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Abstract

Let F ,G be families of graphs. The generalized Ramsey number r(F ,G) denotes
the smallest value of n for which every red-blue coloring of Kn yields a red F ∈ F
or a blue G ∈ G. Let F(k) be a family of graphs with k vertex-disjoint cycles.

In this paper, we deal with the case where F = F(3),G = {Kt} for some fixed t
with t > 2, and prove that r(F(3),G) = 2t + 5.
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1 Introduction

All graphs considered in this paper are finite, undirected, and with no loops. For a graph
G, V (G), E(G), and δ(G) denote the set of vertices and the set of edges and the minimum
degree of G, respectively. For a given graph G and a vertex x ∈ V (G), we write NG(x)
for the neighborhood of V (G) and let dG(x) = |NG(x)|. Also, for a subgraph H of G
and a vertex x ∈ V (H), let dH(x) = |NG(x) ∩ V (H)|. Let E(A,B) be the set of edges
between A and B where A and B are vertex subsets with A ∩ B = ∅. When A consists
of one vertex, say, A = {v}, we often write E(v,B) in place of E({v}, B). For a subset S
of V (G), the subgraph induced by S in G is denoted by 〈S〉.

Let k be an integer with k > 1. We define the following family of graphs.

F(k) = {H| H is a graph which contains k vertex-disjoint cycles }.
∗Supported by the Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists (B)

(20740068) .

the electronic journal of combinatorics 19(2) (2012), #P14 1



Also let F(0) be a family consisting of all simple graphs. By definition, note that
F(k) ⊂ F(k− 1) holds for every k > 1. Graphs in F(k) have attracted a lot of attention
by many reseachers in graph theory. For example, as a classical result, K. Corrádi and A.
Hajnal [4] determined a sharp minimum degree condition for a graph to be the member
of F(k). For k > 1, let F̄(k) = F(0)−F(k). By definition, note that F̄(1) is a family of
forests. The famous Erdős-Pósa theorem states that there is a number f(k) = O(k · log k)
such that any graph G is a member of F(k) or G has a set S of f(k) vertices such that
that G−S ∈ F̄(1). Characterizing F̄(k) seems an interesting and important problem. A
characterization of F̄(2) is known (see the book [3], and also see Theorem 3 in section 2
as a weaker version). As a related topic, characterizing graphs with no two odd cycles due
to Lovász (see the book [11]) is well known. According to the result, one of such graphs
can be, roughly, embedded into the projective plane, and it appears in many contexts.
But so far we do not know any characterization concerning F̄(k) with k > 3. In general,
it seems a difficult problem. So, along a different line such as Corrádi-Hajnal’s result,
some sufficient conditions for a graph to be a member of F(k) have been considered.

In this paper, we mainly focus on the case k = 3. We will consider the above problem
in view of a Ramsey-type concept. To state this, we need some more definitions. Let
Kn be the complete graph of order n. Also, let Pn, Cn be a path, a cycle, of order n,
respectively. For any positive integers s > 2 and t > 2, the Ramsey number R(s, t) is
defined as the smallest value of n for which every red-blue coloring of Kn yields a red Ks

or a blue Kt. As an extension of this concept, for arbitrary two graphs X, Y , let r(X, Y )
be the smallest value of n for which every red-blue coloring of Kn yields a red X or a blue
Y . In general, determining R(s, t) or r(X, Y ) is a very difficult problem. So far, many
works have been done for the study of a wide variety of Ramsey-type numbers. As for
those numerous results in this field, see the survey [10].

Now we further generalize the concept of Ramsey numbers as follows. Let F ,G be
families of some fixed graphs such that F = {F1, . . . , Fl},G = {G1, . . . , Gm}. Here F or
G can be a family having infinitely many elements. We define the generalized Ramsey
number r(F ,G) as the smallest value of n for which every red-blue coloring of Kn yields a
red Fi ∈ F or a blue Gj ∈ G for some i, j. Thus we can regard R(s, t) as the special case
of r(F ,G) by letting F = {Ks},G = {Kt}. When F or G consists of just one component,
say, G = {G}, we denote r(F ,G) by r(F , G). By definition, note that r(F ,G) 6 r(F∗,G∗)
holds for any subfamilies F∗ ⊂ F ,G∗ ⊂ G.

