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Abstract

The classical Eulerian polynomials are de�ned by setting

An(t) =
X

�2Sn

t1+des(�) =
nX

k=1

An;kt
k

where An;k is the number of permutations of length n with k � 1 descents. Let
An(t; q) =

P
�2Sn

t1+des(�)qinv(�) be the inv q-analogue of the classical Eulerian
polynomials whose generating function is well known:

X

n�0

unAn(t; q)

[n]q!
=

1

1� t
X

k�1

(1� t)kuk

[k]q!

: (0.1)

In this paper we consider permutations restricted in a Ferrers board and study their
descent polynomials. For a general Ferrers board F , we derive a formula in the form
of permanent for the restricted q-Eulerian polynomial

AF (t; q) :=
X

�2F

t1+des(�)qinv(�):

If the Ferrers board has the special shape of an n�n square with a triangular board
of size s removed, we prove that AF (t; q) is a sum of s + 1 terms, each satisfying
an equation that is similar to (0.1). Then we apply our results to permutations
with bounded drop (or excedance) size, for which the descent polynomial was �rst
studied by Chung et al. (European J. Combin., 31(7) (2010): 1853-1867). Our
method presents an alternative approach.
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1 Introduction

LetSn denote the symmetric group of order n. Given a permutation � 2 Sn, let Des(�) be
the descent set of �, i.e., Des(�) = fij�i > �i+1; 1 � i � n�1g, and let des(�) = jDes(�)j
denote the number of descents of �. For D � f1; 2; : : : ; n � 1g, we denote by �n(D) the
number of permutations � 2 Sn whose descent set is contained in D, and by �n(D) the
number of permutations � 2 Sn whose descent set is equal to D. In symbols,

�n(D) := jf� 2 Sn : Des(�) � Dgj; �n(D) := jf� 2 Sn : Des(�) = Dgj:

Let D = fd1; d2; : : : ; dkg where 1 � d1 < � � � < dk � n � 1. For convenience, also let
d0 = 0 and dk+1 = n. Then the following formulas for �n(D) and �n(D) are well-known
(see, for example, [14, p.69]):

�n(D) =

�
n

d1; d2 � d1; : : : ; n� dk

�
(1.1)

�n(D) = n! det

�
1

(dj+1 � di)!

�
= det

��
n� di

dj+1 � di

��
; (1.2)

where (i; j) 2 [0; k]� [0; k] in the matrix of equation (1.2).
A q-analogue of the above formulas is given by considering the permutation statistic

inv(�), where inv(�) =
P

i<j �(�i > �j). By convention, the symbol �(P ) is 1 if the
statement P is true and 0 if not. See [14, Example 2.2.5]. Explicitly, let

�n(D; q) =
X

�2Sn:Des(�)�D

qinv(�); �n(D; q) =
X

�2Sn:Des(�)=D

qinv(�):

Then

�n(D; q) =

�
n

d1; d2 � d1; : : : ; n� dk

�
=

[n]!

[d1]![d2 � d1]! � � � [n� dk]!
(1.3)

�n(D; q) = [n]! det

�
1

[dj+1 � di]!

�
= det

��
n� di

dj+1 � di

��
; (1.4)

where (i; j) 2 [0; k]� [0; k] as before. Here we use the standard notation

[n] := (1� qn)=(1� q); [n]! := [1][2] � � � [n];

�
n

k

�
:=

[n]q!

[k]![n� k]!

for the q-analogue of the integer n, the q-factorial, and the q-binomial coe�cient, respec-
tively. Sometimes it is necessary to write the base q explicitly as in [n]q; [n]q!, and

�
n

k

�
q
,

etc., but we omit q in this paper as we do not use the analogues of any other variables.
The classical Eulerian polynomials are de�ned by setting

An(t) =
X
�2Sn

t1+des(�) =
nX

k=1

An;kt
k;
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where An;k is called the Eulerian number that denotes the number of permutations of
length n with k � 1 descents. Let A0(t) = 1. The polynomials An(t) have the generating
function (see e.g. Riordan [12])

X
n�0

An(t)
un

n!
=

1

1� t
X
k�1

(1� t)k�1uk

k!

