.2 
α 3fp+1+fp-1 41 

 fp+2+2fp 31 
 3fp+1+fp-1 51 
δ fp+1+3fp 48 
ζ 2fp-1 7 
η fp+1+fp-1 17 
λ 2fp-1 14 
μ 2fp 17 
τ fp-1 7 
Rule R(1.a) R(2.a) 

 
 
 
 
 

2 
 

   2.1 2.2 
α 4fp+6fp-1 15 

 2fp+2 15 
 6fp+1+2fp-1 15 
δ 2fp+3 15 
ζ fp 5 
η 2fp+1 5 
λ 2fp 5 
μ 2fp+1 5 
τ fp 2 
Rule R(9.a) R(11.a) 

 
 
 
 
 

3 
 

   3.1 3.2 

α 8fp+1+2fp-1 44 
 7fp+1+3fp-1 41 
 8fp+1+2fp-1 44 
δ 7fp+1+3fp-1 41 
ζ 2fp+1+2fp-1 14 
η 3fp+1+fp-1 17 
λ 2fp+1+2fp-1 14 
μ 3fp+1+fp-1 17 
τ fp+1+fp-1 7 
Rule R(1.a) R(1.a) 

T(A) 

R(1.a) 

R(2.a) 

e 

Cor 1 

z(G)=34fn-5+4fn-7

T(A) 

R(9.a) 

R(11.a) 

z(G)=33fn-5+fn-7

T(A) 

R(1.a) 

R(1.a) 

Cor 1 Cor  1 

z(G)=91fn-7+16fn-9

z
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w 

Cp 

u v 
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z 

u v w 
z 

u

v z 

Cp 
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u v 

Cp 
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4 

   4.1 4.2 
α fp+2+3fp+1 31 

 fp+2+3fp+1 31 
 fp+2+3fp+1 48 
δ fp+2+3fp+1 48 
ζ 2fp 7 
η 2fp+1 17 
λ 2fp 14 
μ 2fp+1 17 
τ fp 7 
Rule R(1.a) R(9.a) 

 
 
 
 

5 

  
 
  

 5.1 5.2 
α 5fp+1+fp-1 37 

 4fp+1+fp 31 
 5fp+1+fp-1 54 
δ 4fp+1+fp 48 
ζ 2fp 7 
η 2fp+1 17 
λ 2fp 14 
μ 2fp+1 17 
τ fp 7 
Rule R(1.a) R(9.a) 

 
 
 
 
 

6 

  6.1 6.2 

α 2fp+2 10 
 2fp+2 10 
 2fp+3 16 
δ 2fp+3 16 
ζ fp 2 
η 2fp+1 6 
λ 2fp 4 
μ 2fp+1 6 
τ fp 2 
Rule R(10.b) R(13) 

R(9.a) 

R(1.a) 

R(1.a) 
R(9.a) 

T(A) 

R(10.b) 

R(13) 

z(G)=42fn-6+16fn-7 

z(G)=13fn-4+5fn-5+17fn-8 

z(G)=4fn-1 

Cor 1 

Cor 1 

Cp 

u 
v 

w 

z 

Cp 
u 

v w 

z 

u 

v 

w 
z 

u v w 
z 

uv 
w z Cp 

u
v 

w 
z 

Figure 6: Classes 1-6, the length of the paths depicted in red are one. The selected cycle,

PCm,l, and pair of 2-paths for applying Transformation A, Corollary 8, and increasing rules of

Theorem 12, respectively, are depicted in blue.
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7 

   7.1 7.2 
α fp+3 13 

 2fp+1 10 
 4fp+1 20 
δ 2fp+2 16 
ζ fp-1 2 
η fp+1+fp-1 7 
λ 2fp-1 4 
μ 2fp 6 
τ fp-1 2 
Rule R(2.a) R(2.a) 

 
 
 
 
 

8 

 
 
 
 

  8.1 8.2 
α 3fp+1+fp-1 17 

 fp+3+ fp-1 15 
 2fp+2 16 
δ 3fp+1+2fp-1 19 
ζ fp 3 
η fp 3 
λ fp+1 5 
μ fp+1 5 
τ fp-1 2 
Rule R(6) R(6) 

