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Abstract

We use the theory of lecture hall partitions to define a generalization of the
Eulerian polynomials, for each positive integer k. We show that these 1/k-Eulerian
polynomials have a simple combinatorial interpretation in terms of a single statistic
on generalized inversion sequences. The theory provides a geometric realization
of the polynomials as the h∗-polynomials of k-lecture hall polytopes. Many of the
defining relations of the Eulerian polynomials have natural 1/k-generalizations. In
fact, these properties extend to a bivariate generalization obtained by replacing 1/k
by a continuous variable. The bivariate polynomials have appeared in the work of
Carlitz, Dillon, and Roselle on Eulerian numbers of higher order and, more recently,
in the theory of rook polynomials.

1 Overview

The Eulerian polynomials, An(x), can be defined, for n > 0, by any of the following
relations:

An(x) =
∑
π∈Sn

xdes(π); (1)

∑
t>0

(t+ 1)nxt =
An(x)

(1− x)n+1
; (2)

∑
n>0

An(x)
zn

n!
=

(1− x)

ez(x−1) − x
. (3)
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In (1), Sn is the set of permutations π : {1, 2, . . . , n} → {1, 2, . . . , n} and des(π) is the
number of i such that π(i) > π(i+ 1). Referring to Foata’s survey [9] on the history of
the Eulerian polynomials, (2) and (3) are due to Euler [8] and (1) is due to Riordan [16].

In this paper, for positive integers k, we define the 1/k-Eulerian polynomial combina-
torially, as the distribution of a certain statistic “asc” over a set of “k-inversion sequences”,
In,k, specified in the next subsection. These polynomials arise naturally in the theory of
lecture hall partitions, via an associated “k-lecture hall polytope”. We will show that
the Ehrhart polynomial of the k-lecture hall polytope can be computed explicitly. Con-
sequently, the exponential generating of the 1/k-Eulerian polynomials can be derived to
establish the following relations analogous to (1) - (3):

The 1/k-Eulerian polynomials, A
(k)
n (x), can be defined for n > 0 by any of the following

relations:

A(k)
n (x) =

∑
e∈In,k

xasc(e); (4)

∑
t>0

(
t− 1 + 1

k

t

)
(kt+ 1)nxt =

A
(k)
n (x)

(1− x)n+
1
k

; (5)

∑
n>0

A(k)
n (x)

zn

n!
=

(
1− x

ekz(x−1) − x

) 1
k

. (6)

Their name is derived from (6) where their exponential generating function is the 1/k-th
power of a k-generalization of (3). Our main contribution is to show that the 1/k-Eulerian
polynomials have a simple combinatorial interpretation in terms of inversion sequences
and a geometric realization in terms of lecture hall polytopes.

1.1 Inversion sequences and ascents

In eq. (4), the sum is over the set In,k of k-inversion sequences defined by

In,k = {e ∈ Zn | 0 6 ei 6 (i− 1)k}. (7)

For e ∈ In,k, asc(e) is the number of ascents of e, defined as

asc(e) = #

{
i : 1 6 i 6 n− 1

∣∣∣ ei
(i− 1)k + 1

<
ei+1

ik + 1

}
.

Note the somewhat unusual definition of “ascent”. See Figure 1 for an example of the
computation of A

(2)
3 (x) from (4) using these definitions.
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1.2 The 1/k-Eulerian numbers

Define the 1/k-Eulerian numbers a
(k)
n,j by a

(k)
n,j = #{e ∈ In,k | asc(e) = j}.

The triangle of 1/2-Eulerian numbers is shown below, for 1 6 n 6 7.

1
1 2
1 10 4
1 36 60 8
1 116 516 296 16
1 358 3508 5168 1328 32
1 1086 21120 64240 42960 5664 64

The third row corresponds to the polynomial in Figure 1. Of course, from the definition,∑n−1
j=0 a

(k)
n,j =

∏n−1
i=0 (ik + 1).

1.3 Lecture hall polytopes

It is a bit surprising that the polynomials A
(k)
n (x) defined by (6) have the simple combi-

natorial interpretation (4). This interpretation has its roots in the theory of lecture hall
partitions [1, 2]. In Section 2, the equivalence of (4) and (5) is established using recent
work of Savage and Schuster relating lecture hall polytopes to statistics on inversion se-
quences [17]. It follows from Theorem 5 in [17] that A

(k)
n (x), defined by (4) has a geometric

interpretation as the h∗-vector of the k-lecture hall polytope, Pn,k, defined by

Pn,k =

{
λ ∈ Rn | 0 6

λ1
1

6
λ2
k + 1

6
λ3

2k + 1
6 . . . 6

λn
(n− 1)k + 1

6 1

}
. (8)

A key part of the proof of the equivalence of (4) and (5) in Section 2 is a rather involved,
explicit computation of the Ehrhart polynomial of Pn,k. All definitions and background
are provided in Section 2.

