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Abstract

Let R be a ring with identity. The unitary Cayley graph of a ring R, denoted by
GR, is the graph, whose vertex set is R, and in which {x, y} is an edge if and only
if x − y is a unit of R. In this paper we find chromatic, clique and independence
number of GR, where R is a finite ring. Also, we prove that if GR ' GS , then
GR/JR ' GS/JS , where JR and JS are Jacobson radicals of R and S, respectively.
Moreover, we prove if GR ' GMn(F ) then R ' Mn(F ), where R is a ring and F
is a finite field. Finally, let R and S be finite commutative rings, we show that if
GR ' GS , then R/JR ' S/JS.
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AMS classification: 05C25

1 Introduction

The study of algebraic structures using the properties of graphs has become an exciting
research topic in the last twenty years, leading to many fascinating results and questions.
There are many papers on assigning a graph to a ring, see [1], [2] and [15] .

Throughout this paper, R is a finite ring with identity. We denote the set of unit
elements by R×. The unitary Cayley graph of a ring R, denoted by GR, is the graph
whose vertex set is R, and in which {x, y} is an edge if and only if x and y are distinct
elements of R such that x−y ∈ R×. Let AG be the adjacency matrix of a simple graph G
and λ1, λ2, . . . , λn be the eigenvalues of the matrix AG. The energy of G is defined as the
sum of absolute values of its eigenvalues, E(G) =

∑n
i=1 |λi|. This concept was introduced

first by Gutman in [6] and afterwards has been studied intensively in the literature [7],
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[8], [10] and [11]. If the distinct eigenvalues of AG are λ1 < λ2 < · · · < λr, and their
multiplicities are m1,m2, . . . ,mr, respectively, then we shall write

Spec(G) =

(
λ1 λ2 · · · λr
m1 m2 · · · mr

)
,

that is, the multiset of eigenvalues of the adjacency matrix of G.
The motivation of this paper is the study of interplay between graph theoretic properties of
GR and the ring properties of R. For some other recent papers on unitary Cayley graphs,
see [9], [13], [15] and [17]. In this paper we find chromatic, clique and independence number
of GR, where R is a finite ring. Also, we prove that if GR ' GS, then GR/JR ' GS/JS ,
where JR and JS are Jacobson radicals of R and S, respectively. Moreover, we prove if
GR ' GMn(F ) then R ' Mn(F ), where R is a ring and F is a finite field. Finally, let R
and S be finite commutative rings, we show that if GR ' GS, then R/JR ' S/JS.

2 Basic Notations and Properties

Throughout this paper, we use N(v) for the neighborhood of a vertex (that is, the set of
vertices adjacent to v). For a graph G, let V (G) denote the set of vertices. The category
product of G1 and G2, G1⊗G2, is the graph with vertex set V (G1⊗G2) := V (G1)×V (G2),
specified by putting (u, v) adjacent to (u′, v′) if and only if u is adjacent to u′ in G1 and
v is adjacent to v′ in G2. Let λ1, λ2, . . . , λn be the eigenvalues of G1, and µ1, µ2, . . . , µm

be the eigenvalues of G2. Then the eigenvalues of G1 ⊗ G2 are λiµj, for 1 6 i 6 n and
1 6 j 6 m, by Theorem 2.3.4 of [4]. For a graph G, we denote by G its complement,
ω(G) its clique number, χ(G) its chromatic number and α(G) its independence number.
The Jacobson radical of a ring R, denoted by JR, is defined to be the intersection of all
the maximal left ideals of R. Let R be commutative ring. We say that R is local if R
has exactly one maximal ideal. If R is a finite commutative ring, then R ' R1 × · · · ×Rt

where each Ri is a finite commutative local ring with maximal ideal Mi, by Theorem
8.7 of [3]. It is obvious that R/JR ' R1/M1 × · · · × Rt/Mt, and this decomposition is
unique up to permutation of factors, where JR is the Jacobson radical of R. We know
that (u1, . . . , ut) is a unit of R if and only if each ui is a unit element in Ri for i = 1, . . . , t.
So, we immediately see that GR is the category product of the graphs GR1 , . . . , GRt .

