# Sequences containing no 3-term arithmetic progressions 

Janusz Dybizbański<br>Institute of Informatics<br>University of Gdańsk, Poland<br>jdybiz@inf.ug.edu.pl

Submitted: Feb 22, 2012; Accepted: Apr 12, 2012; Published: Apr 27, 2012
Mathematics Subject Classifications: 11B25


#### Abstract

A subsequence of the sequence $(1,2, \ldots, n)$ is called a 3 - $A P$-free sequence if it does not contain any three term arithmetic progression. By $r(n)$ we denote the length of the longest such $3-A P$-free sequence. The exact values of the function $r(n)$ were known, for $n \leqslant 27$ and $41 \leqslant n \leqslant 43$. In the present paper we determine, with a use of computer, the exact values, for all $n \leqslant 123$. The value $r(122)=32$ shows that the Szekeres' conjecture holds for $k=5$.


## 1 Introduction

Let $\langle n\rangle$ denote the sequence $(1,2, \ldots, n)$. A subsequence $\left(a_{1}, \ldots, a_{k}\right)$ of $\langle n\rangle$ is called a $3-A P$ free sequence if it does not contain any three elements $a_{p}, a_{q}, a_{r}$ such that $a_{q}-a_{p}=a_{r}-a_{q}$, or in other words if it does not contain any three term arithmetic progression. By $r(n)$ we denote the length of the longest $3-A P$-free sequences in $\langle n\rangle$. Sometimes (see [1]) the problem is equivalently presented in the set version. A subset $S \subset\{1,2, \ldots, n\}$ is called a 3 - $A P$-free if $a+c \neq 2 b$, for every distinct terms $a, b, c \in S$. The cardinality of the largest such subset $S$ is equal to $r(n)$.

The study of the function $r(n)$ was initiated by Erdős and Turán [2]. They determined the values $r(n)$, for $n \leqslant 23$ and $n=41$ (see Table 1), proved that $r(2 N) \leqslant N$, for $n \geqslant 8$, and conjectured that $\lim _{n \rightarrow \infty} r(n) / n=0$. This conjecture was proved in 1975 by Szemeredi [6]. Erdős and Turán also conjectured that $r(n)<n^{1-c}$, which was shown to be false by Salem and Spencer [4] who proved $r(n)>n^{1-c / \log \log n}$. The later result was improved by Behrend [1], who showed that $r(n)>n^{1-c / \sqrt{\log n}}$. The first non trivial upper bound was due by Roth [3] who proved $r(n)<\frac{c n}{\log \log n}$.

Recently Sharma [5] showed that Erdős and Turán gave the wrong value of $r(20)$ and determined the values of $r(n)$, for $n \leqslant 27$ and $41 \leqslant n \leqslant 43$ (see Tables 1 and 2). Erdős and Turán [2] noted that there is no three term arithmetic progression in the sequence of all numbers $n, 0 \leqslant n \leqslant \frac{1}{2}\left(3^{k}-1\right)$, which do not contain the digit 2 in the ternary scale.

Hence, if we add 1 to each of these numbers, we obtain the 3 - $A P$-free sequence of length $2^{k}$ in $\left\langle\frac{1}{2}\left(3^{k}+1\right)\right\rangle$. Thus, we have
Lemma 1. $r\left(\frac{1}{2}\left(3^{k}+1\right)\right) \geqslant 2^{k}$, for every $k \geqslant 1$.
The Szekeres' conjecture (see [2]) says that $r\left(\frac{1}{2}\left(3^{k}+1\right)\right)=2^{k}$. The values given in $[2,5]$ (see Tables 1 and 2) show that the conjecture is true for $k \leqslant 4$. The Szekeres' conjecture has several interesting implications described in [2,6]. In the sequel we shall need the following lemmas from $[2,5]$.

Lemma 2. If $\left(a_{1}, \ldots, a_{k}\right)$ is a 3-AP=free sequence in $\langle n\rangle$ and $j<a_{1}$, then also ( $a_{1}-$ $\left.j, \ldots, a_{k}-j\right)$ is a 3 -AP-free sequence in $\langle n\rangle$.
Lemma 3. $r(n+m) \leqslant r(n)+r(m)$.
Lemma 4. $r(n) \leqslant r(n+1) \leqslant r(n)+1$.
If $r(n-1)<r(n)$ then we call $n$ a jump node. Whenever $r(n-2)<r(n-1)<r(n)$ we call $n$ a double jump.
Lemma 5. Three consecutive numbers cannot be jump nodes.
In this paper we determine, using computer, exact values of $r(n)$, for all $n \leqslant 123$. The value $r(122)=32$ shows that the Szekeres' conjecture holds for $k=5$. We also determined, for each jump node $n \leqslant 123, b(n)$ - the number of the longest 3 - $A P$-free sequences in $\langle n\rangle$, and an example of the longest 3 - $A P$-free sequence (see Tables 2 and 3 ).