=
1� t

1� teu(1�t)
: (1.5)

Let An(t; q) =
P

�2Sn
t1+des(�)qinv(�) be the inv q-analogue of the Eulerian polynomials.

Stanley [13] showed that

X
n�0

unAn(t; q)

[n]!
=

1� t

1� tE(u(1� t); q)
; (1.6)

where

E(z; q) =
X
n�0

zn

[n]!
:

By simple manipulations we can see that an equivalent form of (1.6) is

X
n�0

unAn(t; q)

[n]!
=

1

1� t
X
k�1

(1� t)k�1uk

[k]!

: (1.7)

Alternative proofs of (1.7) have been given by Gessel [9] and Garsia [8].
In this paper we consider permutations with restricted positions, and extend the above

results to descent polynomials of permutations in a Ferrers board. Traditionally a per-
mutation � 2 Sn is also represented as a 01-�lling of an n by n square board: Reading
from left to right and bottom to top, we simply put a 1 in the ith row and the jth column
whenever �i = j for i = 1; : : : ; n. Given integers 0 < r1 � r2 � � � � � rn, the Ferrers
board of shape (r1; : : : ; rn) is de�ned by

F = f(i; j) : 1 � i � n; 1 � j � rig:

In the following we identify a permutation � with its 01-�lling representation, and say
that � is in a Ferrers board F if all the cells (i; �i) are in F .

In Section 2 we extend the formulas (1.3) and (1.4) to the set of permutations on a
�xed Ferrers shape with n rows and n columns, and derive a permanent formula for the
restricted q-Eulerian polynomial

AF (t; q) :=
X
�2F

t1+des(�)qinv(�):

In Section 3 we focus on the Ferrers board that is obtained from the n� n square by
removing a triangular board of size s, and prove that the restricted q-Eularian polynomial
is a sum of s+ 1 terms, each determined by an equation that generalizes (1.7).
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Finally in Section 4, we apply our results to permutations with bounded drop (or
excedance) size, for which the descent polynomial was �rst studied by Chung, Claesson,
Dukes and Graham [4]. Our method presents an alternative approach to the results in
[4].

Notation on lattice path

Here we recall some notation and results about the counting of lattice paths with
a general right boundary. These results o�er the main tool to describe permutations
restricted in a Ferrers board. For a reference on lattice path counting, see Mohanty [11].

A lattice path P is a path in the plane with two kinds of steps: a unit north step N
or a unit east step E. If x is a positive integer, a lattice path from the origin (0; 0) to the
point (x; n) can be coded by a length n non-decreasing sequence (x1; x2; : : : ; xn), where
0 � xi � x and xi is the x-coordinate of the ith north step. For example, let x = 5 and
n = 3. Then the path EENENNEE is coded by (2; 3; 3).

In general, let s be a non-decreasing sequence with positive integer terms s1; s2; : : : ; sn.
A lattice path from (0; 0) to (x; n) is one with the right boundary s if xi < si for 1 � i � n.
If x � sn, then the number of lattice paths from (0; 0) to (x; n) with the right boundary s
does not depend on x. Let Pathn(s) be the set of lattice paths from (0; 0) to (sn; n) with
the right boundary s, and LPn(s) be the cardinality of Pathn(s). For a given sequence
s = (s1; s2; : : : ; sn), let

LPn(s; q) =
X

P2Pathn(s)

qarea(P );

where area(P ) =
Pn

i=1 xi is the area enclosed by the path P , the y-axis, and the line
y = n. Hence LPn(s) = LPn(s; 1). In this paper we will also allow the entries si to satisfy
s1 � s2 � � � � � sn, in which case

LPn(s; q) = LPn((sn; sn; : : : ; sn); q) =

�
sn + n� 1

n

�
:

In particular LPn((n+ 1; n+ 1; : : : ; n+ 1); q) =
�
2n
n

�
. It is also easy to see that

LPn((1; 2; : : : ; n); q) = Cn(q);

where Cn(q) is Carlitz-Riordan's q-Catalan number [2].

2 Descents of permutations in Ferrers boards

Let F be a Ferrers board with n rows and n columns, which is aligned on the top and
left. Index the rows from bottom to top, and columns from left to right. Let ri be the
size of row i. Hence 1 � r1 � r2 � � � � � rn = n.