In this paper, we consider the case where F = F(k) and G = {Kt} for k > 1, t > 2.
In [6], it is proved that 2t + 3k − 4 6 r(F(k), Kt) 6 k(t − 1) + 2 for k > 3, t > 7, and
when t 6 6 or 1 6 k 6 2, r(F(k), Kt) = 2t+ 3k − 4 holds. The lower bound is shown by
the observation from the graph G = (t− 2)K2 ∪K3k−1.

Our purpose of this paper is to determine r(F(3), Kt) for all t > 2. We obtained the
following:

Main Theorem. r(F(3), Kt) = 2t+ 5 holds for all t > 2.

This result says that r(F(k), Kt) = 2t+3k−4 holds for k = 3, showing that the lower
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bound of [6] is the right value. So, one might guess that r(F(k), Kt) = 2t+ 3k − 4 holds
for all k, t. However, this is not true. In fact, it is also proved in [6] that for any integer
c > 0, there exist k, t such that r(F(k), Kt) > c(t + k − 1). However, the proof is based
on a famous theorem due to Erdős whose proof depends on a probabilistic method. So
we do not see which pairs k, t satisfy r(F(k), Kt) > 2t + 3k − 4. As mentioned above, it
is known that r(F(k), Kt) = 2t + 3k − 4 holds for t 6 6. The proof essentially depends
on utilizing small Ramsey numbers R(s, t). Since determining R(s, t) is very difficult in
general, I guess that determining r(F(k), Kt) for general k, t would be much more difficult.
Actually, even in this specific case where k = 3, as we will observe in the following sections,
the proof depends on many classical and deep results, and it requires us a complicated
argument. Moreover, this work is linked with the following further research in this area.

Let K−4 denote the graph obtained from K4 by deleting one edge. A graph which is a
subdivision of K−4 is called a theta graph. By the structure, note that every theta graph
contains an even cycle. Here we define F ′(k),G(k) as follows:

F ′(k) = {H| H is a graph which contains k vertex-disjoint even cycles },
G(k) = {H| H is a graph which contains k vertex-disjoint theta graphs }.

In [7], the authors investigate the generalized Ramsey numbers r(F ′(k), Kt) and
r(G(k), Kt), and determine both of them for the cases k 6 3 or t 6 6.

Since G(k) ⊂ F ′(k) ⊂ F(k), it follows that r(F ′, Kt) 6 r(G(k), Kt). Somewhat
surprisingly, it is proved that r(F ′(k), Kt) = r(G(k), Kt) = 3t+ 4k − 6 holds for k 6 3 or
t 6 6. For the general value of r(F ′(k), Kt) or r(G(k), Kt), the lower bound is shown by
the observation from the graph G = (t− 2)K3 ∪K4k−1. Hence, we see from these results
together with our main theorem and the earlier results in [6] that excluding odd cycles
from the family F(k) yields quite a big difference of the values of the generalized Ramsey
numbers because we have 2t + 3k − 4 = r(F(k), Kt) < 3t + 4k − 6 = r(F ′(k), Kt) =
r(G(k), Kt) for small k or t. Since the existence of t, k which satisfy 2t + 3k − 4 <
r(F(k), Kt) is known in [6], it would be an interesting problem for us to investigate the
relationship among those three generalized Ramsey numbers for general k, t.

2 Preparation for the proof of the Main Theorem

In this paper, we tackle this problem by using several known results concerning α-critical
graphs. To state this, we need some more definitions.

For a fixed graph H, a graph G is said to be an even subdivision of H if G arises from
H by subdividing some edges by an even number of vertices. From this definition, note
that H itself can be regarded as an even subdivision of H. Also, a graph G is said to be
α-critical if α(G−e) > α(G) for any edge e ∈ E(G), where α(G) means the independence
number of G. From this definition, note that for any edge e = xy ∈ E(G), there is an
independent set I in G − e such that |I| = α(G) + 1 and {x, y} ⊂ I, and moreover, it
is easy to see that a graph which contains multiple edges is not α-critical because the
deletion of a multiple edge does not affect the independence number of the graph.
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So far, there are some results known concerning α-critical graphs. It is known that
every α-critical graph G with no isolated vertices has at least 2α(G) vertices. In [1], the
following is proved:

Theorem 1 ([1]). Let G be a connected α-critical graph with |V (G)| = 2α(G) + i for
i = 0, 1, 2. Then following statements hold:

(i) If i = 0, then G ∼= K2.