Proposition 2.1. [2] Let R be a finite commutative ring.
(i) GR is a regular graph of degree |R×|.
(ii) If R ∼= R1 × · · · ×Rs is a product of local rings, then GR =

⊗s
i=1GRi

.
(iii) If R is a commutative local ring with maximal ideal M , then GR is a complete

multipartite graph whose partite sets are the cosets of M .

The ring R is said to be DU-ring (determined by unitary Cayley graph) if S is a ring
and GR ' GS. Then we have R ' S.
The commutative ring R is said to be CDU-ring (determined by unitary Cayley graph on
commutative ring) if S is a commutative ring and GR ' GS. Then we have R ' S.
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A ring R is said to be reduced if R has no nonzero nilpotent element. So, a finite commu-
tative reduced ring R is a finite product of finite fields. We show that a finite commutative
reduced ring is CDU-ring.

Lemma 2.2. [14] Let D be a finite division ring. Then D is a finite field.

Lemma 2.3. [14] Wedderburn-Artin Theorem
Let R be a semisimple ring. Then R ' Mn1(D1) × . . . ×Mnk

(Dk) where ni are integers
and Di are division ring, for i = 1, . . . , k.

Lemma 2.4. [14] Let R be a finite ring. Then R/JR is semisimple ring and R/JR '
Mn1(F1)× . . .×Mnk(Fk) where ni are integers and Fi are finite fields, for i = 1, . . . , k.

3 Chromatic and Clique number

Lemma 3.1. Let F be a finite field such that |F | = q. If Nn is the number of monic
irreducible polynomial over F of degree n, then

Nn =
1

n

∑
d|n

µ(
n

d
)qd. (1)

Corollary 3.2. Let F be a finite field. Then there exists at least a monic irreducible
polynomial over F of degree n.

Lemma 3.3. [16, 14.2.] Let F be a finite field. If P (x) is a monic irreducible polynomial
over F of degree n, then there exists a matrix A in Mn(F ) such that characteristic and
minimal polynomial of A is P (x).

Theorem 3.4. Let F be a finite field and R = Mn(F ), where n is a positive integer.
Then ω(GR) = χ(GR) = |F |n.

Proof. By Corollary 3.2, for every n ∈ N there is an irreducible P (x) ∈ F [x] such that
degP (x) = n. By using Lemma 3.3, there is a matrix A ∈ Mn(F ) such that the minimal

polynomial of A is P (x). So [F [A] : F ] = diam
F [A]
F = n and hence |F [A]| = |F |n. We can

see that F [A] ' F [x]
(p(x))

. Thus F [A] is a field. So

χ(GR) > ω(GR) > |F |n. (2)

Let X = {A1, A2, . . . , A|F |n} be the set of all vectors in F n. Let Si be the set of matrices
in Mn(F ) such that the first row is Ai for i = 1, 2, . . . , |F |n. It is obvious that if A,B ∈ Si,
then det(A− B) = 0, so A is not adjacent to B. Therefore ω(GR) 6 χ(GR) 6 |F |n, thus
by formula (2), χ(GR) = ω(GR) = |F |n.

Remark 1. Let G be a graph. Given an n-coloring c of the graph G, it is straightforward
to verify that the mapping c′((g, h)) = c(g) is an n-coloring of the product G ⊗ H.
Therefore, χ(G⊗H) 6 χ(G). Similarity, we have χ(G⊗H) 6 χ(H), and hence χ(G⊗H) 6
min{χ(G), χ(H)}.
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Theorem 3.5. Let R 'Mn1(F1)×. . .×Mnk
(Fk) be a finite semisimple ring, where ni are

integers and Fi are finite fields, for i = 1, . . . , k. Then ω(GR) = χ(GR) = min{|Fi|ni}.