For a set D = fd1; d2; : : : ; dkg with 1 � d1 < � � � < dk � n�1, let �F (D) be the number
of permutations in F with the descent set D, and �F (D) be the number of permutations
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in F whose descent set is contained in D. The inv q-analogues of �F (D) and �F (D) are
de�ned by

�F (D; q) =
X

�2F :Des(�)�D

qinv(�); �F (D; q) =
X

�2F :Des(�)=D

qinv(�):

Clearly �F (D; 1) = �F (D) and �F (D; 1) = �F (D). The Inclusion-Exclusion Principle
implies that

�F (D; q) =
X
T�D

�F (T; q); �F (D; q) =
X
T�D

(�1)jD�T j�F (T; q):

We shall show that �F (D; q) and �F (D; q) can be expressed in terms of LPn(s; q), the
area enumerator of lattice paths with proper right boundaries and lengths.

Let's �rst compute �F (D; q). To get a permutation � in F satisfying Des(�) � D, we
�rst choose x1 < x2 < � � � < xd1 such that 1 � xi � ri, and put a 1 in the cell (xi; i) for
1 � i � d1. Then choose xd1+1 < xd1+2 < � � � < xd2 such that 1 � xi � ri, and put a 1 in
the cell (xi; i) for d1 < i � d2, and so on.

We say that the cell (i; j) is a 1-cell if it is �lled with a 1. It is clear that an inversion
of � corresponds to a southeast chain of size 2 in the �lling, i.e. a pair of 1-cells f
(xi1 ; i1); (xi2 ; i2) g such that i1 < i2 while xi1 > xi2 .

For 1 � i � d1, the 1-cell in the ith row (i.e. y = i) has exactly xi � i many other
1-cells lying above it and to its left. Hence the 1-cell in the ith row contributes xi � i to
the statistic inv(�), and all the 1-cells in the �rst d1 rows contributed

(x1 � 1) + (x2 � 2) + � � �+ (xd1 � d1)

to the statistic inv(�).
Note that 0 � x1 � 1 � x2 � 2 � � � � � xd1 � d1, and xi � i < ri � i + 1. Hence the

number of choices for the sequence (x1; : : : ; xd1) is exactly the number of lattice paths
from (0; 0) to (rd1 � d1 + 1; d1) with the right boundary (r1; r2 � 1; : : : ; rd1 � d1 + 1), andPd1

i=1(xi � i) is the area of the corresponding lattice path. Therefore the �rst d1 rows of
F contribute a factor of LPd1((h1; : : : ; hd1); q) to �F (D; q).

Let h = (h1; h2; : : : ; hn) where hi = ri � i+ 1. Let the i-th block of F consist of rows
di�1 + 1 to di. Applying the above analysis to the i-th block of the Ferrers board F for
i = 2; : : : ; k + 1, we get that

Theorem 2.1

�F (D; q) =
X

�2F :Des(�)�D

qinv(�) =
kY

i=0

LPdi+1�di((hdi+1; : : : ; hdi+1); q) (2.1)

where we use the convention that d0 = 0 and dk+1 = n.
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Accordingly,

�F (D; q) =
X
T�D

(�1)jD�T j�F (T; q)

=
X

1�i1<i2<���<ij�k

(�1)k�jf(0; i1)f(i1; i2) : : : f(ij; k + 1)

where

f(i; j) =

8<
:

LPdj�di(hdi+1; : : : ; hdj); q) if i < j
1 if i = j
0 if i > j:

(2.2)

Following the discussion of Stanley [14, p.69], we obtain that

Theorem 2.2 �F (D; q) is the determinant of a (k + 1) � (k + 1) matrix with its (i; j)
entry f(i; j + 1), 0 � i; j � k. That is,

�F (D; q) = det[fi;j+1]
k
0 (2.3)

where f(i; j) is given by (2.2).