(ii) If i = 1, then G is an even subdivision of K3 (i.e., G is an odd cycle).

(iii) If i = 2, then G is an even subdivision of K4.

Also, for a connected α-critical graph G with |V (G)| = 2α(G) + 3, Q. Zhu gave a
characterization in [14]. In order to prove the Main Theorem, a connected α-critical
graph with no two vertex-disjoint cycles is important. So we shall introduce Zhu’s result
in the following form:

Theorem 2 ([14]). If G is a connected α-critical graph with |V (G)| = 2α(G) + 3 such
that G does not contain two vertex-disjoint cycles, then G is an even subdivision of K5.

Theorem 2 plays an important role in the proof of our main result. (Since Zhu’s
paper was hard to get, I proved this theorem independently. The preprint is available
upon request.) As a related basic fact, we introduce the following remark. This will also
be used in the proof of our main result.

Remark A. Let G be a graph and let K,P be two vertex-disjoint subgraphs in G such that
K is a subdivision of K5 and P = p1p2 . . . pt(t > 1) is a path. If |E(V (K), V (P ))| > 2,
then 〈V (K) ∪ V (P )〉 contains two vertex-disjoint cycles.

Proof. It is easy to check.

In the rest of this section, we list some other known results which will be used in proving
the main theorem. Here, some results in [6] are repeatedly introduced (Theorem 5) for the
convenience of readers. Since the argument after this section goes by using some results
concerning the independence number of a graph, each statement in a result will always
be rewritten in accordance with the viewpoint not from the Ramsey number but from the
independence number of a graph.

Theorem 3 ([9],[13]). Suppose that G does not contain two vertex-disjoint cycles and
δ(G) > 3. Then, one of the followings holds:

(i) G ∼= K5.

(ii) G is a wheel (i.e., G = K1 + Cl where l > 3).

(iii) G is a graph obtained from K3,|V (G)|−3 with any set of edges connecting vertices in
the 3-element class added.
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Theorem 4 ([2]). Every connected α-critical graph with at least three vertices is 2-
connected.

Theorem 5 ([6]). Let G be a graph with |V (G)| > 2α(G) + 4. Then G contains two
vertex-disjoint cycles. Moreover, when α(G) 6 5 and |V (G)| > 2α(G) + 7, G contains
three vertex-disjoint cycles.

Combining Theorems 2,4 and 5, we obtain the following fact:

Remark B. Let G be an α-critical graph with |V (G)| = 2α(G) + 3. If G does not contain
two vertex-disjoint cycles, then G consists of the set U of independent edges and an even
subdivision of K5. (Here, it is possible that U = ∅.)

Proof. Suppose that G contains an isolated vertex, say, v ∈ V (G). Since α(G − v) =
α(G) − 1, it follows that |V (G − v)| = 2α(G) + 2 = 2α(G − v) + 4. However, then by
Theorem 5, G − v (and hence G) contains two vertex-disjoint cycles, a contradiction.
Thus we see that there is no isolated vertex in G. Let U1, . . . , Ut be components of G with
|V (U1)| 6 . . . 6 |V (Ut)|. If t = 1, then the assertion immediately follows from Theorem 2
as U = ∅. If t > 2, then by Theorem 4, U1, . . . , Ut−1 must be independent edges because
G does not contain two vertex-disjoint cycles. Putting U = {U1, . . . , Ut−1}, we can easily
see from Theorem 2 that Ut is an even subdivision of K5.

Also, in section 6, the following fact will be used.

Remark C. Let G be a graph with |V (G)| = 5. If |E(G)| > 5, then G contains P4.

Proof. It is easy to check.

3 Proof of the Main Theorem

In order to prove the main theorem, it suffices for us to prove the following proposition
(to see this, put t = α(G) + 1 below).

Proposition. Let G be a graph of order |V (G)| = 2α(G) + 7. Then G contains three
vertex-disjoint cycles.

Proof. The proof goes by induction on α(G). By Theorem 5, we may assume that α(G) >
6. Suppose that G contain a triangle T . Since α(G − T ) 6 α(G) and |V (G − T )| =
2α(G) + 4, again by Theorem 5, we can easily find three vertex-disjoint cycles in G.
Hence in the following argument, we may assume that

G does not contain a triangle.