 
 
 
 
 

9 

   9.1 9.2 
α 3fp+1 15 

 2fp+1 10 
 4fp+1 20 
δ 2fp+2 16 
ζ fp-1 2 
η fp+1+fp-1 7 
λ 2fp-1 4 
μ 2fp 6 
τ fp-1 2 
Rule R(2.a) R(2.a) 

T(A) 

R(2.a) 

R(2.a) 

T(A) 

T(A) 

R(6) 

R(2.a) 

R(2.a) 

T(A) 

z(G)=16fn-4+6fn-5 
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z(G)=12fn-3+2fn-5 
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Cp 

u v 

w 

z 
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u 

Cp 
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u 
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z 
v 
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w 

z 

Cp 

u 

v 
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ऑ10 
 
 
 
 
 
 

   10.1 10.2 
α 7fp+1+3fp-1 41 
 7fp+1+3fp-1 41 ߚ
 7fp+1+3fp-1 41 ߛ
δ 7fp+1+3fp-1 41 
ζ 2fp+1+2fp-1 14 
η 3fp+1+fp-1 17 
λ 2fp+1+2fp-1 14 
μ 3fp+1+fp-1 17 
τ fp+1+fp-1 7 
Rule R(1.a) R(1.a) 

 
 
 
 
 
ऑ11 
 
 
 

 

    11.1 11.2 
α 49(7fs+1+3fs ) 833 
 (7fs-1+3fs -2)49 ߚ

+21(7fs+1+3fs ) 
700 

 ( 7fs+2+3fs+1)49 ߛ
+21(7fs+1+3fs ) 

847 

δ 70(7fs-1+3fs -2) 
+21(7fs+3fs-1 ) 
+9(7fs+1+3fs ) 

853 

ζ 21(7fs-1+3fs-2 ) 147 
η 21(7fs+3fs-1) 210 
λ 30(7fs-1+3fs-2 ) 210 
μ 21(7fs-1+3fs-2 ) 

+9(7fs+3fs-1 ) 
237 

τ 9(7fs-1+3fs -2 ) 63 
Rule R(9.b) R(9.b) 

Cor 1 

R(9.b) 

R(9.b) 

z(G)=140fn-8+42fn-10+7fn-13 

u v 

w 
z 

Ps 
u v 

w 

z 

Cor  1 

R(1.a) 

R(1.a)

z(G)=91fn-7+7fn-9 

Cor 1 

Cor 1 

v u 

w 
z 

u v 
w 

z Cp 

Figure 7: Classes 7-11, the length of the paths depicted in red are one. The selected cycle,

PCm,l, and pair of 2-paths for applying Transformation A, Corollary 8, and increasing rules of

Theorem 12, respectively, are depicted in blue.
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12 

   12.1 12.2 12.3 

α fp+q+3+fp-1 fq+3 5fs+1 
+fs-1 

44 

 (fp+1+fp-1) fq+3 +fpfq fs+3+ 
2(fs+1 
+fs-1) 

38 

 (fp+1+fp-1) (fq+2+2fq) 
+fp(fq+1+2fq-1) 

5fs+1 
+fs-1 

47 

δ (fp+1+fp-1) (3fq+1 +fq-1)  
+fpfq+1 

fs+2 
+3fs+1 
+2fs-1 

55 

ζ (fp+1+fp-1)fq 2fs 7 
η (fp+1+fp-1) fq+fpfq-1 2fs+1 10 
λ (fp+1+fp-1)fq+1 2fs 14 
μ (fp+1+fp-1) fq+1 

 +fpfq-1 
2fs+1 
+fs-1 

17 

τ (fp+1+fp-1)fq-1 fs 7 
Rule R(5.b) R(1.a) R(6) 

 
 
 
 
 