When the Ferrers board F is an n� n square, hi = n� i+ 1, and

LPj�i((hi+1; : : : ; hj); q) =

�
n� i

j � i

�
:

Theorems 2.1 and 2.2 reduce to the classical resultsX
�2Sn

Des(�)�D

qinv(�) =

�
n

d1; d2 � d1; : : : ; n� dk

�

and X
�2Sn

Des(�)=D

qinv(�) = det

��
n� di

dj+1 � di

��k
0

:

For a general Ferrers board with n rows and n columns, let's check two extreme cases:
D = f1; 2; : : : ; n� 1g and D = ;.

� Case 1. D = f1; 2; : : : ; n� 1g: Theorem 2.1 yields the identity

X
�2F

qinv(�) = �F (= f1; 2; : : : ; n� 1g; q) =
nY
i=1

LP1((hi); q) =
nY
i=1

[hi]: (2.4)

Note that permutation �llings of a Ferrers board with n rows and n columns cor-
respond to complete matchings of f1; : : : ; 2ng with �xed sets of left endpoints and
right endpoints, and an inversion of the permutation is exactly a nesting of the
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matching; See de Mier [6] and Kasraoui [10]. To see this, for a given Ferrers board
F with n rows and n columns, one traverses the path from the lower-left corner to
the top-right corner, and records the path by its steps a1; a2; : : : ; a2n where ai = E
if the ith step is East, and ai = N if the ith step is North. Let L = fi : ai = Eg
and R = fi : ai = Ng. Then 01-�llings of F considered here are in one-to-one
correspondence with the matchings of f1; : : : ; 2ng for which the set of left endpoints
is L and the set of right endpoints is R. For example, in the following Ferrers board
F , traversing from the lower-left corner to the top-right corner, we get the sequence
EENENENN . Thus L = 1; 2; 4; 6 and R = 3; 5; 7; 8. The �lling given in the �gure
corresponds to the matching f(1; 7); (2; 3); (4; 5); (6; 8)g.

1

1

1

1

It follows that equation (2.4) is exactly the generating function of the statistic
ne2(M), which is the number of nestings in a matching M , counted over all the
matchings with given sets of left and right endpoints. That is,

X
M

qne2(M) =
nY
i=1

[hi];

which matches the known results in [7, 10].

� Case 2, D = ;: We have

�F (;; q) = �F (;; q) = LPn((h1; : : : ; hn); q)

Note that hn = 1, hence LPn((h1; : : : ; hn); q) = 1 i� ri � i for all i, where the only
permutation in the Ferrers board F with no descents is the identity permutation;
otherwise Pathn(h1; : : : ; hn) = ; and LPn((h1; : : : ; hn); q) = 0.

Theorems 2.1 and 2.2 can be used to get a formula for the joint distribution of des(�)
and inv(�) over permutations in F . Let

AF (t; q) =
X
�2F

t1+des(�)qinv(�): (2.5)

Theorem 2.3

AF (t; q) = (1� t)nper(M); (2.6)
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where M is an n� n matrix whose (i; j)-entry is given by

Mij =

8<
:

t
1�t

LPj�i+1((hi; : : : ; hj); q) if i � j

1 if i = j + 1
0 if i > j + 1;

and per(M) is the permanent of the matrix M .

Proof. We haveX
�2F

t1+des(�)qinv(�) =
X

D�f1;2;:::;n�1g

t1+jDj�F (D; q)

=
X

D�f1;2;:::;n�1g

t1+jDj
X

T :T�D

(�1)jD�T j�F (T; q)

=
X

T�f1;2;:::;n�1g

�F (T; q)
X

D:T�D

(�1)jD�T jt1+jT j+jD�T j

= (1� t)n
X

T=ft1;:::;tkg<

�
t

1� t

�1+k

�T (LPn(h))

= (1� t)nper(M);

where M is an n � n matrix as described in Theorem , and �D(LPn(h)) denotes the
right-hand side of (2.1). 2

Remark 2.1 We remark that descents of permutations in a Ferrers board provide an
example of one-dependent determinantal point processes, as studied by Borodin, Diaconis
and Fulman [1]. Let U be a �nite set. A point process on U is a probability measure
P on the 2jU j subsets of U . One simple way to specify P is via its correlation functions
�(A), where for A � U ,

�(A) = PfS : S � Ag:

A point process is determinantal with kernel K(x; y) if

�(A) = det[K(x; y)]x;y2A:

It is one-dependent if �(X [ Y ) = �(X)�(Y ) whenever dist(X; Y )� 2.
Borodin et al. showed that many examples from combinatorics, algebra and group

theory are determinantal one-dependent point processes, for example, the carries process,
the descent set of uniformly random permutations, and the descent set in Mallows model
[1]. For these three cases, the point processes are stationary, while the descent set of
permutations in a Ferrers board corresponds to a determinantal one-dependent point
process that is not stationary. Explicitly, for any set D = fd1; : : : ; dkg with 1 � d1 <
� � � < dk � n � 1, let PF (D) = �F (D)=(

Qn

i=1 hi). Using [1, Theorem 7.5] we obtain that
PF is a determinantal, one-dependent process with correlation functions

�(D) = �F (D) = det[K(di; dj)]
k
i;j=1

the electronic journal of combinatorics 19 (2012), #P7 8



and with correlation kernel

K(x; y) = �x;y + (E�1)x;y+1;

where E is the upper triangular matrix E = [e(i� 1; j)]ni;j=1 whose entries are given by

e(i; j) =

8<
:

LPj�i(hi+1; : : : ; hj) if i < j
1 if i = j
0 if i > j:

3 Permutations in the truncated board n� n��s

For a general non-decreasing sequence of positive integers s, LPn(s; q) can be computed
by a determinant formula (see, for example, [11]). But there is no simple closed formula.
In the special cases that the Ferrers board F is obtained from truncating the n�n square
board by a triangular board in the corner, we can describe the joint distribution of the
statistics des(�) and inv(�) by identities of their bi-variate generating functions.

Let �s be the triangular board with row size (s; s � 1; : : : ; 1). For n � s, let �n;s be
the truncated board n�n��s consisting of cells that are lying in 0 � x; y � n and above
the line y = x� (n� s). In other words, �n;s is the Ferrers board whose row lengths are
(n�s; n�s+1; : : : ; n; : : : ; n). See the following �gure for �n;s with with n = 7 and s = 4.

Now let D = fd1; : : : ; dkg with 1 � d1 < � � � < dk � n� 1. We shall compute the joint
distribution of 1 + des and inv over all permutations in �n;s using the formulas obtained
in Section 2. Again let d0 = 0 and dk+1 = n. Let �i = di � di�1 for i = 1; : : : ; k + 1, and
assume that j is the particular index to make dj � s < dj+1 occur.

First we compute ��n;s(D; q). Let ri be the size of row i in �n;s. Then

ri =

�
n� s� 1 + i if i � s
n if s < i � n:

Let hi = ri � i+ 1. Then

1. For 0 � i < j,

LPdi+1�di((hdi+1; : : : ; hdi+1); q) = LP�i+1((n� s; : : : ; n� s); q) =

�
n� s� 1 + �i+1

�i+1

�
:
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2. For i = j,

LPdj+1�dj((hdj+1; : : : ; hdi+1); q) = LP�j+1(((n� s)s�dj ; n� s� 1; : : : ; n� dj+1 + 1); q)

=

�
n� dj+1 + �j+1

�j+1

�

=

�
n� dj
�j+1

�
:

3. For i > j,

LPdi+1�di((hdi+1; : : : ; hdi+1); q) = LP�i+1(((n� di; n� di � 1; : : : ; n� di+1 + 1); q)

=

�
n� di+1 + �i+1

�i+1

�

=

�
n� di
�i+1

�
:

Summing over all permutations � with Des(�) � D in the Ferrers board �n;s, we obtain

��n;s(D; q) =
X

�2�n;s
Des(�)�D

qinv(�) =

jY
i=1

�
n� s� 1 + �i

�i

�
�

kY
i=j

�
n� di
�i+1

�

=

jY
i=1

�
n� s� 1 + �i

�i

�
�

�
n� dj
�(Dj)

�
;

where �(Dj) represents the sequence �j+1; : : : ; �k+1.
Hence the Principle of Inclusion-Exclusion leads to

��n;s(I; q) =
X

�2�n;s
Des(�)=I

qinv(�) =
X
D�I

(�1)jIj�jDj
�
n� dj
�(Dj)

