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Abstract

We suggest and explore a matroidal version of the Brualdi - Ryser conjecture
about Latin squares. We prove that any n × n matrix, whose rows and Columns
are bases of a matroid, has an independent partial transversal of length d2n/3e. We
show that for any n, there exists such a matrix with a maximal independent partial
transversal of length at most n− 1.
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1 Introduction

A Latin Square of order n is an n× n array L with entries taken from the set {1, . . . , n},
where each entry appears exactly once in each row or column of L. A partial transversal
of size k of a Latin square L is a subset of k different entries of L, where no two of them
lie in the same row or column.

The maximal size of a partial transversal in L will be denoted here by t(L) and the
minimal size of t(L), over all Latin squares L of order n, will be denoted by T (n).

It has been conjectured by Ryser [10] that T (n) = n for every odd n and by Brualdi
[4] (see also [2] p. 255) that T (n) = n − 1 for every even n. Although these conjectures
are still unsettled, a consistent progress has been made towards its resolution: Koksma
[8] proved that for n > 3, T (n) > d(2n + 1)/3e. This bound was improved by Drake [5]
to T (n) > d3n/4e for n > 7, and again by de Veris and Wieringa [3] who obtained a
lower bound of d(4n− 3)/5e for n > 12. Woollbright [14] showed that T (n) > dn−

√
ne.

A similar result was obtained independently by Brouwer, de Vries and Wieringa [1].
Recently, Hatami and Shor [6] proved that T (n) > n − O(log2 n). See also a recent
comprehensive survey by Wanless [11].
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The aim of this note is to suggest and explore a matroidal version of the Brualdi-Ryser
conjectures. For basic texts on matroids the reader is referred to Welsh [12], Oxley [9]
and White [13].

Definition 1. Let (M,S) be a matroid M on a ground set S. A matroidal Latin square
(abbreviated MLS) of degree n over (M,S) is an n×n matrix A whose entries are elements
of S, where each row or column of A is a base of M .

Notice that a matroidal Latin square reduces to a Latin square if M is a partition
matroid. We mention that according to a well-known conjecture of Rota [7] every set of
n bases of a matroid of rank n can be arranged to form an MLS of degree n so that its
rows consist of the original bases.

Definition 2. An independent partial transversal of an MLS A is an independent subset
of entries of A where no two of them lie in the same row or column of A.

We propose the following analogue of Brualdi’s conjecture:

Conjecture 3. Every MLS of degree n has an independent partial transversal of size
n− 1.

In view of Ryser’s conjecture, it is natural to ask whether in Conjecture 3 an indepen-
dent transversal of size n exists whenever n is odd. Theorem 6 asserts that this is not the
case.

2 A lower bound for a maximal independent partial

transversal

Let A = (aij)
n
i,j=1 be an MLS of degree n over a matroid M . Let T be an independent

partial transversal of size t. Without loss of generality we may assume that the elements
of T are the first t elements of the main diagonal of A. That is

A =

(
B C
D E

)
(1)

where B, C, D and E are sub-matrices of A of dimensions t× t, t× (n− t), (n− t)× t and
(n− t)× (n− t) respectively, and T constitutes the main diagonal of B. If T is of maximal
length, then t > dn/2e. Otherwise dim(E) > n − t > t = dim(T ) and thus E would
contain an element that is not spanned by T and hence can be added to T , contradicting
the maximality of T . In order to show that t > d2n/3e we shall need the following lemma:

Lemma 4. Let X be a finite set and let s > |X|/2. Let X1, . . . , Xs be a family of subsets
of X, each of size at least s. Then there exists some Xi, all of whose elements appear in
other subsets in the family.
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Proof. Let Y1 be the set of elements in X that appear in exactly one of the subsets
X1, . . . , Xs and let Y2 be the set of elements in X that appear in at least two of the
subsets X1, . . . , Xs. Let k1 = |Y1| and k2 = |Y2|. Assume, by contradiction, that each Xi

contains at least one element of Y1. Then k1 > s and thus

k2 6 |X| − k1 6 |X| − s < |X|/2 (2)

(since s > |X|/2). If, for some i, |Xi ∩ Y1| = 1 then |Xi ∩ Y2| > s − 1 and thus
k2 > s− 1 > |X|/2− 1. It follows that k2 > |X|/2, contradicting (2). It follows that for
all i, |Xi ∩ Y1| > 2. Then k1 > 2s and thus k2 6 |X| − k1 6 |X| − 2s < |X| − |X| = 0,
which is absurd. This proves the lemma.