## 2 Algorithm

In order to determine values of the function $r(n)$ we have designed a simple decision algorithm. This algorithm answers the question whether there is a $3-A P$-free sequence of length $k$ in $\langle n\rangle$. The algorithm uses the values $r(m)$, for $m<n$.

```
Algorithm 6. INPUT : \(2 \leqslant k \leqslant n\) - natural numbers
OUTPUT : YES if there exists \(3-A P\)-free sequence of length \(k\) in \(\langle n\rangle\); NO otherwise.
\(1: a_{1}:=1 ; a_{2}:=2 ; 1:=2\);
2 : APseq := \(\left(a_{1}, a_{2}\right)\)
3 : repeat
4 : if APseq contains no 3-term arithmetic progression then
\(5: \quad\) APseq \(:=\left(a_{1}, a_{2}, \ldots, a_{l}, a_{l}+1\right)\)
\(6: \quad l:=1+1\)
7 : else
8 : \(\quad\) while \((\mathrm{l}>1)\) and \(\left(\mathrm{r}\left(\mathrm{n}-a_{l}\right)<\mathrm{k}-\mathrm{l}+1\right)\)
\(9: \quad\) l := l - 1;
10: APseq := \(\left(a_{1}, a_{2}, \ldots, a_{l-1}, a_{l}+1\right)\)
11: until ( \(a_{1} \neq 1\) ) or \(3-A P\)-free sequence of length k is found
12: if \(3-A P\)-free sequence of length k is found, then return YES
13: if \(\left(a_{1} \neq 1\right)\), then return NO
```

The algorithm looks for a $3-A P$-free sequence of length $k$ in $\langle n\rangle$. It starts (lines 1-2) with the sequence $(1,2)$ of length $l=2$. At the beginning of each round of the "repeat until" loop (lines 3-11) the algorithm considers the sequence APseq $=\left(a_{1}, \ldots, a_{l-1}, a_{l}\right)$ of length $l \geqslant 2$. First, it checks if the sequence contains a 3 -term arithmetic progression. If not, then it adds the element $a_{l}+1$ at the end of the sequence (lines $5-6$ ). If APseq contains an arithmetic progression, then it looks for the next sequence to consider (lines $8-10)$. The first candidate is the sequence $\left(a_{1}, \ldots, a_{l-1}, a_{l}+1\right)$, but if $r\left(n-a_{l}\right)<k-l+1$, it is not possible to find remaining $k-l+1$ elements in the sequence $\left(a_{l}+1, \ldots, n\right)$ without arithmetic progression. In this case the algorithm sets $l:=l-1$ and checks if the sequence $\left(a_{1}, \ldots, a_{l-1}+1\right)$ will be good, and so on. The algorithm exits the main loop if it finds a $3-A P$-free sequence of the length $k$, or if $a_{1}>1$. In the later case it returns the answer NO, because, by Lemma 2, it suffices to consider sequences which start with 1 .

## 3 Results

We have used Algorithm 6 to determine the values of the function $r(n)$, for all $n \leqslant 120$. Observe that if we know the value $r(n)$, then we can obtain $r(n+1)$ after one application of the algorithm with the input $n+1$ and $k=r(n)+1$. All computations took about 30h on personal computer. We have got the value $r(120)=30$. By Lemma $1, r(122) \geqslant 32$, thus by Lemma $4, r(121)=31$ and $r(122)=32$. Finally, by Lemma $5, r(123)=32$.

Tables 1,2 and 3 present: the value of $r(n)$, the value of $b(n)$ - the number of the longest 3 - $A P$-free sequences, and an example of the longest $3-A P$-free sequence in $\langle n\rangle$, for each jump node $n \leqslant 123$. Table 1 contains the results obtained by Erdős and Turán [2] and by Sharma [5]. The values for $n<20$ were given by Erdős and Turán. They also gave

| $n$ | $r(n)$ | $b(n)$ | example of the longest 3-AP-free sequence |
| ---: | ---: | ---: | :--- |
| 1 | 1 | 1 | 1 |
| 2 | 2 | 1 | 12 |
| 4 | 3 | 2 | 124 |
| 5 | 4 | 1 | 1245 |
| 9 | 5 | 4 | 12489 |
| 11 | 6 | 7 | 12451011 |
| 13 | 7 | 6 | 1245101113 |
| 14 | 8 | 1 | 124510111314 |
| 20 | 9 | 2 | 1267914151820 |
| 24 | 10 | 2 | 1257111618192324 |
| 26 | 11 | 2 | 125711161819232426 |