� jY
i=1

�
n� s� 1 + �i

�i

�
: (3.1)

Let Fn;s(q; t) be the bi-variate generating function of the statistics inv and des over all
permutations in the board �n;s. That is,

Fn;s(q; t) =
X
�2�s

t1+des(�)qinv(�)

=
X

I�f1;2;:::;n�1g

t1+jIj
X

�2�n;s
Des(�)=I

qinv(�):

Let (a; q)n = (1 � a)(1 � aq) � � � (1 � aqn�1) and (a; q)1 =
Q1

i=0(1 � aqi). Our main
result here is an analog of the formula (1.7). Explicitly, we show that Fn;s(q; t) can be
expressed as a linear combination of s+1 terms, each of which satis�es a q-identity similar
to (1.7).
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Theorem 3.1 For n � s, Fn;s(q; t) = 0. For n > s, we have

Fn;s(q; t) = �0F
(0)
n;s (q; t) + �1F

(1)
n;s (q; t) + � � �+ �sF

(s)
n;s(q; t); (3.2)

where the �k's are de�ned by the formal power series

1X
k=0

�kz
k =

�
1�

t

1� t

�
1

(z; q)n�s
� 1

���1

; (3.3)

and for each i = 0; 1; : : : ; s, the term F
(i)
n;s(q; t) is given by the identity

X
n�s+1

zn

[n� i]!

F
(i)
n;s(q; t)

(1� t)n
=

t

1� t

X
k�s+1�i

zk

[k]!

1�
t

1� t

X
k�1

zk

[k]!

: (3.4)

Proof. As before assume D = fd1; d2; : : : ; dkg with d0 = 0 and dk+1 = n. Let j be the
index uniquely decided by dj � s < dj+1. For n � s+ 1, by the equation (3.1) we have

Fn;s(q; t) =
X

I�f1;2;:::;n�1g

t1+jIj
X
D�I

(�1)jIj�jDj
�
n� dj
�(Dj)

� jY
i=1

�
n� s� 1 + �i

�i

�

=
X

D�f1;2;:::;n�1g

�
n� dj
�(Dj)

� jY
i=1

�
n� s� 1 + �i

�i

� X
I:D�I

(�1)jIj�jDjt1+jIj

=
X

D�f1;2;:::;n�1g

�
n� dj
�(Dj)

� jY
i=1

�
n� s� 1 + �i

�i

�
(1� t)n�1�jDjt1+jDj

=
n�1X
k=0

t1+k(1� t)n�1�k
X

�1+�2+:::+�k+1=n

�1+:::+�j�s<�1+:::+�j+1

[n� dj]!
Qj

i=1[n� s� 1 + �i]!

[�1]! � � � [�k+1]!([n� s� 1]!)j
:

Let di = l and 
 = t
1�t

. Then,

Fn;s(q; t)

(1� t)n

=
sX

l=0

X
k�0


1+k
X

�1+�2+:::+�k+1=n

l=�1+:::+�j�s<�1+:::+�j+1

[n� l]!
Qj

i=1[n� s� 1 + �i]!

[�1]! � � � [�k+1]!([n� s� 1]!)j
:

=
sX

l=0

0
B@ X

j
�1+:::+�j=l


j
jY

i=1

�
n� s� 1 + �i

�i

�1CA
0
BB@ X

k;�j+1�s+1�l

�j+1+�j+2+:::+�k+1=n�l


k+1�j[n� l]!

[�j+1]! � � � [�k+1]!

1
CCA (3.5)
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Let �0 = 1 and for l = 1; : : : ; s,

�l :=
X
j

�1+:::+�j=l


j
jY

i=1

�
n� s� 1 + �i

�i

�
;

and

F (l)
n;s := (1� t)n

X
k;�0�s+1�l

�0+�1+:::+�k=n�l


k+1[n� l]!

[�0]! � � � [�k]!
: (3.6)

Then

Fn;s(q; t) = �0F
(0)
n;s (q; t) + �1F

(1)
n;s (q; t) + � � �+ �sF

(s)
n;s(q; t):

We show that �l and F
(l)
n;s(q; t) satisfy (3.3) and (3.4).