13 

   13.1 13.2 13.3 

α fp+q+1+  fp+q-1 
+ fp-1 fq+1 + fp-1 fq-1 

4fs+1 
+2fs-1 

6 

 2fp+q+ fp-1 fq-1 
 

fs+2 
+2fs+1 

6 

 2fp+q+1+2fp-1 fq+1 
 

6fs+1 
+2fs-1 

6 

δ 2fp+q+1+2fp-1 fq-1 
 

2fs+2 
+2fs+1 
+2fs-1 

6 

ζ fp+q-2 f(s) 2 

η fp+q+fp-1 fq 2fs+1 2 

λ 2fp+q-2 2fs 2 

μ 2fp+q-1+fp-1fq-1 2fs+1 
+fs-1 

2 

τ fp+q-2 fs 1 

Rule R(5.b) 
 
 
 

R(5.b) R(11.a) 

z(G)=13fn-3+fn-5 

R(11.a) 

R(5.b) 

R(5.b) 

T(A) 

T(A) 

R(6)

e

R(1.a) 

R(5.b)

z(G)=32fn-5+8fn-6 
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14 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 14.1 14.2 14.3 

α (fp+1+fp-1)(fq+1 +fq-1) 5fs+1+fs-1 7 
 fp(fq+1+fq-1) 

+(fp+1+fp-1)fq 
2fs+1+fs+3 6 

 fp(fq+1+fq-1) 
+(fp+1+fp-1)fq 

5fs+1+3fs-1 6 

δ fp-1(fq+1+fq-1) 
+2fpfq+(fp+1 
+fp-1)fq-1 
 

4fs+1 
+fs 
+fs+2 

6 

ζ fpfq fs+1 2 
η fpfq fs+1+fs-1 2 
λ fp-1fq+fpfq-1 fs+2 2 
μ fp-1fq+fpfq-1 2fs+1 2 
τ fp-1fq-1 fs 1 
Rule R(11.b) R(5.b) R(11.a)

 
 
 
 
 

15 

   15.1 15.2 

α fq+s+t+p-3 
+ fq+s+t+p-5 

3fs+1+fs-1 

 2 fq+s+t+p-4 fs+3+fs-1 

 2fq+s+t+p-4 fs+3+fs+1 

δ fq-1 fs+t+p-3 
+ fs-1 fq+t+p-3 
+ft-1 fq+s+p-3 
+fp-1 fq+s+t-3 
 

3(fs+1+fs-2) 

ζ fq+t-2 fs+p-2 fs 

η fq+s-2 fp+t-2 fs+1 

λ fq-1 ft-1 fp+s-2 
+ fs-1 fp-1 fq+t-2 
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+ ft-1 fp-1 fq+s-2 
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Figure 8: Classes 12-15, the length of the paths depicted in red are one. The selected cycle,

PCm,l, and pair of 2-paths for applying Transformation A, Corollary 8, and increasing rules of

Theorem 12, respectively, are depicted in blue.
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and their skeletons are depicted in the second columns of the tables in Figures 6, 7, and 8;
the skeleton of each class is depicted in red. We denote these classes by G1,G2, · · · ,G15. In
each of them, the length of the 2-paths can be changed without changing the class. On the
other hand, repeating Transformations 1− 3, changes any non-elementary tricyclic graph
into an elementary tricyclic graph and increases the z-index. Thus, to find the n-vertex
connected tricyclic graph with the largest z-index, we only need to find the extremal
graph(s) in each class. In the remainder of the section, we construct the extremal graph
or extremal graphs of each of classes G1,G2, · · · ,G15, by using Transformation A and the
rules characterized in Theorem 7. Finally, we characterize the n-vertex connected tricyclic
graph with the largest z-index, by a direct comparison of the z-indices of the extremal
graphs.

Remark 10. Transformation A can easily be shown to be a special case of the rules
characterized in Theorem 7.

Remark 11. Changing the order of the application of rules of Theorem 7 does not change
the results.

Note that each graph in Gi can be characterized by replacing some edges of the skele-
ton by 2-paths of specified length. We call the lengths of these 2-paths the “decision
parameters” to maximize z-index of the graph. We are left with the task of properly
determining these lengths for constructing the extremal graph in every class Gi. For this
purpose, we do one of the following tasks in every stage:

• We select a proper cycle of graph for doing Transformation A, if there is any. Each
of these cycles selected for this task, is depicted blue in the graphs of the third
column of tables in Figures 6, 7, and 8.