1.4 Generalizing properties of the Eulerian polynomials

In addition to properties (1) - (3), the Eulerian polynomials satisfy many relations, in-
cluding: a recursive definition as an n-term sum; a two-term differential recurrence; a
differential operator definition; a recurrence for the coefficients; an explicit formula for
the coefficients; and a Worpitzky identity (See [9]). All of these properties can be gener-
alized to the 1/k-Eulerian polynomials.
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e ascents asc(e) e ascents asc(e) e ascents asc(e)

000 {} 0 010 {1} 1 020 {1} 1
001 {2} 1 011 {1} 1 021 {1} 1
002 {2} 1 012 {1, 2} 2 022 {1} 1
003 {2} 1 013 {1, 2} 2 023 {1} 1
004 {2} 1 014 {1, 2} 2 024 {1, 2} 2

Figure 1: Computation of A
(2)
3 (x) = 1 + 10x+ 4x2 using (4).

In order to do so, in Section 3, we view them in a more general setting. In the process,
we will uncover a connection between the 1/k-Eulerian polynomials and previous work.

To this end, for n > 0, define the bivariate polynomial Fn(x, y) by∑
t>0

(
t+ y − 1

t

)
(t+ y)nxt =

Fn(x, y)

(1− x)n+y
. (9)

Then from (5), the relationship between A
(k)
n (x) and Fn(x, y) is given by

A(k)
n (x) = knFn(x, 1/k). (10)

This provides further motivation for the term “1/k-Eulerian polynomials”. In Section 3,
we prove that all of the aforementioned properties of the Eulerian polynomials generalize
to Fn(x, y) and thereby to the 1/k-Eulerian polynomials. Most of these identities appear
in some form in earlier work and we make the connections in Section 4. However, it is
unexpected that the non-integral case of y = 1/k should be so interesting.

1.5 The combinatorics of Fn(x, y)

In concluding this overview, we highlight one particular outcome of Section 3. It turns
out that Fn(x, y) has a simple interpretation in terms of the statistics “excedance” and
“number of cycles” on permutations. The excedance of a permutation π ∈ Sn is defined
by

exc(π) = #{i | π(i) > i}.
Recall that every π ∈ Sn can be decomposed uniquely as the product of disjoint cycles.
The number of such cycles is denoted by #cyc(π). The last relation we prove in Section
3 is that

Fn(x, y) =
∑
π∈Sn

xexc(π)y#cyc(π). (11)

As discussed in Section 4, this relationship has appeared in various forms elsewhere in
the literature. However, the following two consequences of (11) are relevant here. First,
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combining (11), (10) and (4), we have∑
e∈In,k

xasc(e) =
∑
π∈Sn

xexc(π)kn−#cyc(π).

This gives further evidence that the k-inversion sequences and their associated ascent
statistic are encoding something of combinatorial significance.

Secondly, our results provide a geometric interpretation of the joint distribution (11)
in terms of the k-lecture hall polytope defined by (8), in the special case that y is the
reciprocal of an integer. The variable y that tracks the number of cycles in a permutation
is related to the angles at which the faces of the polytope meet.

In Section 4 we discuss connections between Section 3 and other work in the literature
and suggest some further directions for inquiry.

2 The geometry of the 1/k-Eulerian polynomials

2.1 Lecture hall polytopes and inversion sequences

For a sequence s = {si}i>1 of positive integers, the s-lecture hall polytope P(s)
n is defined

by

P(s)
n =

{
λ ∈ Rn

∣∣∣ 0 6
λ1
s1

6
λ2
s2

6 · · · 6 λn
sn

6 1

}
.

These polytopes, introduced in [17], were named after the lecture hall partitions [1, 2] of
Bousquet-Melou and Eriksson.

Let tP(s)
n = {tλ | λ ∈ P(s)

n } denote the t-th dilation of P(s)
n . Define i(P(s)

n , t) by

i(P(s)
n , t) = |tP(s)

n ∩ Zn|.

Since all vertices of P(s)
n have integer coordinates, i(P(s)

n , t) is a rational polynomial in t,

known as the Ehrhart polynomial of P(s)
n [6, 7]. There is a relationship between the Ehrhart

polynomial of P(s)
n and the distribution of a certain statistic on s-inversion sequences, as

we now describe.

For a sequence s = {si}i>1 of positive integers, define the set I
(s)
n of s-inversion se-

quences of length n by

I(s)n = {(e1, . . . , en) ∈ Zn | 0 6 ei < si for 1 6 i 6 n} .

When s = (1, 2, . . . , n), I
(s)
n is the familiar set of inversion sequences in bijection with Sn.

For e ∈ I(s)n , an ascent of e is a position i such that 1 6 i < n and

ei
si

<
ei+1

si+1

.
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In addition, if e1 > 0 then 0 is an ascent of e. Let asc(e) be the number of ascents of e.