Proof. By Theorem 3.4, we see that ω(GMni (Fi)) = χ(GMni (Fi)) = |Fi|ni , for i = 1, . . . , k.
Let ωi = {Ai1, Ai2, . . . , Ai|Fi|ni} be a maximal clique set of GMni (Fi). It is clear that
{(A11, A21, . . . , Ak1), (A12, A22, . . . , Ak2), . . . , (A1|F1|n1 , A2|F1|n1 , . . . , Ak|F1|n1 )} is clique set
of GR. Thus χ(GR) > ω(GR) > min{|Fi|ni}. This shall complete the proof.

Theorem 3.6. Let F be a finite field and R = Mn(F ), where n is a positive integer.
Thus α(GR) = |F |n2−n.

Proof. In the proof of Theorem 3.4 we obtain that there exists a finite field K such that
K ⊂ Mn(F ) and |K| = |F |n. It is clear that K is a subgroup of Mn(F ), so Mn(F ) =⋃|F |n2−n

i=1 (K+Ai), where K+Ai are distinct cosets of K, for all i = 1, 2, . . . , |F |n2−n. Since
K + Ai are clique in GR, then

α(GR) 6 |F |n2−n. (3)

If S is the set of matrices in Mn(F ) such that the first row is zero vector, then S is an
independent set of GR. Therefore α(GR) > |F |n2−n. Thus by formula (3),

α(GR) = |F |n2−n.

Theorem 3.7. Let R ' Mn1(F1)× . . .×Mnk
(Fk) be a finite semisimple ring, where ni

are integers and Fi are finite fields, for i = 1, . . . , k. Then α(GR) = |R|
min{|Fi|ni} .

Proof. Without loss of generality, we can assume that min{|Fi|ni} = |F1|n1 . Let
S = {A1, A2, . . . , A|F1|n

2
1−n1
} be the set of matrices in Mn1(F1) such that the first row is

zero vector. Then I = S ×Mn2(F2) × . . . ×Mnk
(Fk) is an independent set of GR. Thus

α(GR) > |R|
min{|Fi|ni} . It is clear that I is a right ideal of R. We now construct a coloring

of GR by elements of I as follows: given b = (b1, . . . , bk) ∈ R, fix an arbitrary clique C in
GR such that |C| = |F1|n1 , for example a clique which is constructed in Theorem 3.5.
We show that there is a unique element of C such as cb in such a way that b− cb ∈ I.
Existence: If c, c′ are distinct elements of C, then c−c′ is unit element of R, so c−c′ /∈ I,
thus I + c 6= I + c′, so I + c and I + c′ are distinct cosets of I in R. Since |C| = |R|

|I| , it

follows that R =
⋃

c∈C(I + c). Then there is a unique element of C such as cb, in such a
way that b ∈ I + cb, so b− cb ∈ I.
Uniqueness: Let cb and c′b be elements of C such that b− cb, b− c′b ∈ I. Since I is a right
ideal, it follows that b− cb − (b− c′b) ∈ I. Then c′b − cb ∈ I. If c′b 6= cb, then c′b − cb ∈ I is
a unit element of R. So I = R, which is a contradiction.
Define a vertex coloring f : R −→ I by f(b) = b − cb. Then f(b) = f(d) implies that
b − d = cd − cb. If cd = cb, then b = d; so assume cd 6= cb. Then by construction,
cd − cb ∈ R×, so b− d ∈ R×, and hence b is not adjacent to d in GR. Thus f is a proper
coloring for GR, showing that α(GR) 6 |R|

min{|Fi|ni} , as desired.

the electronic journal of combinatorics 19(2) (2012), #P10 4



Theorem 3.8. Let R be a ring. If JR is Jacobson radical of R, then ω(GR) = χ(GR) =
χ(GR/JR) = ω(GR/JR).

Proof. By [14, Proposition 4.8], u + JR is unit in R/JR if and only if u is unit in R and
(R/JR)× = R× + JR. So, u1 + JR is adjacent to u2 + JR in GR/JR if and only if u1 is
adjacent to u2 in GR. Therefore, if j1, j2 ∈ JR, then u1 + j1 is adjacent to u2 + j2, where
u1 − u2 ∈ R×. Hence the induced graph of GR on vertices (a1 + JR) ∪ (a2 + JR) is a
complete bipartite graph, where a1 + JR and a2 + JR are distinct. Therefore, ω(GR) =
χ(GR) = χ(GR/JR) = ω(GR/JR).

