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Mercè Mora† Carlos Seara
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Abstract

A graph is said to be d-distinguishable if there exists a d-labeling of its vertices
which is only preserved by the identity map. The distinguishing number of a graph
G is the smallest number d for which G is d-distinguishable. We show that the
distinguishing number of trees and forests can be computed in linear time, improving
the previously known O(n logn) time algorithm.

1 Introduction

Let G be a connected graph with n vertices1. A d-labeling of G is a total function
φ : V (G) −→ {1, 2, . . . , d}. We say that φ distinguishes G if G has no label-preserving
automorphism different from the identity map. In this case, we say that φ is a distin-

guishing d-labeling of G. Such a labeling is said to break or destroy the symmetries of
G. The distinguishing number of G, D(G), is the minimum number d of labels needed so
that G has a distinguishing d-labeling. A graph G having a distinguishing d-labeling is
said to be d-distinguishable.

Distinguishing numbers were first introduced by Albertson and Collins [2]. The pa-
rameter can be thought of as a measure of the symmetry of a graph, i.e., if G and G′
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1Graphs in this paper are finite, undirected and simple. The vertex-set and the edge-set of a graph G

are denoted by V (G) and E(G), respectively. The order of G is the number of its vertices, denoted by
|V (G)|. For more terminology we follow [19].
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have the same number of vertices but D(G) > D(G′), then G is more symmetric than G′

because more colors are needed to destroy its automorphisms than those of G′.
It is not known if the problem of computing D(G) is polynomially-time solvable or

NP-hard. Russell and Sundaram [17] showed that determining if D(G) > d belongs to the
class AM, i.e., the set of languages for which there are Arthur-Merlin games. However,
when G is restricted to certain graph families such as cycles, hypercubes, acyclic graphs,
and planar graphs, the problem can be solved efficiently [2, 4, 5, 6, 7, 10]. See [1, 5, 8, 9,
11, 14, 15, 16, 18] for other works on distinguishing number problems.

For the computation of the distinguishing number of trees and forests with n vertices,
Cheng [10] and Arvind and Devanur [4] presented an O(n log n) time algorithm which
uses a binary search to compute the distinguishing number of a tree. Improving this time
complexity was our main motivation for the design of an optimal linear-time algorithm
for computing the distinguishing number of trees and forests, and this is the main result
of our paper.

In Section 2 we will focus on the design of a linear time algorithm for rooted trees which
is based on properties proved by Cheng [10] and follow her notation whenever possible.
As a consequence of our result, we show in Section 3 that there are linear-time algorithms
for computing the distinguishing numbers of trees and forests. Finally, in Section 4 we
conjecture logarithmic factor improvements for other graph classes.

2 Distinguishing Rooted Trees

2.1 Preliminaries

We start with some notation. By Aut(G) we denote the automorphism group of a graph
G. As usual, two graphs G and H are isomorphic, denoted by G ∼= H, if there is a
permutation π : V (G)→ V (H) which preserves adjacencies, that is, {u, v} ∈ E(G) if and
only if {π(u), π(v)} ∈ E(H) for any u, v ∈ V (G).

Given a graphG and a labeling φ ofG, we represent the corresponding labeled graph by
(G, φ). In this case, Aut(G, φ) consists of all the automorphisms of Aut(G) which preserve
the labeling φ, that is, π ∈ Aut(G, φ) if and only if φ ∈ Aut(G) and φ(v) = φ(π(v)).
We also consider the extension of isomorphism to labeled graphs. Given two labeled
graphs (G, φ) and (H,ϕ), we say that they are isomorphic if there is a permutation
π : V (G)→ V (H) which preserves adjacencies as defined above, but also preserves labels,
that is, φ(v) = ϕ(π(v)) for each v ∈ V (G). In this case, we write (G, φ) ∼= (H,ϕ). Two
distinguishing d-labelings φ and ϕ of a graph G are said to be equivalent if (G, φ) ∼= (G,ϕ).

Given a rooted tree T , we denote its root by r(T ). We also denote by Tu the subtree
of T rooted at vertex u of T , and we call components of T to all the subtrees Tu of T
where u is a child of r(T ). Any isomorphism between two rooted trees T1 and T2 must
map r(T1) into r(T2). In the same way, any automorphism of a rooted tree must map the
root into itself.