For example, if s = (5, 3, 7), then e = (3, 2, 3) is an s-inversion sequence with ascents
in positions 0 and 1, but not in position 2. As another example, if s = (1, 4, 7), then
e = (0, 3, 4), as an s-inversion sequence, has an ascent only in position 1. In fact, no
(1, 4, 7)-inversion sequence will have 0 as as ascent.

The following relationship between the s-inversion sequences and the s-lecture hall
polytopes was established in [17].

Theorem 1. [17] Let s be any sequence of positive integers. For integer n > 0,

∑
t>0

i(P(s)
n , t) xt =

∑
e∈I(s)n

xasc(e)

(1− x)n+1
. (12)

Stanley [18] has shown that for any convex lattice polytope, P , of dimension n, there
is a polynomial, h∗n(x), with nonnegative integer coefficients satisfying∑

t>0

i(P , t)xt =
h∗n(x)

(1− x)n+1
.

The s-lecture hall polytopes are all convex, in fact they are simplices. So Theorem 1 says,
in other words:

The h∗-polynomial of the s-lecture hall polytope P(s)
n is the ascent polynomial

of the set of s-inversion sequences I
(s)
n .

In this paper, our focus is on sequences s of the form

s = (1, k + 1, 2k + 1, . . . , (n− 1)k + 1), (13)

where k is a positive integer. Recalling In,k and Pn,k from (7) and (8) in Section 1, we
have

In,k = I(s)n and Pn,k = P(s)
n ,

where s is defined by (13), giving the following corollary.

Corollary 1. For integers k > 1 and n > 0,

∑
t>0

i(Pn,k, t)x
t =

∑
e∈In,k

xasc(e)

(1− x)n+1
.

For completeness, we include a proof of Corollary 1 in the Appendix.
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2.2 The main result

We will show in Section 2.3 that when the sequence s has the special form (13), the
Ehrhart polynomial of the s-lecture hall polytope has the following closed form.

Theorem 2. For integers k > 1 and n, t > 0,

i(Pn,k, t) = (−1)t
t∑

p=0

(
1
k
− 1

t− p

)(
−1/k

p

)
(kp+ 1)n,

where

i(Pn,k, t) = #

{
λ ∈ Zn | 0 6

λ1
1

6
λ2
k + 1

6
λ3

2k + 1
6 . . . 6

λn
(n− 1)k + 1

6 t

}
.

Our main result, Theorem 3 below, is a consequence of Theorem 2 and Corollary 1.

Theorem 3. For integers k > 1 and n > 0, let

A(k)
n (x) =

∑
e∈In,k

xasc(e).

Then ∑
t>0

(
t− 1 + 1

k

t

)
(kt+ 1)nxt =

A
(k)
n (x)

(1− x)n+
1
k

.

Proof. In Theorem 2, sum over t > 0 and apply the binomial theorem to get

∑
t>0

i(Pn,k, t)x
t =

∑
t>0

(−x)t
t∑

p=0

(
1
k
− 1

t− p

)(
−1/k

p

)
(kp+ 1)n

= (1− x)1/k−1
∑
p>0

(
−1/k

p

)
(kp+ 1)n(−x)p.

= (1− x)1/k−1
∑
p>0

(
p− 1 + 1

k

p

)
(kp+ 1)nxp.

From Corollary 1,

A
(k)
n (x)

(1− x)n+
1
k

=

∑
t>0 i(Pn,k, t)x

t

(1− x)1/k−1

=
∑
p>0

(
p− 1 + 1

k

p

)
(kp+ 1)nxp.

2
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2.3 Proof of Theorem 2: computation of i(Pn,k, t)

Definition 1. Let G
(j,d,r)
n,k be the number of λ ∈ Zn satisfying both

0 6
λ1
1

6
λ2
k + 1

6 . . . 6
λn

(n− 1)k + 1

and
λn 6 j((n− 1)k + 1) + d(n− 1) + r.

Note that

i(Pn,k, t) = G
(t,0,0)
n,k .

For suitable conditions on n, k, j, d, r, we will find and prove a recurrence for G
(j,d,r)
n,k , solve

the recurrence, and then set d = r = 0 to get i(Pn,k, t), thereby proving Theorem 2.

Theorem 4. For integers n > 0, k > 1, j > 0 and nonnegative integers d, r satisfying
d = r = 0 if n = 0 and otherwise r 6 n− 1 and (n− 1)d+ r < k(n− 1) + 1,

G
(j,d,r)
n,k =


1 if n = 0 or j = d = r = 0, else

G
(j−1,k,0)
n,k + G

(j,0,0)
n−1,k if d = r = 0, else

G
(j,d−1,n−1)
n,k if r = 0, else

G
(j,d,r−1)
n,k + G

(j,d,r−1)
n−1,k otherwise.

We will need a technical lemma.

Lemma 1. If 0 < r 6 n− 1 and 0 6 d < k then⌊
(n− 2)k + 1

(n− 1)k + 1
((n− 1)d+ r)

⌋
= (n− 2)d+ r − 1.