(We use this assumption as a matter of course.) Suppose that G has an isolated vertex v.
Then, α(G− v) = α(G)− 1 holds. Since |V (G− v)| = 2(α(G)− 1) + 8, by the induction
hypothesis, we can find three vertex-disjoint cycles in G − v, which can be the desired
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cycles in G. So, we may assume that G has no isolated vertex. Suppose that G has a
vertex v such that dG(v) = 1 and let u be a vertex with uv ∈ E(G). It is easy to see
that for every maximum independent set I in G (i.e., |I| = α(G)), I ∩ {u, v} 6= ∅. This
means that α(G − {u, v}) = α(G) − 1. Since |V (G − {u, v})| = 2(α(G) − 1) + 7, by the
induction hypothesis, we can find three vertex-disjoint cycles in G − {u, v}, which can
be the desired cycles in G. Thus we may assume that δ(G) > 2. Suppose that there
exists a vertex v with dG(v) = 2. Let u,w be the vertices such that NG(v) = {u,w}.
Since G does not contain a triangle, note that uw /∈ E(G). Let G∗ be a graph obtained
from G by contracting edges uv, wv ∈ E(G). Let v∗ be a vertex in G∗ which comes from
the path uvw in G by the contraction. Suppose that α(G∗) = α(G), and let I∗ be a
maximum independent set in G∗. Let I ′ be an independent set in G which comes from
I∗ − v∗ in G∗. So we have |I ′| > α(G) − 1. Then {u,w} ∪ I ′ is an independent set in
G with |{u,w} ∪ I ′| > α(G), a contradiction. Thus we have α(G∗) 6 α(G) − 1. Since
|V (G∗)| = 2α(G)+5 = 2(α(G)−1)+7 > 2α(G∗)+7, by the induction hypothesis, we can
find three vertex-disjoint cycles in G∗, which implies that G contains three vertex-disjoint
cycles.

Hence, in the following argument, we may assume that δ(G) > 3. Take a cycle C in
G, and let H = G−C. Also, put V3 := {v ∈ V (G) | dG(v) = 3}. We may assume that C
is chosen so that |V (C)| is as small as possible, and subject to the condition, |V (C)∩ V3|
is as large as possible. Since G does not contain a triangle, we have |V (C)| > 4. Also, by
the minimality of |V (C)|, we see that C has no chord. Throughout the rest of the proof,
set M := {v ∈ V (H)| v ∈ V3, E(v, V (C)) 6= ∅ }. We divide the proof into the following
three cases.

Case 1: The case where one of the followings holds:

(i) |V (C)| > 7.

(ii) |V (C)| = 6 and |V (C) ∩ V3| 6 2.

(iii) |V (C)| = 5 and V (C) ∩ V3 = ∅.

Case 2: |V (C)| = 6 and |V (C) ∩ V3| > 3, or |V (C)| = 5 and V (C) ∩ V3 6= ∅.

Case 3: |V (C)| = 4.

By the minimality of |V (C)|, note that if |V (C)| > 5, then for any v ∈ V (H),
|E(v, V (C))| 6 1, and if |V (C)| = 4, then for any v ∈ V (H), |E(v, V (C))| 6 2. This
means that δ(H) > 2 holds for Cases 1 and 2, and δ(H) > 1 holds for Case 3.

4 Proof of Case 1

Case 1: The case where one of the following statements holds:
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(i) |V (C)| > 7.

(ii) |V (C)| = 6 and |V (C) ∩ V3| 6 2.

(iii) |V (C)| = 5 and V (C) ∩ V3 = ∅.

First we prove the following two claims.

Claim 6. The graph 〈M〉 has no edge.

Proof. Let x, y ∈M . Suppose that xy ∈ E(G). Then, by the assumption of Case 1, we can
easily find a cycle C ′ such that |V (C ′)| < |V (C)| in 〈{x, y} ∪ V (C)〉, or |V (C ′)| = |V (C)|
and |V (C ′) ∩ V3| > |V (C) ∩ V3|. This contradicts the choice of C.

Claim 7. Let X be a subgraph in H such that X ∼= K1,3 and let a ∈ V (X) be the central
vertex of K1,3. Then V (X − a)− V3 6= ∅.