Theorem 5. Let A be an MLS of degree n over a matroid M . Then A contains an
independent partial transversal of size d2n/3e.

Proof. We use the notations from the beginning of Section 2. Since T is maximal, all
the elements in the sub-matrix E are spanned by T . Let TE be the minimal subset of
T that spans E (this set is unique since T is independent.) Since dim(E) > n − t then
|TE| > n − t and thus |T \ TE| 6 t − (n − t) = 2t − n. Since each row of A is a base
and all the elements of E are spanned by T , each row of the sub-matrix D contains a
subset of size n − t that complement T to a base. In particular, each row of D contains
at least n − t elements that are not spanned by T . Let X = {1, . . . , t} be the set of
indices of the columns of D. For each of the n− t rows in D we define a subset Xi ⊆ X,
i = t + 1, . . . , n, in the following way: j ∈ Xi if and only if the jth element of the ith
row of A is not spanned by T . It follows that |Xi| > n − t for all i = t + 1, . . . , n. Now
assume, by contradiction, that t < 2n/3. Then n− t > n/3 > t/2. So we have a set X of
size t and n− t subsets Xt+1, . . . , Xn, each of size at least n− t, such that n− t > t/2. Let
s = n − t. By Lemma 4 we conclude that there exists a subset Xi all of whose elements
are contained in other subsets in the family Xt+1, . . . , Xn. This means that there is a
row in D containing at least n− t elements that are not spanned by T and for each such
element there exists another element in the same column in D that is not spanned by T .
It follows that D contains at least n − t columns, each containing at least two elements
that are not spanned by T . Since t < 2n/3 we have that |T \TE| 6 2t−n < n/3 < n− t.
So there exists j 6 t such that (1) ajj ∈ TE and (2) the jth column of D contains at least
two elements that are not spanned in T . Let x ∈ E be such that its support (i.e., its
minimal spanning set) in T contains ajj and let y and z be two elements in the jth column
of D that are not spanned by T . We may assume that x and y are not in the same row
(otherwise we take z instead of y). Since T ∪ {y} is independent, and the support of x in
T contains ajj, it follows that T \ {ajj} ∪ {y} does not span x and thus S \ {ajj} ∪ {x, y}
is an independent partial transversal in A of length t + 1, contrary to the maximality of
T . Thus t must be at least d2n/3e.
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3 An upper bound of size n−1 for an MLS of degree n

It is well known that for any even n there exist Latin squares of order n with no transversal
of size n. The following theorem shows that for any n there exists an MLS of degree n
with no independent transversal of size n.

Theorem 6. Let v1, v2, . . . , vn be a basis of a vectorial matroid of rank n. Then the
matrix A = (aij)

n
i,j=1, whose elements are aii = v1, for i = 1, . . . , n, and aij = vi − vj, for

1 6 i 6= j 6 n, is an MLS of order n with no independent transversal of size n.

Proof. We leave it to the reader to check that the rows and columns of A are independent.
Let T be a transversal of size n in A. We show that T is not independent. If T does not
contain elements of the main diagonal of A, then, since each row and column is represented
exactly once among the elements of T , the sum of the elements of T is 0, and T is not
independent. Thus we may assume that T meets the main diagonal exactly once. Let
aii = v1 ∈ T . If i = 1 then the sum of the elements of T − a11 is 0. If i > 1, then vi is not
spanned by T , so T is not a basis, and thus, is not independent.
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