Remark 2. Let R be a finite ring. By Lemma 2.4, R/JR ' Mn1(F1) × . . . ×Mnk(Fk).
Therefore by Theorems 3.4, 3.5 and 3.8 we see that ω(GR) = χ(GR) = min{|F ni

i |}.

4 The unitary Cayley graphs of semisimple rings

In what follows, we study the interplay between GR and the structure of R, when R is a
finite ring.

Lemma 4.1. Let R be a finite ring. For j ∈ R, the following statements are equivalent:
(i) j ∈ JR;
(ii) j + u ∈ R× for any u ∈ R×.

Proof. (i) −→ (ii) is trivial.
(ii) −→ (i) Assume R is a finite semisimple ring, then R ∼= Mn1(F1) × Mn2(F2) ×

. . .×Mnt(Ft), where each Fi is a field. Let j = (A1, A2, . . . , At), where Ai ∈Mni
(Fi) and

j + R× = R×. Thus Ai + (Mni
(Fi))

× = (Mni
(Fi))

×, for all i = 1, 2, . . . , t. Assume to
the contrary that Ai /∈ J(Mni

(Fi)) = {0}. Let B1, B2, . . . , Bni
be rows of Ai. Without

loss of generality, we can assume that B1 6= 0. Thus, −B1 can be extended to a basis
{−B1, B

′
2, . . . , B

′
ni
} for F ni

i . Let B be a matrix such that the first row is −B1 and the
j-th row is B′j. Hence, B ∈ GLni

(Fi) and det(Ai +B) = 0, contradicting our assumption
that Ai 6= 0.

Now assume that R is not semisimple, (R/JR)× = R× + JR by [14, Proposition 4.8] if
j +R× = R×, then j + (R/JR)× = (R/JR)×. Thus j = 0, and so j ∈ JR, since R = R/JR
is a semisimple ring.

Lemma 4.2. Let R be a finite ring and x, y ∈ GR. Then N(x) = N(y) if and only if
x− y ∈ JR.

Proof. It is clear that N(x) = x + R× and N(y) = y + R×. Then N(x) = N(y) if and
only if x+R× = y+R×, hence it is equivalent to x− y+R× = R×. Therefore by Lemma
4.1, x− y ∈ JR.

Remark 3. Consider two vertices x, y of graph G to be equivalent when N(x) = N(y).
Then, following [5], we define the reduction of G to be the graph Gred whose vertex set
is the set of equivalence classes of vertices, and whose edges consist of pairs {A,B} of
equivalence classes with the property that A ∪ B induces a complete bipartite subgraph of
G.
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Theorem 4.3. Let R and S be finite rings such that GR
∼= GS. Then GR/JR

∼= GS/JS .

Proof. It is clear that (GR)red ∼= GR/JR . Since GR
∼= GS, then (GR)red ∼= (GS)red. Thus

GR/JR
∼= GS/JS .

Corollary 4.4. Let R and S be finite rings such that GR
∼= GS. Then |JR| = |JS|.

Corollary 4.5. Let R and S be finite rings such that GR
∼= GS. If R is semisimple, then

S is semisimple.

Proof. It is clear that |R| = |S|. By Theorem 4.3, we see that |R| = |S|
|JS |

. Thus |JS| = 1.
This shall complete the proof.

Theorem 4.6. Let F and E be two finite fields and m,n be two natural numbers. If
GMn(F ) ' GMm(E), then m = n and F ' E.

Proof. We know that |F | and |E| are prime power numbers, say |F | = pr and |E| = pr11 .
Since |F |n2

= |E|m2
, then p = p1 and prn

2
= pr1m

2
, so

rn2 = r1m
2. (4)

By Theorem 3.4, |F |n = |E|m, so prn = pr1m and hence

rn = r1m. (5)

By using (4) and (5), n = m and r = r1. Therefore, F ' E and hence the proof is
complete.