First, observe that for l > 0, �l is the coe�cient of zl in the formal power series

1X
j=0

 



1X
k=1

�
n� s� 1 + k

k

�
zk

!j

: (3.7)

Using the q-analog of the binomial theorem

1X
k=0

(a; q)k
(q; q)k

zk =
(az; q)1
(z; q)1

;

we have

1X
l=0

�lz
l =

1X
j=0

 



1X
k=1

[n� s+ k � 1][n� s+ k � 2] � � � [n� s]

[k]!
zk

!j

=
1X
j=0

�

 � (

(qn�sz; q)1
(z; q)1

� 1)

�j

=

�
1� 
(

1

(z; q)n�s
� 1)

��1

:

This proves the formula (3.3).
To get the formula (3.4), observe that (3.6) can be written as

1

[n� l]!

F
(l)
n;s

(1� t)n
= [zn�l]

 



X
�0�s+1�l

z�0

[�0]!
�

1X
k=0


k(
1X
�=1

z�

[� ]!
)k

!
:
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This leads to the identity

X
n�s+1

zn�l

[n� l]!

F
(l)
n;s(q; t)

(1� t)n
=

t

1� t

X
k�s+1�l

zk

[k]!

1�
t

1� t

X
k�1

zk

[k]!

:

In the case that s = 0, Fn;s(q; t) = F
(0)
n;s (q; t) = An(t; q), and equation (3.4) reduces to

the well-known identity (1.7) by letting u = z
1�t

.
2

4 Permutations with bounded drop or excedance size

Permutations with bounded drop size is related to the bubble sort and sequences that can
be translated into juggling patterns [5], whose enumeration was �rst studied by Chung,
Claesson, Dukes, and Graham [4]. For a permutation �, we say that i is a drop of � if
�i < i and the drop size is i � �i. Similarly, we say that i is an excedance of � if �i > i,
and the excedance size is �i � i. It is well-known that the number of excedances is an
Eulerian statistic, i.e., has the same distribution as des over the set of permutations.

Following [4], we use maxdrop(�) to denote the maximum drop of �,

maxdrop(�) := maxfi� �ij1 � i � ng;

and similarly, maxexc(�) to denote the maximum excedance size of �,

maxexc(�) := maxf�i � ij1 � i � ng:

Let Bn;k = f� 2 Snjmaxdrop(�) � kg. It is easy to see that jBn;kj = k!(k + 1)n�k:
Just note that there are (k + 1)n�k ways to determine �n; � � � ; �k+1 in the correct order,
one after another, and the remaining is clear (e.g., see [5, Thm.1]). In [4], Chung et al.
de�ned the k-maxdrop descent polynomials

Bn;k(t) :=
X

�2Bn;k

tdes(�)

and obtained recurrences as well as a formula for the generating function Bk(t; z) :=P
n�0Bn;k(t)z

n.
In this section, we will use the analysis in the previous section to derive a variant

generating function for Bk(t; z). Explicitly, we get an exact formula for

Ek(t; z) :=
X
n�k

Bn;k(t)z
n =

X
n�k

0
@ X

�2Bn;k

tdes(�)

1
A zn: (4.1)
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First, let B0n;k = f� 2 Snjmaxexc(�) � kg. It is clear that the map a1a2 : : : an 7!
(n + 1� an)(n + 1� an�1) : : : (n + 1� a1) is a bijection from Bn;k to B

0
n;k that preserves

the statistic des(�) and inv(�). It follows that

Bn;k(t) =
X

�2B0n;s

tdes(�) and hence Ek(t; z) =
X
n�k

0
@ X

�2B0
n;k

tdes(�)

1
A zn:

Note that B0n;k is the set of permutations � 2 Sn satisfying �i � i + k. It is easy to
check that it is exactly the set of permutations on the truncated board �n;n�k�1. Hence
for n � k + 1, we have X

�2Bn;k

t1+des(�)qinv(�) = Fn;n�k�1(q; t)

and Theorem 3.1 with s = n� k � 1 gives a description of Fn;n�k�1(q; t).
To obtain the ordinary generating function for Bn;k(t), set q = 1. As before, let


 = t=(1� t). Then formula (3.5) becomes the following equation for n � k + 1:

tBn;k(t)

(1� t)n
=

n�kX
l=0

0
B@ X

j
�1+:::+�j=l


j
jY

i=1

�
k + �i
�i

�1CA
0
BB@ X

p;�j+1>n�k�l

�j+1+�j+2+:::+�p+1=n�l


p+1�j(n� l)!