• We select a proper PCm,l of graph for doing Corollary 8, if there is any. Each of
these PCm,l selected for this task, is depicted blue in the graph of the third column
of tables in Figures 6, 7, and 8.

• We consider two disjoint 2-paths P1 and P2 whose end vertices are four distinct
vertices u, v, w, and z. Each pair of these 2-paths selected for this task, are depicted
blue in the graph of the third column of tables in Figures 6, 7, and 8. According
to the vertices u, v, w, and z we compute the parameters α, β, γ, δ, ζ, η, λ, µ, and τ
of Theorem 7 by which we select the corresponding increasing rule implied by the
theorem. The values of these parameters by which we select the rules are depicted
in the fifth and subsequent columns. Using the transformation rule redetermines
the new lengths of these paths such that the z-index of the new graph becomes the
largest value without affecting the sum of their lengths.

Repeating the procedure above determines the extremal graph in each class. For exam-
ple, in class G1, we may select a cycle and use Transformation A. Then we may select
a PCm,l and use Corollary 8. Finally, we may select two pairs of 2-paths and for each
compute the values of parameters α, β, γ, δ, ζ, η, λ, µ, and τ of Theorem 7, then the cor-
responding increasing rules will be determined and applied (see fifth and sixth Columns
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Figure 9: The extremal n-vertex tricyclic graphs

of the corresponding row of the table of Fig 6). The details of the calculations are as
follow. For the first pair of 2-paths : α = 3fp+1 + fp−1, β = fp+2 + 2fp, γ = 3fp+1 + fp−1,
δ = fp+1 + 3fp, ζ = 2fp−1, η = fp+1 + fp−1, λ = 2fp−1, µ = 2fp, τ = fp−1. Since
α− δ+ τ + ζ + η > β−λ− ζ > γ−µ− η and wz is an edge, the corresponding increasing
rule is R(1.a).

For the second pair of 2-paths: α = 41, β = 31, γ = 51, δ = 48, ζ = 7, η = 17, λ = 14,
µ = 17, τ = 7. Since α − δ + τ + ζ + η > γ − µ− η > β − λ− ζ and wz is not an edge,
the corresponding increasing rule is R(2.a).

After constructing the extremal graph of each class, the sharp upper bound of z-
index of n-vertex tricyclic graphs can be determined by comparing the z-indices of these
constructed extremal graphs. Therefore, the extremal graph can also be characterized.
These results are summarized in the following theorem.

Theorem 12. Let G be an arbitrary n-vertex connected tricyclic graph.
If n = 4 then z(G) 6 10 with equality holding if and only if G ∼= H4.
If n = 5 then z(G) 6 16 with equality holding if and only if G ∼= H5.
If n = 6 then z(G) 6 26 with equality holding if and only if G ∼= H6 or G ∼= H ′6.
If n > 7 z(G) 6 13fn−4 + 16fn−5 with equality holding if and only if G ∼= Hn, see Fig. 9.
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Corrigendum (17 June 2015)

The authors would like to point out the following two corrections.
Firstly, the formulas in the Abstract and in the last paragraph of Page 2 should be

replaced by
91fn−7 + 16fn−9 for n > 14.

Secondly, Theorem 12 should be replaced by the corrected version below.

Theorem 12. Let G be an arbitrary n-vertex connected tricyclic graph. If n = 4 then
z(G) 6 10 with equality holding if and only if G ∼= H4.
If n = 5 then z(G) 6 16 with equality holding if and only if G ∼= H5.
If n = 6 then z(G) 6 26 with equality holding if and only if G ∼= H6 or G ∼= H ′6.
If n = 7 then z(G) 6 42 with equality holding if and only if G ∼= H7 or G ∼= H ′7 or
G ∼= H ′′7 or G ∼= H ′′′7 .
If 8 6 n 6 11 then z(G) 6 13fn−4 + 16fn−5 with equality holding if and only if G ∼= Hn.
If n = 13 then z(G) 6 784 with equality holding if and only if G ∼= H13.
If n = 12 or n > 14 then z(G) 6 91fn−7 + 16fn−9 with equality holding if and only if
G ∼= Hn. See Figure 10.
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Figure 10: Extremal graphs
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