Proof. It suffices to verify that

(n− 2)k + 1

(n− 1)k + 1
((n− 1)d+ r)− 1 < (n− 2)d+ r − 1 6

(n− 2)k + 1

(n− 1)k + 1
((n− 1)d+ r),

which is straightforward. 2

Proof of Theorem 4. Let S
(j,d,r)
n,k denote the set counted by G

(j,d,r)
n,k in Definition 1 and

let λ ∈ S
(j,d,r)
n,k . When n = 0, or when j = d = r = 0, S

(j,d,r)
n,k contains only the empty

sequence. Otherwise, n > 0, with j + d+ r > 0.
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If d = r = 0, then j > 0 and λn 6 j(k(n− 1) + 1), either λn = j(k(n− 1) + 1) or

λn 6 j(k(n− 1) + 1)− 1 = (j − 1)(k(n− 1) + 1) + (n− 1)k + 0.

In the latter case λ ∈ S(j−1,k,0)
n,k . In the former case, λ satisfies

λn−1 6 (k(n− 2) + 1)
j(k(n− 1) + 1)

(k(n− 1) + 1)
= j(k(n− 2) + 1),

so (λ1, . . . , λn−1) ∈ S(j,0,0)
n−1,k . Otherwise, if r = 0, but d > 0, then

λn 6 j(k(n− 1) + 1) + (n− 1)d = λn 6 j(k(n− 1) + 1) + (n− 1)(d− 1) + n− 1.

Therefore λ ∈ S(j,d−1,n−1)
n,k . Otherwise, r > 0 and n > 0 and either

λn = j(k(n− 1) + 1) + (n− 1)d+ r

or
λn 6 j(k(n− 1) + 1) + (n− 1)d+ r − 1.

Clearly in the latter case λ ∈ S(j,d,r−1)
n,k . In the former case, 0 < r 6 n− 1 and 0 6 d < k

and λ satisfies

λn−1 6 (k(n− 2) + 1)
(j(k(n− 1) + 1) + (n− 1)d+ r)

(k(n− 1) + 1)

6 j(k(n− 2) + 1) +

⌊
(k(n− 2) + 1)((n− 1)d+ r)

(k(n− 1) + 1)

⌋
6 j(k(n− 2) + 1) + (n− 2)d+ (r − 1),

where we have used Lemma 1 for the last inequality. Since n > 2 and r > 0 we can
conclude that (λ1, . . . , λn−1) ∈ S(j,d,r−1)

n−1,k . 2

Now we solve the recurrence.

Theorem 5. Let integers k > 1 and n, j, d, r > 0 satisfy d = r = 0 if n = 0 and otherwise
r 6 n− 1 and (n− 1)d+ r < k(n− 1) + 1. Then G

(j,d,r)
n,k , defined by Definition 1, has the

closed form

G
(j,d,r)
n,k = (−1)j

j∑
p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)(kp+ d+ 1)n−1−r(kp+ d+ 2)r. (14)

Proof. Let f
(j,d,r)
n,k denote the expression on the right-hand side of (14). We prove it

satisfies the recurrence of Theorem 4.
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When n = 0, then d = r = 0, and

f
(j,0,0)
0,k = (−1)j

j∑
p=0

(
1
k
− 1

j − p

)(−1
k

p

)
= (−1)j

(
−1

j

)
= 1,

by the Chu-Vandermonde convolution identity. When j = d = r = 0, clearly f
(0,0,0)
n,k = 1.

Otherwise, n > 0 with j + d+ r > 0. If d = r = 0, then j > 0 and

f
(j−1,k,0)
n,k + f

(j,0,0)
n−1,k

= (−1)j−1
j−1∑
p=0

(
1
k
− 1

j − 1− p

)(−1
k

p

)
(kp+ 1)(kp+ k + 1)n−1

+(−1)j
j∑

p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)n−1

= (−1)j
j∑

p=1

(
1
k
− 1

j − p

)(−1
k

p

)
kp(kp+ 1)n−1 + (−1)j

(
1
k
− 1

j

)

+(−1)j
j∑

p=1

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)n−1

= (−1)j
j∑

p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)n = f

(j,0,0)
n,k .

Otherwise, if r = 0, but d > 0, then

f
(j,d−1,n−1)
n,k = (−1)j

j∑
p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)(kp+ d+ 1)n−1 = f

(j,d,0)
n,k .

Otherwise, r > 0 and n > 0, and

f
(j,d,r−1)
n,k + f

(j,d,r−1)
n−1,k

= (−1)j
j∑

p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)(kp+ d+ 2)(r−1)((kp+ d+ 1)n−r

+(−1)j
j∑

p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)(kp+ d+ 2)(r−1)(kp+ d+ 1)n−r−1

= (−1)j
j∑

p=0

(
1
k
− 1

j − p

)(−1
k

p

)
(kp+ 1)(kp+ d+ 1)n−r−1(kp+ d+ 2)(r) = f

(j,d,r)
n,k .