�j+1! � � � �k+1!

1
CCA :

(Note that from the analysis, the upper limit of l can include n� k. )

Let �
(k)
0 = 1 and for l � 1,

�
(k)
l :=

X
j;�1+:::+�j=l

�i>0


j
jY

i=1

�
k + �i
�i

�
;

and

c
(k)
n�l :=

X
�0>n�k�l




�
n� l

�0

�
�

X
�1+���+�p=n�l��0

�i�1


p
�
n� l � �0
�1; : : : ; �p

�
; for k > 0:

For k = 0, let c
(0)
n = �n;0. Then for any �xed k � 0 and n � k + 1, we have

tBn;k(t)

(1� t)n
=

n�kX
l=0

�
(k)
l c

(k)
n�l; (4.2)

Letting q = 1 and k = n� s� 1 in equation (3.3), we obtain

�k(z) =
X
n�0

�(k)n zn =

�
1�

t

1� t

�
1

(1� z)k+1
� 1

���1

: (4.3)
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For the coe�cient c
(k)
i , using formula (3.5) with s = 0, we get that

X
�1+���+�p=n

�i�1


p
�

n

�1; : : : ; �p

�
=

An(t)

(1� t)n
;

where An(t) is the classical Eulerian polynomial de�ned by

An(t) =
X
�2Sn

t1+des(�); n > 0:

By convention, we set A0(t) = 1. It follows that for k > 0,

c(k)n = 

X

p>n�k

�
n

p

�
An�p(t)

(1� t)n�p
= 


k�1X
p=0

�
n

p

�
Ap(t)

(1� t)p
: (4.4)

Writing as a generating function, we obtain that for k > 0,

Ck(z) =
X
n�k

c(k)n zn = 

k�1X
p=0

Ap(t)

(1� t)p

X
n�k

�
n

p

�
zn

which leads to

Ck(z) =
t

1� t

k�1X
p=0

Ap(t)

(1� t)p

 
zp

(1� z)p+1
�

k�1X
n=p

�
n

p

�
zn

!
: (4.5)

For k = 0, C0(z) = 1.
Observe that equation (4.2) is true for n = k as well. In fact it is equivalent to the

identity

Ak(t) = t
k�1X
p=0

�
k

p

�
(1� t)k�p�1Ap(t);

which can be readily checked by using the following expression of the Eulerian polynomial,
see, for example [3, Lemma 14.1, p.517],

An(t) = (1� t)n+1
1X
j=0

jntj; n � 0:

Therefore for all n � k,

Bn;k(t) =
(1� t)n

t

n�kX
l=0

�
(k)
l c

(k)
n�l;

Multiplying both sides by zn and summing over n � k, we have obtained the generating
function Ek(t; z).
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Theorem 4.1 Let

Ek(t; z) =
X
n�k

Bn;k(t)z
n =

X
n�k

0
@ X

�2Bn;k

tdes(�)

1
A zn:

Then E0(t; z) = 1=(1� z) and for k � 1,

Ek(t; z) =
1

t
�k((1� t)z)Ck((1� t)z); (4.6)

where �k(z) and Ck(z) are given in formulas (4.3) and (4.5). Explicitly,

Ek(t; z) =

k�1X
p=0

Ap(t)

 
zp

(1� (1� t)z)p+1
�

k�1X
n=p

�
n

p

�
(1� t)n�pzn

!

1� t
(1�(1�t)z)k+1

: (4.7)

Example 4.1 For the case k = 1, formula (4.7) gives

E1(t; z) =

1
1�(1�t)z

� 1

1� t
(1�(1�t)z)2

=
z(1� (1� t)z)

1� z(2� (1� t)z)
:

Comparing with equation (5) in [4], and noting that the summation of Bk(z; y) in [4]
starts from n = 0, one checks easily that the two formulas agree with each other.
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