Theorem 4.7. Let R = Mn(F ), where F is a finite field and S be a semisimple ring. If
GR ' GS, then S 'Mn(F ).

Proof. Let S 'Mn1(E1)×Mn2(E2)× . . .×Mnk
(Ek). We know that |F | is prime power,

|F | = pr. It is obvious that

|F |n2

=
i=k∏
i=1

|Ei|n
2
i . (6)

Thus |Ei| = pri , so by above formula,

prn
2

= p
∑i=k

i=1 rin
2
i .

Therefore,

rn2 =
i=k∑
i=1

rin
2
i . (7)

By Theorem 3.5, χ(GS) = min{|Ei|ni} and χ(GR) = |F |n, so we have

|F |n = min{|Ei|ni}. (8)
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Without loss of generality, we can assume that min{|Ei|ni} = |E1|n1 = pr1n1 . Thus,
prn = pr1n1 . Therefore,

rn = r1n1. (9)

Degrees of all vertices of GR and GS are |GLn(F )| and |
∏i=k

i=1 GLni
(Ei)|, respectively. So,

|GLn(F )| = |
i=k∏
i=1

GLni
(Ei)|.

Thus,
n−1∏
i=0

(|F |n − |F |i) =

j=k∏
j=1

nj−1∏
i=0

(|Ej|nj − |Ej|i). (10)

Hence,

|F |
n(n−1)

2

n∏
i=1

(|F |i − 1) =

j=k∏
j=1

|Ej|
nj(nj−1)

2

j=k∏
j=1

nj∏
i=1

(|Ej|i − 1). (11)

It is clear that if i > 0, then gcd(|F |i − 1, p) = gcd(|Ej|i − 1, p) = 1. Thus,

|F |
n(n−1)

2 =

j=k∏
j=1

|Ej|
nj(nj−1)

2 .

Therefore,

p
rn(n−1)

2 = p
∑j=k

j=1

rjnj(nj−1)

2 .

Thus,

rn(n− 1) =

j=k∑
j=1

rjnj(nj − 1). (12)

By formula (7) and (12), we have that

rn =

j=k∑
j=1

rjnj. (13)

Thus by formula (9) and (13), we have that

j=k∑
j=2

rjnj = 0. (14)

Therefore, S = Mn1(E1). Thus by Theorem 4.6, the proof is complete.

Theorem 4.8. Let R = Mn(F ), where F is a finite field and S be a ring. If GR ' GS,
then S 'Mn(F ).

Proof. It is clear that S is finite and JR = {0}, so by corollary 4.4, JS = {0}. Thus S is
a semisimple ring. Thus by Theorem 4.7, the proof is complete.

Corollary 4.9. Let F be a finite field and n be a natural number. Then Mn(F ) is a
DU-ring.
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5 The unitary Cayley graphs of commutative rings

We recall the results obtained in [12] regarding the spectrum and the energy of unitary
Cayley graphs of commutative rings.

Lemma 5.1. [12, Lemma 2.3] Let R be a finite commutative ring, where R = R1 ×R2 ×
· · · × Rs and Ri is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}.
Then the eigenvalues of GR are

(i) (−1)|C|
|R×|∏

j∈C |R
×
j |/mj

with multiplicity
∏
j∈C

|R×j |
mj

for all subsets C of {1, 2, . . . , s},

and

(ii) 0 with multiplicity |R| −
s∏

i=1

(
1 +
|R×i |
mi

)
.

Lemma 5.2. [12, Theorem 2.4] Let R be a finite commutative ring, where R = R1×R2×
· · · × Rs and Ri is a local ring with maximal ideal Mi of size mi for all i ∈ {1, 2, . . . , s}.
Then

E(GR) = 2s|R×|.

Theorem 5.3. Let R and R′ be two finite commutative rings. If GR ' GR′, then
R/JR ' R′/JR′.