2
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Setting d = r = 0 in Theorem 5 gives Theorem 2. Note that in computing G
(j,d,r)
n,k , we

have actually computed the Ehrhart quasi-polynomial of the rational lecture hall polytope
Rn,k:

Rn,k =

{
λ ∈ Rn | 0 6

λ1
1

6
λ2
k + 1

6
λ3

2k + 1
6 . . . 6

λn
(n− 1)k + 1

6
1

(n− 1)k + 1

}
.

3 A bivariate generalization of the Eulerian polyno-

mials

In Theorem 6 of this section, we extend the properties of the Eulerian polynomials to
Fn(x, y), defined by (9), and therefore, in view of (10), to A

(k)
n (x). We first introduce a

y-generalization of the binomial coefficient that will play a role.

For any real value y, define the y-binomial coefficient
(
n
i

)
y

by(
n

i

)
y

=

(
n− 1

i

)
y

+

(
n− 1

i− 1

)
y

, (15)

with initial conditions
(
0
0

)
y

= 1/y,
(
n
0

)
y

= 1 for n > 0, and
(
n
i

)
y

= 0 for i > n. Then(
n
i

)
1

=
(
n
i

)
and it is easy to show that(

n

i

)
y

=

(
n− 1

i

)
+ y−1

(
n− 1

i− 1

)
.

In particular, observe that (
n

n

)
y

= 1/y.

When y = p/r for positive integers p and r, the numbers p
(
n
i

)
p/r

are referred to as the (p, r)

binomial coefficients. We will make use of the following y-generalization of the binomial
theorem.

Lemma 2. For positive integer n,
n∑
i=0

y

(
n

i

)
y

wi = (y + w)(1 + w)n−1.

(The sum is equal to 1 if n = 0.)

Proof. This is clear for n = 0 and n = 1. For n > 1, assume the lemma is true for
integers smaller than n. Then using (15),

n∑
i=0

y

(
n

i

)
y

wi = y +
n−1∑
i=1

y

(
n− 1

i

)
y

wi +
n−1∑
i=1

y

(
n− 1

i− 1

)
y

wi + wn

= (y + w)(1 + w)n−2 + w(y + w)(1 + w)n−2 = (y + w)(1 + w)n−1.
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2

Theorem 6. For n > 0, define Fn(x, y) by∑
t>0

(
t+ y − 1

t

)
(t+ y)nxt =

Fn(x, y)

(1− x)n+y
. (16)

Then Fn(x, y) satisfies each of the following relations (17) - (25):

Exponential generating function:∑
n>0

Fn(x, y)
zn

n!
=

(
1− x

ez(x−1) − x

)y
. (17)

Recursive definition via y-binomial coefficient

Fn(x, y) =
n−1∑
j=0

y

(
n

j

)
y

Fj(x, y)(x− 1)n−j−1. (18)

with initial conditions F0(x, y) = 1, F1(x, y) = y.

Two-term differential recurrence:

Fn+1(x, y) = x(1− x)
d

dx
Fn(x, y) + (y + nx)Fn(x, y), (19)

with initial conditions F0(x, y) = 1, F1(x, y) = y.

Differential operator definition

Define the operator Dy by Dy = x
y
d
dx

. Then

Dn
y

(
1

(1− x)y

)
=

(x/y)nFn(1/x, y)

(1− x)n+y
. (20)

Recurrence for the coefficient of xj

Let Fn(x, y) =
∑n−1

j=0 fn,j(y)xj. Then

fn+1,j(y) = (j + y)fn,j(y) + (n+ 1− j)fn,j−1(y). (21)
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Formula for the coefficient of xj

fn,j(y) =

j∑
t=0

(−1)j−t
(
t− 1 + y

t

)(
n+ y

j − t

)
(t+ y)n. (22)

Generalized Worpitzky identity(
t− 1 + y

t

)
(t+ y)n =

∑
j

fn,j(y)

(
t+ y + n− j − 1

t− j

)
. (23)

Recurrence for the coefficient of xjyk

Let fn,j,k be the coefficient of xjyk in Fn(x, y). Then

fn,j,k = jfn−1,j,k + (n− j)fn−1,j−1,k + fn−1,j,k−1, (24)

with boundary conditions f0,0,0 = 1 and fn,j,k = 0 if j + k > n.

Combinatorial characterization:

Fn(x, y) =
∑
π∈Sn

xexc(π)y#cyc(π), (25)

where Sn is the set of permutations π : {1, 2, . . . , n} → {1, 2, . . . , n}, exc(π) = #{i | π(i) >
i}, and #cyc(π) is the number of cycles in the disjoint cycle representation of π.

Proof of (17). Using (16),∑
n>0

Fn(x, y)
zn

n!
=

∑
n>0

(1− x)n+y
∑
t>0

(
t− 1 + y

t

)
(t+ y)nxt

zn

n!

= (1− x)y
∑
t>0

(
t− 1 + y

t

)
xt
∑
n>0

(z(1− x)(t+ y))n

n!