Proof. Suppose not. Then, we can easily find a cycle C ′ such that |V (C ′)| < |V (C)| in
〈V (X) ∪ V (C)〉, or |V (C ′)| = |V (C)| and |V (C ′) ∩ V3| > |V (C) ∩ V3| because for each
vertex b ∈ V (X − a), E(b, V (C)) 6= ∅ and b ∈ V3. This contradicts the choice of C.

Since δ(H) > 2, we may assume that H is connected (because if H consists of more
than one component, it follows from δ(H) that H contains two vertex-disjoint cycles). By
the definition of M , notice that for every vertex x ∈M , x has degree 2 in H.

Claim 8. For any two vertices x, y ∈M , |NG(x) ∩NG(y)| 6 1.

Proof. Otherwise, we can find a cycle of length 4, which contradicts the choice of C.

Now we construct a graph H ′ from H by the following operations:

Operation:

• For a path P = xyz in H such that M ∩ V (P ) = {y}, delete y and join x to z by a
new edge.

Repeat this operation until all the vertices of M are deleted. Let H ′ be the resulting
graph. Then we have δ(H ′) > 3. Note that in view of Claim 8, H ′ does not contain a
multiple edge.

Apply Theorem 3 to H ′. Then we have one of the following cases:

(i) H ′ ∼= K5.

(ii) H ′ is a wheel (i.e., H ′ = K1 + Cl where l > 3).

(iii) H ′ is a graph with |V (H ′)| > 6 obtained from K3,|V (H′)|−3 with any set of edges
connecting vertices in the 3-element class added.
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In view of the structure of H ′, let us observe that H is a subdivision of H ′. Moreover,
note that when we obtain H from H ′, each edge of H ′ is subdivided by at most one vertex
because 〈M〉 consists of isolated vertices (by Claim 6).

In the following argument, we divide the proof into two cases:

Subcase 1.1: H ′ contains a wheel as a spanning subgraph(i.e., we deal with both (i)
and (ii) in above cases for H ′ all together).

Let v be a vertex in H −M such that v is a vertex which corresponds to a central
vertex in H ′. In view of Claims 6 and 7, we see that there exists a vertex u in H−M such
that uv ∈ E(G) and there exists a cycle C ′ such that |V (C ′)| 6 5 and u, v ∈ V (C ′). Then
we have either |V (C ′)| < |V (C)| or, |V (C ′)| = |V (C)| and |V (C ′) ∩ V3| > |V (C) ∩ V3|.
This contradicts the choice of C. This completes the proof of Subcase 1.1.

Subcase 1.2: H ′ is a graph with |V (H ′)| > 6 obtained from K3,|V (H′)|−3
with any set of edges connecting vertices in the 3-element class added.

Claim 9. In H, |E(v,M)| 6 2 for every v ∈ V (H)−M .

Proof. Suppose there exists a vertex v ∈ V (H)−M such that |E(v,M)| > 3. Then, there
exists a subgraph X such that X ∼= K1,3, X− v ⊂M and v is a central vertex of the K1,3.
Since M ⊂ V3, this contradicts Claim 7.

In view of Claim 9 and the construction of H ′, it is easy to check that |M | 6 6.
First suppose that |V (H ′)| = 6. Hence, by the construction of H ′, we have |V (H)| =
|V (H ′)| + |M | 6 12. Then one can easily find a cycle of order less than 7 in H (a graph
obtained from K3,3 by subdividing edges with at most 6 vertices). On the other hand,
19 6 2α(G) + 7 = |V (G)| 6 12 + |V (C)|, and hence |V (C)| > 7. This contradicts the
minimality of |V (C)|.

Thus we may assume that |V (H ′)| > 7. Let v1, v2, v3 be vertices in H such that
dH(vi) > 4 for i = 1, 2, 3 (i.e., each vi corresponds to a vertex in the 3-element class of
H ′). By Claim 9, there exist two vertices u1, u2 in H −M such that u1, u2 ∈ NG(v1)
and dH(ui) = 3 for i = 1, 2. Then, from the structure of H, there exists a cycle C ′

such that |V (C ′)| 6 6 and {v1, v2, u1, u2} ⊂ V (C ′). By the choice of C, we may assume
that |V (C ′)| > 5. Note that then we have V (C ′) ∩M 6= ∅ (i.e., V (C ′) ∩ V3 6= ∅). If
|V (C ′)| = 5, then by replacing C by C ′, we get a contradiction to the choice of C because
V (C ′) ∩ V3 6= ∅. So we may assume that |V (C ′)| = 6. This means that there exist
two vertices x, y ∈ M such that x ∈ NG(v2) ∩ NG(u1), y ∈ NG(v2) ∩ NG(u2). By the
symmetry of the roles of v2 and v3, we see that there exist two vertices x′, y′ ∈ M such
that x′ ∈ NG(v3)∩NG(u1), y