As we will see, the distinguishing number of a rooted tree can be computed using a
recursive formula. Call D(T, d) to the number of inequivalent distinguishing d-labelings
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of a rooted tree T . For instance, if T is a rooted tree consisting of a single path of k
vertices, then D(T, d) = dk, but if T is a full binary tree of (any) depth k, then D(T, 2)
is just 2 since we can assign two possible labels to the root while the rest of the tree has
a unique distinguishing 2-labeling up to isomorphism. Clearly, for any graph G,

D(G) = min{d | D(G, d) > 0},

and, therefore, computing D(T, d) for any d is all that is needed to compute D(T ) for a
rooted tree T . We also observe the following relation between D(T ) and D(T, d).

Proposition 1. For any rooted tree T and for any d > D(T ), it holds D(T, d) > d.

Proof. For any d > D(T ), the rooted tree T is clearly d-distinguishable, so suppose φ is
some d-distinguishing labeling of T . Changing the label assigned by φ to the root gives d
inequivalent labelings of T , that is,

φi(u) =

{

i, if u = r(T )
φ(u), if u 6= r(T ).

for every i ∈ {1, . . . , d}. To see that the labelings are inequivalent, suppose on the contrary
that two such labelings, say φi and φj (where 1 6 i < j 6 d), are equivalent. Then, there
would be a mapping π between the labeled copies (T, φi) and (T, φj) such that φi(r(T )) =
φj(π(r(T ))) = φj(r(T )), where the last equality holds because any isomorphism between
labeled copies of a rooted tree must map the root to itself. But then, by definition of φi

and φj, we get i = j, contradicting our assumption that i < j.
The existence of the inequivalent d-labelings φ1, . . . , φd for T implies that D(T, d) > d.

Now, we consider the recursive formula developed in [4] and [10] which counts the
number of inequivalent distinguishing d-labelings of a rooted tree, and how to derive the
distinguishing number from it in two ways.

Proposition 2. ([10], Th. 3.2, Cor. 3.3, Th. 4.2) Let T be a rooted tree and T be the

set of the components of T . Suppose that T has exactly g distinct isomorphism classes

of trees where the ith isomorphism class consists of mi copies of the rooted tree Tui
; i.e.,

T = m1Tu1
∪m2Tu2

∪ · · · ∪mgTug
. Then,

1. D(T, d) = d
∏g

i=1

(

D(Tui
,d)

mi

)

.

2. D(T ) = min{d | ∀i ∈ {1, . . . , g} D(Tui
, d) > mi}.

3. D(T ) = max{min{d | D(Tui
, d) > mi} | 1 6 i 6 g}.

By Proposition 2(1), in order to computeD(T ) for a rooted tree T , it is enough to know
a list of values {(m1, u1), . . . , (mg, ug)}, where the degree of r(T ) equals

∑g

i=1 mi and for
each pair (mi, ui), ui is a child of r(T ) andmi is the multiplicity of the isomorphic copies of
Tui

which appear as components of T . We take advantage of the fact that Cheng [10] shows
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a method to compute exactly this information. We will assume that a new procedure called
Compute-list, given a rooted tree T , returns the list {(m1, u1), . . . , (mg, ug)} defined
above (in [10], this can be accomplished by calling procedure FIND-ISOMORPH, then
ESSENTIAL and, finally, taking the first output). Cheng [10] shows that this can be
done in linear time.

2.2 Linear Time Algorithm

We will describe the procedures used in our main algorithm. In the first place, procedure
Colorings(T, d), given a rooted tree T and a constant d, computes D(T, d) in linear
time. We will not detail the algorithm here since it is already described by Cheng [10]
and by Arvind and Devanur [4]. This procedure is called EVALUATE in [10] and Inequiv

in [4].
Note that, according to Proposition 2(2), given a rooted tree T of order n, D(T )

can already be computed by making calls to Colorings(T, d) for different values of d,
1 6 d 6 n− 1. Since each call takes linear time, using binary search in d, it is possible to
find D(T ) in time O(n log n), as it is argued in [4] and [10]. This is precisely the common
method in [4, 10] which works in time O(n log n). In order to lower it to an overall linear
time, we need to carefully call this procedure for the subtrees of T only when it is needed.
To do so, we need the information contained in the list {(m1, u1), . . . , (mg, ug)}, which
will be obtained in linear time by calling to a procedure Compute-list, as stated at the
end of Subsection 2.1. Our algorithm is the following (see Figure 1 for an example).