= (1− x)y
∑
t>0

(
t− 1 + y

t

)
xtez(1−x)(t+y)

= (1− x)yeyz(1−x)
∑
t>0

(
t− 1 + y

t

)
(xez(1−x))t

=
((1− x)ez(1−x))y

(1− xez(1−x))y
=

(
1− x

ez(x−1) − x

)y
.

2
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Proof of (18). Let S
(k)
n (x) = Fn(x, y)/(1− x)n+y. We will show, equivalently, that

(1− x)Sn(x, y) =
n−1∑
i=0

y

(
n

i

)
y

Si(x, y)(−1)n−1−i.

Using our series expansion (16) of Si(x) and equating coefficients of xj, it suffices to show
that (

j − 1 + y

j

)
(j + y)n −

(
j − 2 + y

j − 1

)
(j − 1 + y)n

=
n−1∑
i=0

y

(
n

i

)
y

(
j − 1 + y

j

)
(j + y)i(−1)n−1−i,

or, more simply, that

n−1∑
i=0

y

(
n

i

)
y

(j + y)i(−1)n−1−i = (j + y)n − j(j − 1 + y)n−1.

To show this, apply Lemma 2, setting w = −(j + y):

(−1)n−1
n∑
i=0

y

(
n

i

)
y

(−1)i(j + y)i = (−j)(y + j − 1)n−1.

The result follows now by subtracting the i = n term from both sides. 2

Proof of (19). Apply (16) and rewrite as follows:

Fn+1(x, y) = (1− x)n+1+y
∑
t>0

(
t− 1 + y

t

)
(t+ y)n+1xt

= (1− x)n+1+y

[∑
t>0

(
t− 1 + y

t

)
t(t+ y)nxt + y

∑
t>0

(
t− 1 + y

t

)
(t+ y)nxt

]

= x(1− x)

[
(1− x)n+y

∑
t>0

(
t− 1 + y

t

)
t(t+ y)nxt−1

]
+ y(1− x)Fn(x, y).

Now note that

d

dx
Fn(x, y) =

[
(1− x)n+y

∑
t>0

(
t− 1 + y

t

)
t(t+ y)nxt−1

]
− (n+ y)Fn(x, y)

1− x
.

Combining the two calculations gives the result. 2

Proof of (20). We use induction on n. The identity is clearly true when n = 0. Assume
it is true for some n > 0. Then

Dn+1
y

(
1

(1− x)y

)
= (x/y)

d

dx

[
(x/y)nFn(1/x, y)

(1− x)n+y

]
.
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Using (19) with the chain rule,

d

dx
Fn(1/x, y) =

1

(1− x)
[Fn+1(1/x, y)− (y + n/x)(Fn(1/x, y)] .

Thus

x

y

d

dx

[
(x/y)nFn(1/x, y)

(1− x)n+y

]
=

(
(x/y)n+1

(1− x)n+y

)
d

dx
Fn(1/x, y)

+
x

y
Fn(1/x, y)

d

dx

[
(x/y)n

(1− x)n+y

]
=

(x/y)n+1(Fn+1(1/x, y)− (y + n
x
)Fn(1/x, y))

(1− x)n+1+y

+
x

y
Fn(1/x, y)

[
(x/y)n(y + n

x
)

(1− x)n+1+y

]
=

(x/y)n+1Fn+1(1/x, y)

(1− x)n+1+y
.

2

Proof of (21). By (19),
n∑
j=0

fn+1,j(y)xj = x(1− x)
d

dx

n∑
j=0

fn,j(y)xj + (y + nx)
n∑
j=0

fn,j(y)xj

= x(1− x)
n∑
j=0

jfn,j(y)xj−1 + (y + nx)
n∑
j=0

fn,j(y)xj

=
n∑
j=0

(jfn,j(y)− (j − 1)fn,j−1(y) + yfn,j(y) + nfn,j−1(y))xj

=
n∑
j=0

((j + y)fn,j(y) + (n+ 1− j)fn,j−1(y))xj.

Now equate coefficients of xj on both sides. 2

Proof of (22). Start with (16), apply the binomial theorem, and extract the coefficient
of xj:

n−1∑
j=0

fn,j(y)xj =
∑
t>0

(
t− 1 + y

t

)
(t+ y)nxt(1− x)n+y

=
∑
t>0

(
t− 1 + y

t

)
(t+ y)nxt

∑
p>0

(
n+ y

p

)
(−x)p

=
∑
j>0

j∑
t=0

(−1)j−t
(
t− 1 + y

t

)(
n+ y

j − t

)
(t+ y)nxj.
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2

Proof of (23): Start with (16), apply the binomial theorem, and extract the coefficient
of xt: ∑

t>0

(
t− 1 + y

t

)
(t+ y)nxt =

n−1∑
i=0

fn,i(y)xi(1− x)−(n+y)

=
n−1∑
i=0

fn,i(y)xi
∑
p>0

(
p+ n− 1 + y

p

)
xp

=
∑
t>0

∑
i>0

fn,i(y)

(
t+ y + n− i− 1

t− i

)
xt.