′ ∈ NG(v3)∩NG(u2). Then we can easily find a cycle of length
4 in 〈V (H)−{v1, u1, u2}〉. This contradicts the minimality of |V (C)|. This completes the
proof of Subcase 1.2, and this completes the proof of Case 1.
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5 Proof of Case 2

Case 2: |V (C)| = 6 and |V (C) ∩ V3| > 3, or |V (C)| = 5 and V (C) ∩ V3 6= ∅.

Here, we further divide the proof into two cases:

Subcase 2.1: |V (C)| = 6 and |V (C) ∩ V3| > 3.

By the assumption that |V (C)∩ V3| > 3, we may assume that there exist two vertices
p, q ∈ V (C)∩V3 such that pq /∈ E(G). Put NG(p)∩V (H) = {p′}, NG(q)∩V (H) = {q′}. By
the minimality of |V (C)|, we see that NG(p)∩NG(q) = ∅, and hence p′ 6= q′. Let us observe
that α(H −{p′, q′}) 6 α(G)− 2 because {V (H −{p′, q′})∪ {p, q}} forms an independent
set. If α(H−{p′, q′}) 6 α(G)−3, then |V (H−{p′, q′})| = 2α(G)−1 = 2(α(G)−3)+5 >
2α(H − {p′, q′}) + 5. This implies that H − {p′, q′} contains two vertex-disjoint cycles,
and then G contains three vertex-disjoint cycles. So we have α(H − {p′, q′}) = α(G)− 2.
Put H∗ = H − {p′, q′}.

Let H∗∗ be a spanning subgraph of H∗ such that H∗∗ is an α-critical graph with
α(H∗) = α(H∗∗). Note that |V (H∗)| = |V (H∗∗)| and α(H∗∗) = α(G) − 2. Since
|V (H∗∗)| = 2α(H∗∗) + 3, by Remark B, H∗∗ consists of the set U of independent edges
(possibly, U = ∅) and an even subdivision of K5. Here, let us consider the structure H.
Let K be a subgraph of H such that K is a subdivision of K5. Since H is connected and
|E(x, V (C))| 6 1 for any x ∈ V (H), we see that 〈V (U)∪ {p′, q′}〉 contains a path P such
that |E(V (P ), V (K))| > 2. Then, by Remark A, there exist two vertex-disjoint cycles in
H, and hence G contains three vertex-disjoint cycles.

This completes the proof of Subcase 2.1.

Subcase 2.2: |V (C)| = 5 and V (C) ∩ V3 6= ∅.

Take p ∈ V (C) ∩ V3 and put NG(p) ∩ V (H) = {p′}. Since |V (H)| = 2α(G) + 2,
by Theorem 5, it is easy to check that α(H) = α(G) and α(H − p′) = α(G) − 1. (To
see this, repeat the similar argument in Subcase 2.1.) Similarly as in Subcase 2.1, put
H∗ = H − p′ and let H∗∗ be a spanning subgraph of H∗ such that H∗∗ is an α-critical
graph with α(H∗) = α(H∗∗). Note that |V (H∗)| = |V (H∗∗)| and α(H∗∗) = α(G) − 1.
Since |V (H∗∗)| = 2α(H∗∗) + 3, by Remark B, H∗∗ consists of the set U of independent
edges (possibly, U = ∅) and an even subdivision of K5. Here, consider the structure H.
Let K be a subgraph of H such that K is a subdivision of K5. Since H is connected and
|E(x, V (C))| 6 1 for any x ∈ V (H), we see that 〈V (U) ∪ {p′}〉 contains a path P such
that |E(V (P ), V (K))| > 2. Then, by Remark A, there exist two vertex-disjoint cycles in
H, and hence G contains three vertex-disjoint cycles.

This completes the proof of Subcase 2.1, and thus completes the proof of Case 2.
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6 Proof of Case 3

Case 3: |V (C)| = 4.