Proof. By our assumption, there exist local rings Ri and R′j with maximal ideals Mi and
M ′

j, where Ri/Mi = Fi and R′j/M
′
j = F ′j are finite fields for i = 1, . . . , r and j = 1, . . . , r′

such that R ' R1 × · · · × Rr and R′ ' R′1 × · · · × R′r′ . Let |Fi| = qi and |F ′j| = q′j. We
know that |R×| = |R′×|. Since GR is isomorphic to GR′ , we have E(GR) = E(GR′) and
so by Lemma 5.2, 2r|R×| = 2r′|R′×|, hence 2r = 2r′ and so r = r′. By Theorem 4.3,
GR/JR

∼= GR′/JR′
. So, GF1×F2×...×Fr

∼= GF ′1×F ′2×...×F ′r .
It is clear that |(F1 × F2 × . . .× Fr)

×| = |(F ′1 × F ′2 × . . .× F ′r)×|. So,
∏r

i=1(qi − 1) =∏r
i=1(q

′
i − 1). By Lemma 5.1, we conclude that the eigenvalues of GF1×F2×...×Fr and

GF ′1×F ′2×...×F ′r are, respectively, (−1)r−|C|
∏

j∈C(qj−1) with multiplicity

∏r
i=1(qi − 1)∏
j∈C(qj − 1)

and

(−1)r−|C|
∏

j∈C(q′j − 1) with multiplicity

∏r
i=1(q

′
i − 1)∏

j∈C(q′j − 1)
, for all subsets C of {1, 2, . . . , r}.

Without loss of generality, we can assume that q1 6 q2 6 . . . 6 qr and q′1 6 q′2 6 . . . 6
q′r. We want to prove that qi = q′i. We know that GR/JR has an eigenvalue (−1)(r−1)(q1−1).
From Spec(GR/JR) = Spec(GR′/JR′

), we deduce that q1−1 = q′1−1. Assume the contrary
and let i be the smallest number such that qi 6= q′i. Without loss of generality, we can
assume that qi < q′i. So,

qi < q′j. (15)

for all j ∈ {i, i+ 1, i+ 2, . . . , r}. It is clear that if C is a subset of {1, 2, . . . , i− 1}, then∏r
i=1(qi − 1)∏
j∈C(qj − 1)

=

∏r
i=1(q

′
i − 1)∏

j∈C(q′j − 1)
, (−1)r−|C|

∏
j∈C

(qj − 1) = (−1)r−|C|
∏
j∈C

(q′j − 1). (16)
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Let, A and B be multisets of (−1)r−|C|
∏

j∈C(qj−1) with multiplicities of

∏r
i=1(qi − 1)∏
j∈C(qj − 1)

and (−1)r−|C|
∏

j∈C(q′j−1) with multiplicities of

∏r
i=1(q

′
i − 1)∏

j∈C(q′j − 1)
, for all C ⊆ {1, 2, . . . , i−1},

respectively.
By formula (16), A = B. So, Spec(GR/JR)\A = Spec(GR′/JR′

)\B (as multiset). We
can see that (−1)r−1(qi−1) ∈ Spec(GR/JR)−A. Then we deduce that there is a subset C of
{1, 2, . . . , r}, such that C * {1, 2, . . . , i−1} and ((−1)r−1)(qi−1) = (−1)r−|C|

∏
j∈C(q′j−1).

So, Thus qi − 1 =
∏

j∈C(q′j − 1), which contradicts our assumption (15).

The following corollary follows directly from Theorem 5.3.

Corollary 5.4. Let R be a commutative reduced ring. Then R is a CDU-ring.

Proof. Let S be a commutative ring. If GR ' GS, then |S| = |R|. Since R is reduced, we
have JR = 0. So by Theorem 5.3, R ' S/JS and hence |JS| = 1. Therefore R ' S.

Remark 4. The ring of polynomials with coefficients in Z2 be denoted by Z2[x]. Let
R = Z4 and S be the quotient ring Z2[x]/(x2). Obviously, GR ' GS, but R is not
isomorphic to S, which means that Z4 is not a CDU-ring. Therefore Corollary 5.4 does
not hold for an arbitrary commutative ring.

Conjecture 1. Let R and S be finite rings such that GR ' GS. Then R/JR ' S/JS.
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