2

Proof of (24): The boundary conditions are clear. For n > 0, start with the definition
of fn,j,k and apply (21):

Fn(x, y) =
n−1∑
j=0

n∑
k=1

fn,j,kx
jyk =

n−1∑
j=0

fn,j(y)xj

=
n−1∑
j=0

((j + y)fn−1,j(y) + (n− j)fn−1,j−1(y))xj

=
n−1∑
j=0

n∑
k=1

(jfn−1,j,k + (n− j)fn−1,j−1,k + fn−1,j,k−1)y
kxj.

Equating coefficients of ykxj gives the result. 2

Proof of (25): This follows from (3) and the Exponential Theorem (Chapter 5, [19]),
but we give a combinatorial proof using (24). Let gn,j,k be the number of permutations
π ∈ Sn with exc(π) = j and #cyc(π) = k. We show that gn,j,k satisfies the recurrence
(24) with the same boundary conditions. Let Exc(π) = {i | π(i) > i}.

The boundary conditions are clear. When n = 1, gn,j,k = 0 unless j = 0 and k = 1, in
which case it is 1. This agrees with F1(x, y) = y. For n > 1, a permutation µ ∈ Sn with k
cycles and j excedances can be constructed in one of three mutually exclusive ways from
a permutation in Sn−1:

(i) From a π ∈ Sn−1 with k − 1 cycles and j excedances, by adding the cycle (n) of
length 1. Then #cyc(µ) = #cyc(π) + 1 and Exc(µ) = Exc(π).

(ii) From a π ∈ Sn−1 with k cycles and j excedances, by inserting ‘n’ between t
and π(t) on the cycle containing t, where t ∈ Exc(π). Then #cyc(µ) = #cyc(π) and
Exc(µ) = Exc(π).
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(iii) From a π ∈ Sn−1 with k cycles and j − 1 excedances, by inserting ‘n’ between
t and π(t) on the cycle containing t, where t is one of the (n − 1) − (j − 1) elements
t 6∈ Exc(π). In this case, #cyc(µ) = #cyc(π) and Exc(µ) = Exc(π) ∪ {t}. 2

This concludes the proof of Theorem 6.

4 Connections, observations and further directions

From Theorem 6, we have both (17) and (25), facts that have appeared in various forms
in the literature. For integer y, Fn(x, y), defined by (17), arises as a special case in the
work of Carlitz [4]. For real y, Dillon and Roselle [5] use the exponential in (17) to define
a reciprocal of Fn(x, y) and prove several properties, including analogs of (21), (22), and
(24). They also provide a combinatorial characterization of their polynomial as the joint
distribution, over Sn, of the ascent statistic and the left-to-right-maximum. Since their
polynomial is the reciprocal of ours, this implies (25), by the fundamental transformation
of Foata and Schützenberger [10].

In [10], Foata and Schützenberger directly compute the exponential generating func-
tion of the distribution defined by (25) and obtain a different, but equivalent, form of
(17). A refinement appears in the work of Ksavrelof and Zeng [14], where the number of
fixed points is also included as a parameter. Variations of (16) and (23) based on weak
excedances appear in work in progress of Gessel [11].

The thesis of Butler [3], on rook theory, contains q-analogs of the identities (16), (21),
and (22). When q = 1, his corresponding polynomial is the joint distribution over Sn
of the statistics (descent, left-to-right-min), which have the same joint distribution as
(exc,#cyc).

We have not found (18) in the literature in quite this form. Of course the y = 1 case
is well known. Variations for the cases y = 2 and y = 3 appear in Sloane (see the 2- and
3-restricted numbers below), which also suggested to us the differential operator definition
(20) for the general case.

Several special cases of Fn(x, y) have been studied. Note that from (16) we get a nice
proof of the fact (see [14]) that

Fn(x,−1) = −(x− 1)n−1,

since only the t = 0 term is nonzero and it is (−1)n. Also, in (19), setting x = 1 gives the
recurrence Fn+1(1, y) = (y + n)Fn(1, y), which has solution

Fn+1(1, y) = (y + 1)(y + 2) · · · (y + n− 1),

the generating function for the unsigned Stirling cycle numbers.

The “second order Eulerian numbers” appearing in [13] and as entry A008517 in

Sloane’s EIS have the same row sums as our 1/2-Eulerian polynomial, A
(2)
n (x), but the

the electronic journal of combinatorics 19 (2012), #P9 17



entries are not the same. On the other hand, the reciprocal of A
(2)
n (x) is given by the rows

of the triangle in entry A156919 of Sloane’s EIS, so the row polynomial is

Rn(x) = xnA(2)
n (1/x) = (2x)nFn(1/x, 1/2).

That entry is referred to as a “Table of coefficients of polynomials related to the Dirchlet
eta function”.