Distinguishing(T )
Input: A rooted tree T with n vertices
Output: D(T )

1: if |V (T )| = 1 then

2: return 1
3: else

4: col← 0
5: {(u1,m1), . . . , (ug,mg)} ← Compute-list(T )
6: for i = 1 to g do

7: d← Distinguishing(Tui
)

8: if d < mi then

9: while Colorings(Tui
, d) < mi do

10: d← d+ 1
11: end while

12: end if

13: col ← max{col, d}
14: end for

15: return col

16: end if
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Figure 1: Each vertex is labeled with the distinguishing number of the rooted subtree it
defines.

Theorem 3. (Correctness) Given a rooted tree T as input, procedure Distinguishing
returns D(T ).

Proof. We show it by induction on the order of T . If the rooted tree T has only one vertex,
Distinguishing returns 1 at line 2, which is correct. Suppose now that the order of T is
n > 1. For each i, procedure Distinguishing makes a recursive call on the subtree Tui

in line 7. By induction hypothesis, we can assume that the result is d = D(Tui
). Now we

can distinguish two cases:

1. If d > mi, then by Proposition 1, D(Tui
, d) > d > mi.

2. If d < mi, then after the while loop in lines 9–11, d is the smallest value satisfying
D(Tui

, d) > mi.

In any case, the value of d at line 13 for a given i is the smallest value such thatD(Tui
, d) >

mi. Since the value col returned by Distinguishing is the maximum of such values for
1 6 i 6 g, it must equal D(T ) by Proposition 2(3).

Theorem 4. (Complexity) Procedure Distinguishing works in O(n) time.

Proof. Let T be the rooted tree of order n given as input and let Tu1
, . . . , Tug

be its
different components up to isomorphism, with orders n1, . . . , ng, respectively (In [3] the
authors provided a linear time isomorphism test for trees). Note that since mi is the
number of isomorphic copies for Tui

, it holds that

n = 1 +

g
∑

i=1

mi · ni. (1)

Since line 5 takes linear time, let a stand for a constant such that an bounds the time
required by procedure Distinguishing to execute lines 1–5 and return col at line 15.
Additionally, the for loop between lines 6–14 does some work in constant time, say b,
plus a maximum of mi calls to Colorings(Tui

, d). The reason why Colorings is called
at most mi times for a given i is that the while loop in lines 9–11 is never executed for
d = mi since, by Proposition 1, D(Tui

,mi) > mi and the condition of the loop would not
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hold. Now, since Colorings works in linear time, we can bound the overall work done
between lines 9 and 11 by cni for a constant c. Now, if we denote the running time of
Distinguishing by R(n), we have

R(n) 6 an+

g
∑

i=1

(b+ c(mi − 1)ni +R(ni)). (2)

Let e be a constant such that e > a + b + c. We will show by induction that the
running time of Distinguishing(T ) is bounded by an + e(n − 1). For n = 1, we have
R(n) 6 a = an + e(n − 1). In the general case n > 1, we unfold the summation in
Equation (2) and get:

R(n) 6 an+ bg + c

g
∑

i=1

((mi − 1)ni) +

g
∑

i=1

(ani + e(ni − 1)),

where the last term comes from the induction hypothesis. Now,

R(n) 6 an+ bg + (e− a)

g
∑

i=1

((mi − 1)ni) + a

g
∑

i=1

ni − eg + e

g
∑

i=1

ni

6 an+ bg +−a

g
∑

i=1

((mi − 1)ni) + a

g
∑

i=1

ni − eg + e(n− 1)

6 an− a

g
∑

i=1

(mi − 1)ni + a

g
∑

i=1

ni + e(n− 1)

6 an− a(n− 1) + a

g
∑

i=1

ni + e(n− 1)

= a(1 +

g
∑

i=1

ni) + e(n− 1) 6 an+ e(n− 1),

where both Equation (1) and the fact that e > a + b + c have been used. Therefore, we
conclude that R(n) is O(n).