Table 1: Values of $r(n), b(n)$, and examples of the longest 3-AP-free sequences, for jump nodes $n \leqslant 26$, obtained in $[2,5]$. $\mathrm{b}(\mathrm{n})$ denotes the number of the longest 3-AP-free sequences in $\langle n\rangle$
the wrong value $r(20)=8$ and based on this value proved $r(41)=16$. Sharma gave the correct value of $r(20)=9$ and a new proof of $r(41)=16$. Our calculations confirm the values given by Erdos and Turan, for $n<20$, and those given by Sharma, for $20 \leqslant n \leqslant 27$ and $41 \leqslant n \leqslant 43$ (including the correction of the value $r(20)=9$ ). Tables 2 and 3 contain the results for $n \geqslant 30$. As we have mentioned above, the value $\mathrm{r}(41)=16$ was given in [2,5], the others are new.

| $n$ | $r(n)$ | $b(n)$ | example of the longest 3- $A P$-free sequence |
| ---: | ---: | ---: | :--- |
| 30 | 12 | 1 | 1348911202223272830 |
| 32 | 13 | 2 | 124891119222326283132 |
| 36 | 14 | 2 | 12489132123262730323536 |
| 40 | 15 | 20 | 12451011131428293132373840 |
| 41 | 16 | 1 | 1245101113142829313237384041 |
| 51 | 17 | 14 | 124510131417313537384046475051 |
| 54 | 18 | 2 | 12561214151721313839424349515254 |
| 58 | 19 | 2 | 1256121415172131383942434951525458 |
| 63 | 20 | 2 | 125711161819242638394244485355566163 |
| 71 | 21 | 4 | 12571017202226314146484953546364686971 |
| 74 | 22 | 1 | 1279101420222325294650525355616566687374 |
| 82 | 23 | 10 | 12489111922232628314957596263666871788182 |

Table 2: Values of $r(n), b(n)$, and examples of the longest 3 - $A P$-free sequences, for jump nodes $27 \leqslant n \leqslant 82$. The value $r(41)=16$ was given in $[2,5]$.

## 4 Discussion and open problems

Sharma [5] asks if every $T_{k}=\frac{1}{2}\left(3^{k}+1\right)$ is a jump node. Our calculations and previous results show that, for $k \leqslant 5$, every $T_{k}$ is a double jump and there is only one longest 3 - $A P$-free sequence in $\left\langle T_{k}\right\rangle$, just the one described before Lemma 1 . We wonder if this is true for other $k$ ?

Using the values from Table 2 and 3 and a simple induction argument similar to the one described in [2] we can prove that $r(3 n) \leqslant n$, for every $n \geqslant 16$. Indeed, we know that $r(3 n) \leqslant n$, for every $16 \leqslant n \leqslant 31$, and $r(48)=16$. For $n \geqslant 32$, we have $r(3 n)=r(3(n-16)+48) \leqslant r(3(n-16))+r(48) \leqslant n-16+16=n$.

| $n$ | $r(n)$ | $b(n)$ | example of the longest 3 - $A P$-free sequence |
| :---: | :---: | :---: | :---: |
| 84 | 24 | 1 | 13489161821222530374855606364676976 77818284 |
| 92 | 25 | 14 | 12689131921222728395862646768717381 8386879092 |
| 95 | 26 | 8 | 124510112223252631325556646567687677 828391929495 |
| 100 | 27 | 2 | $\begin{aligned} & 136710122022252629313562666871727577 \\ & 858790919496100 \end{aligned}$ |
| 104 | 28 | 1 | 1571011141624262930333539667072757679 818991949598100104 |
| 111 | 29 | 6 | $\begin{aligned} & 125613151926273031384244666872778081 \\ & 8489939599104107108111 \end{aligned}$ |
| 114 | 30 | 1 | 124912131819283031334045466970758284 85879697102103106111113114 |
| 121 | 31 | 70 | 124510111314282931323738404182838586 91929495109110112113118119121 |
| 122 | 32 | 1 | 124510111314282931323738404182838586 91929495109110112113118119121122 |

Table 3: Values of $r(n), b(n)$, and examples of the longest 3 - $A P$-free sequences, for jump nodes $83 \leqslant n \leqslant 123$

## References

[1] Behrend F.A. On Sets of Integers Which Contain No Three Terms in Arithmetic Progression. Proc. Nat. Acad. Sci. USA, 32:331-332, 1946.
[2] Erdős P., Turán P. On some sequences of integer. J. London Math. Soc., 11:261-264, 1936.
[3] Roth K. F. On certain set of integers. J. London Math. Soc., 28:104-109, 1953.
[4] Salem R., Spencer D. C. On Sets of Integers Which Contain No Three Terms in Arithmetic Progression. Proc. Nat. Acad. Sci. USA, 28:561-563, 1942.
[5] Sharma A. Sequences of Integers Avoiding 3-term Arithmetic Progressions. Elec. J. of Comb., 19:\#P27, 2012.
[6] Szemeredi E. On sets of integers containing no $k$ elements in arithmetic progression. Acta Arithmetica, 27:199-245, 1975.