The rows of the triangle of “2-restricted Eulerian numbers” in entry A014496 of
Sloane’s EIS defines a polynomial Pn(x) that is the reciprocal of a multiple of Fn(x, 2),
namely

Pn(x) = xnFn(1/x, 2)/2.

More generally, the rows of the “r-restricted Eulerian number” triangle satisfy

P (r)
n (x) = xnFn(1/x, r)/r.

We close with a few questions. First, is it possible to interpret Fn(x, y) in terms of
lecture hall polytopes for other values of y, for example, when y is rational?

Secondly, can we define a meaningful q-analog of the 1/k-Eulerian polynomial? We
could have q track the “amaj” statistic defined in [17]. Another possibility is to adapt
the q-analogs of Fn(x, y) that are used in rook theory.

In [15], the work of [17] is being extended to rational lecture hall polytopes. This
should allow an interpretation of the h∗ polynomial of the rational k-lecture hall polytope
whose Ehrhart quasi-polynomial was computed at the end of Section 2. Will this have a
continuous analog corresponding to anything that has been studied before?

Finally, is there a more direct connection between lecture hall partitions and rook
theory that could provide insight into either area?
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5 Appendix: Proof of Corollary 1 : the h∗-vector of

P (k)
n

We are to show that∑
t>0

#

{
λ ∈ Zn | 0 6

λ1
1

6
λ2
k + 1

6 . . . 6
λn

(n− 1)k + 1
6 t

}
xt =

∑
e∈In,k

xasc(e)

(1− x)n+1
. (26)

the electronic journal of combinatorics 19 (2012), #P9 18



Proof. The proof uses the notion of barred inversion sequences, adapted from the method
of barred permutations from [12]. A barred k-inversion sequence is a sequence e ∈ In,k
in which one or more vertical bars are inserted before and/or after elements ei, with the
stipulation that if i is an ascent of e, there is at least one bar in position i, the space
immediately preceding ei+1. We show that both sides of (26) count the barred k-inversion
sequences of length n.

For the right-hand side, consider a barred k-inversion sequence e ∈ In,k. It must
must have at least one bar following each ascent position, but additional bars may be
distributed among all of the n+1 “ spaces ” of e. The number of ways to place j identical
bars into n+1 spaces is the coefficient of xj in 1/ (1− x)n+1, so, summing over all e ∈ In,k,
the right-hand side of (26) counts the number of barred k-inversion sequences in In,k.

For the left-hand side, for each t, we establish a bijection between the barred k-
inversion sequences with t bars and the set tPn,k ∩Zn counted by the summand. Let e be
a barred k-inversion sequence with t bars. For 1 6 i 6 n, let bi be the total number of
bars preceding ei in any position. Then b1 6 b2 6 . . . 6 bn. Define λ = (λ1, . . . , λn) by

λi = (k(i− 1) + 1)bi − ei.

We show that λ ∈ (tPn,k∩Zn). First note that λi > 0, since ei < k(i−1)+1 and if bi = 0,
then no position j < i is an ascent, so e1 = . . . = ei = 0. Since e is a k-inversion sequence,

ej
k(j−1)+1

< 1 for all j. Now, if i is an ascent of e, there is at least one bar between ei and
ei+1, so bi < bi+1 and

λi
k(i− 1) + 1

= bi −
ei

k(i− 1) + 1
6 bi 6 bi+1 − 1 < bi+1 −

ei+1

ki+ 1
=

λi+1

ki+ 1
.

On the other hand, if i is not an ascent of e, then

ei
k(i− 1) + 1

>
ei+1

ki+ 1
,

so
λi

k(i− 1) + 1
= bi −

ei
k(i− 1) + 1

6 bi+1 −
ei+1

ki+ 1
=

λi+1

ki+ 1
.

To complete the proof that λ ∈ (tPn,k ∩ Zn) note that since bn 6 t (the total number of
bars in e),

λn
k(n− 1) + 1

= bn −
en

k(n− 1) + 1
6 t.

To prove that this is a bijection, we define the inverse. If λ ∈ (tPn,k ∩ Zn), let

b =

(⌈
λ1
1

⌉
, . . . ,

⌈
λn

k(n− 1) + 1

⌉)
= (b1, . . . , bn).

Then bn 6 t. Let e = (e1, . . . , en), where ei = sibi − λi. Then e ∈ In,k and we “bar” it by
placing b1 bars before e1, bi − bi−1 bars before ei for 2 6 i 6 n, and t − bn bars after en.
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By definition of b and e, e1 = 0, so 0 is not an ascent of e. If, for some i with 1 6 i < n,
there is no bar following ei, then bi = bi+1 and therefore, since λ ∈ (tP(k)

n ∩ Zn),

ei
k(i− 1) + 1

= bi −
λi

k(i− 1) + 1
> bi −

λi+1

ki+ 1
= bi+1 −

λi+1

ki+ 1
=

ei+1

ki+ 1
.

Thus i is not an ascent of e and the “barring” is valid. 2
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