Throughout the proof of Case 3, set C = c1c2c3c4c1. Suppose that V (C) ∩ V3 6= ∅
and let p ∈ V (C) ∩ V3 and p′ ∈ NG(p) ∩ V (H). Since E(p, V (H − p′)) = ∅, it is easy to
see that α(H − p′) 6 α(G) − 1. Then, it follows that |V (H − p′)| = 2(α(G) − 1) + 4 >
2α(H − p′) + 4. Hence, by Theorem 5, H − p′ contains two vertex-disjoint cycles, and
hence G contains three vertex-disjoint cycles. Thus, in the following argument, we may
assume that V (C) ∩ V3 = ∅. Using this assumption, we prove the following claim.

Claim 10. δ(H) > 2.

Proof. Let v be a vertex in H such that |E(v, V (C))| > 2. If v ∈ V3, then we can find a
cycle C ′ such that |V (C ′)| 6 4 and |V (C ′) ∩ V3| > |V (C) ∩ V3| in 〈{v} ∪ V (C)〉, which
contradicts the choice of C. Thus dG(v) > 4 holds. This implies δ(H) > 2.

Let H∗ be a spanning subgraph of H such that H∗ is an α-critical graph with α(H) =
α(H∗). Note that |V (H)| = |V (H∗)| and α(H∗) = α(G). Since |V (H∗)| = 2α(H∗) + 3,
by Remark B, H∗ consists of the set U of independent edges (possibly, U = ∅) and an
even subdivision of K5. In view of Remark A and Claim 10, it is easy to see that U = ∅
(because, if U 6= ∅, there exists a path P in U such that P sends at least two edges to
the subdivided K5 in H and then Remark A can be applied to H) and H is isomorphic
to an even subdivision of K5.

Claim 11. Let P = p1p2p3p4 be a path of length 3 in H. Then V (P )−M 6= ∅.

Proof. Otherwise, we can find a cycle C ′ in 〈V (C) ∪ V (P )〉 such that |V (C ′)| = 3 or
|V (C ′)| = 4 and V (C ′) ∩ V3 6= ∅, which contradicts the choice of C.

In view of Claim 11, we see that H is obtained from K5 by subdividing each edge
with at most two vertices. Since α(G) > 6, this implies that H is obtained from K5 by
subdividing at least 5 edges and for each subdivision of an edge in H, two vertices of M
is contributed. Hence, in view of Remark C, it is easy to check that there is a path P =
p1p2 . . . p8 in H such that H−P contains a cycle and M∩V (P ) = {p1, p2, p4, p5, p7, p8}. By
the assumption that V (C)∩ V3 = ∅, note that there is no cycle of order 4 which contains
a vertex in {p1, p2, p4, p5, p7, p8} (because of the choice of C). So, by symmetry, we may
assume that p1c1, p2c3 ∈ E(G). Suppose that E({p4, p5}, {c1, c3}) 6= ∅. By the choice of C,
this forces p4c1, p5c3 ∈ E(G). However, since E({p7, p8}, {c2, c3, c4}) 6= ∅, we can find two
vertex-disjoint cycles in 〈V (P )∪V (C)〉. Hence we may assume that E({p4, p5}, {c1, c3}) =
∅. By symmetry, we may assume that p4c2, p5c4 ∈ E(G) (because p4 can not be adjacent
to c1 by the choice of C). By the same reason, we see that p7 can not be adjacent to c4.
This forces E({p7, p8}, V (C)) = {p7c2, p8c4} or E({p7, p8}, V (C)) = E({p7, p8}, {c1, c3}).
In any case, we can easily find two vertex-disjoint cycles in 〈V (P ) ∪ V (C)〉. Hence G
contains three vertex-disjoint cycles.

This completes the proof of Case 3, the Proposition and the Main Theorem.
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7 Concluding remarks

As noted before, r(F ,G) 6 r(F∗,G∗) holds for any subfamilies F∗ ⊂ F ,G∗ ⊂ G. Define
F∗(k) as follows:

F∗(k) = {C1 ∪ C2 ∪ . . . Ck| each Ci is a cycle }.

By definition, we have F∗(k) ⊂ F(k). In fact, the exactly same argument con-
cerning r(F(k), Kt) can be applied in determining r(F∗(k), Kt). So we can easily have
r(F∗(k), Kt) = r(F(k), Kt).
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