3 Distinguishing Trees and Forests

There is an easy way to transform the problem of computing D(T ) for a general tree T

into the one of computing D(T ′) for a rooted tree T ′. This can be done using the concept
of tree center, as is done in [4] and [10]. A center of a tree T is a vertex v such that the
maximal distance of v to the other vertices is minimized. It is well known that every tree
has either one center or two adjacent centers. In the first case, the tree can already be
considered a rooted tree with root at its center, while in the second case, a new vertex can
be inserted between the centers and then used as its root. As mentioned in [4] and [10],
this transformation can be done in linear time.
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Proposition 5. Given a tree T , it is possible to compute a rooted tree T ′ in linear time

such that D(T ) = D(T ′).

As a direct consequence of Proposition 5 and Theorems 3 and 4, we conclude the
following.

Corollary 6. The distinguishing number of a tree with n vertices can be computed in

O(n) time.

In the case of forests, we use the transformation from Cheng’s paper [10], which is
as follows. Suppose that F is a forest and define the following trees T1 and T2. In the
first place, create two vertices v1, and v2 which will act as the respective roots of T1 and
T2, respectively. In the second place, transform each connected component of F into
a rooted tree as indicated before Proposition 5. Since this can be done in two ways,
depending on whether the original tree is unicentral or bicentral, call F1 (F2) to the set
of rooted trees obtained from the unicentral (bicentral) trees in F in the way indicated
before Proposition 5. Finally, join vj to the roots of all trees in Fj, for 1 6 j 6 2. We can
now state the following regarding the above construction.

Proposition 7. Given a forest F , it is possible to compute two rooted trees T1 and T2 in

linear time such that D(F ) = max{D(T1), D(T2)}.

Proof. It is well known that the centers of a tree can be computed in linear time. So,
given a forest F with n vertices, the above transformation into trees T1 and T2 can be
done in time O(n). Moreover, since no automorphism of F can map a unicentral tree into
a bicentral tree or viceversa, nontrivial automorphisms of F induce separate nontrivial
automorphisms in T1 and T2. Suppose that d = max{D(T1), D(T2)}. Then, d labels are
enough to break symmetries in both T1 and T2, that is, there must be two d-labelings
φ1, φ2 such that both Aut(T1, φ1) and Aut(T2, φ2) are trivial. Then, one can define a
distinguishing d-labeling φ of F : Given a vertex u of F , if u ∈ T1, set φ(u) = ϕ1(u) and,
otherwise, set φ(u) = ϕ2(u). In case Aut(F, φ) was nontrivial, then one of Aut(T1, ϕ1)
or Aut(T2, ϕ2) would be nontrivial. Thus, Aut(F, φ) must be trivial, and D(F ) 6 d.
But we can discard the case when D(F ) = d′ < d since it would make it possible to
use the distinguishing d′-labeling of F to define a distinguishing d′-labeling of T1 and T2,
contradicting the definition of d as the maximum between D(T1) and D(T2). Therefore,
D(F ) = max{D(T1), D(T2)}.

Now, it is clear that our algorithm Distinguishing from Section 2 can be used twice
in combination with Proposition 7 to yield the following result.

Corollary 8. The distinguishing number of a forest with n vertices can be computed in

O(n) time.
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4 Conclusions and applications

We have shown that the distinguishing number of trees and forests can be computed
in linear time, improving the previously known O(n log n) time algorithm. We believe

that our algorithmic technique in Section 2 can be applied to improve by a logarithmic
factor (caused by a binary search in the last step of the algorithms) the complexities of
computing distinguishing numbers and distinguishing chromatic numbers of the following
graph classes: (1) the distinguishing number of (i) planar graphs computed by Arvind et
al. [4, 5] and (ii) interval graphs computed by Cheng [11]; (2) the distinguishing chromatic

number (due to Collins and Trenk [12], see also [13]) of: (i) trees computed by Cheng [11]
and (ii) interval graphs computed by Cheng [11].
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[15] W. Imrich, J. Jerebicb, and S. Klavžar. The distinguishing number of cartesian
products of complete graphs. European J. Combin., Vol. 29, Issue 4, pp. 922–929,
2008.
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