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Abstract

This paper deals with the enumeration of Grand-Dyck paths according to the

statistic “number of occurrences of τ” for every string τ of length 3, taking into

account the number of flaws of the path. Consequently, some new refinements of

the Chung-Feller theorem are obtained.

1 Introduction

Throughout this paper, a path is considered to be a lattice path on the integer plane,
consisting of steps u = (1, 1) (called rises) and d = (1,−1) (called falls). Since the
sequence of steps of a path is encoded by a word in {u, d}∗, we will make no distinction
between these two notions. The length of a path is the number of its steps.

A Grand-Dyck path is a path that starts and ends at the same height. It is convenient
to consider that the starting point of a Grand-Dyck path is the origin of a pair of axes.
Obviously, every Grand-Dyck path ends at a point (0, 2n) where n is referred to as the
semilength of the path.

The set of Grand-Dyck paths of semilength n is denoted by Gn, and we set G =
∞
⋃

n=0

Gn,

where G0 = {ε} and ε is the empty path.
Every rise of a path α which lies below (resp. above) the x-axis is called a flaw (resp.

a non-flaw) of α. The number of flaws of α is denoted by p(α).
The set of Grand-Dyck paths of semilength n having m flaws is denoted Gn,m. In

particular, we set Dn = Gn,0 (resp. D̄n = Gn,n) the set of Dyck paths (resp. inverted Dyck

paths). It is well known that the set Dn is counted by the Catalan number Cn = 1
n+1

(

2n
n

)

(see A000108 in [22]). Furthermore, the classical Chung-Feller theorem [5,12] states that
|Gn,m| = Cn, for all m ∈ [0, n].
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Every α ∈ G \ D̄ can be uniquely decomposed in the form a = βuγdδ where β ∈ D̄,
γ ∈ D and δ ∈ G (see Figure 1 i); this decomposition will be referred to as the first non-

flaw decomposition and will be used in the sequel extensively. Similarly, the decomposition
α = δdβuγ of G \ D will be referred to as the last flaw decomposition (see Figure 1 ii).

A path τ ∈ {u, d}∗, called in this context string, occurs in a path α if α = βτγ, for
some β, γ ∈ {u, d}∗. The number of occurrences of the string τ in α, is denoted by |α|τ .
Given a string τ , the symmetric string of τ with respect to a horizontal (resp. vertical)
axis is denoted by τ̄ (resp. τ ′).

A wide range of articles dealing with the occurrence of strings in Dyck paths appear
frequently in the literature [1–4,6–10,13–21,23]. For the occurrences of strings in Grand-
Dyck paths it is interesting to take also into account the number of flaws of the paths. In
this direction Ma and Yeh [11] have studied the statistic “number of occurrences of τ” in
Grand-Dyck paths for all strings τ of length 2. In this work, the same subject is studied
for all strings τ of length 3 obtaining some new Chung-Feller type results.

For this we use the generating function

Fτ (x, y, z) =
∑

α∈G

x|α|τyp(α)z|α|u .

Clearly, using the two classical bijections of G according to which every a ∈ G is
mapped to ᾱ and α′, we obtain that

[xkymzn]Fτ = [xkyn−mzn]Fτ̄ = [xkymzn]Fτ ′ , where m 6 n.

Thus, among the eight strings of length 3 it is enough to restrict ourselves to the following
three: uuu, udu, duu.

In [11], it has been proved, both analytically and bijectively, that the number of Grand-
Dyck paths with semilength n, having m flaws and k occurrences of the string τ = u2,
is independent of m, thus satisfying the Chung-Feller property. In fact, the following
generalization holds.

Proposition 1.1. The number of Grand-Dyck paths with semilength n, having m flaws

and ki occurrences of the string ui, for every i > 2, is independent of m.

Although the previous proposition can be proved analytically, it is easier to be justified
by using the simple mapping φ : G \ D̄ → G \ D with φ(βuγdδ) = δdβuγ, where β ∈ D̄,
γ ∈ D, and δ ∈ G, which is a length-preserving bijection that increases the number of
flaws by one and preserves the number of occurrences of the strings ui; (see Figure 1).

In particular, the number of Grand-Dyck paths with semilength n, having m flaws
and k occurrences of the string u3 is counted by the sequence A092107 in [22] and it is
given by the complex formula [19]

1

n+ 1

k
∑

j=0

(−1)k−j

(

n+ j

n

)(

n+ 1

k − j

) [(n+j)/2]
∑

i=j

(

n+ j + 1− k

i+ 1

)(

n− i

i− j

)

.

In the following two sections we will study the strings udu and duu.
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δ

β

γ

i The first non-flaw
decomposition of G \ D̄

ii The last flaw
decomposition of G \ D

Figure 1: The bijection φ

2 The string τ = udu

Let F (x, y, z) =
∑

a∈G

x|a|uduyp(a)z|a|u =
∑

m>0

fm(x, z)y
m, where fm(x, z) is the generating

function of the set of Grand-Dyck paths with m flaws, with respect to the number of
occurrences of τ = udu and to the semilength.

The Dyck path statistic “number of occurrences of udu” has been studied indepen-
dently by Sun [23] and Merlini, Sprungoli and Verri [17] where it is stated that the
corresponding generating function f0 satisfies the equation

zf 2
0 (x, z) = (1− (x− 1)z)(f0(x, z)− 1) (2.1)

and has coefficients

[xkzn]f0 =

{

1, k = n = 0
(

n−1
k

)

Mn−k−1, k ∈ [0, n− 1],
(2.2)

where Mn is the n-th Motzkin number (see A001006 in [22]).

Theorem 2.1.

fm(x, z) = (1− (x− 1)z)
∑

n>m

n−1
∑

k=0

(

n− 1

k

)

Mn−k−1x
kzn, m > 1.

Proof. We will first show that

F (x, y, z) =
(1− (x− 1)z)f0(x, yz)

1− (x− 1)z − zf0(x, yz)f0(x, z)
. (2.3)

For every α ∈ G \ D̄ with a = βuγdδ, β ∈ D̄, γ ∈ D, δ ∈ G we have that

|α|τ = |β|τ + |γ|τ + |δ|τ + [γ = ε][δ ∈ A]

where A = {a ∈ G : a starts with u}, and [P ] is the Iverson notation: [P ] = 1 if P is true
and [P ] = 0 if P is false.
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From the previous equality, using the first non-flaw decomposition of G \ D̄, it follows
that

F (x, y, z)

=
∑

β∈D̄

x|β|τyp(β)z|β|u+z
∑

β∈D̄

x|β|τyp(β)z|β|u
∑

γ∈D
δ∈G

x|γ|τ+|δ|τ+[γ=ε][δ∈A]yp(δ)z|γ|u+|δ|u

=
∑

β∈D

x|β|τ̄ (yz)|β|u+z
∑

β∈D

x|β|τ̄ (yz)|β|u









∑

γ∈D\{ε}
δ∈G

x|γ|τ+|δ|τyp(δ)z|γ|u+|δ|u+
∑

δ∈G

x|δ|τ+[δ∈A]yp(δ)z|δ|u









= f0(x, yz)

(

1 + z (f0(x, z)− 1)F (x, y, z) + z
(

F (x, y, z) + (x− 1)A(x, y, z)
)

)

,

where A(x, y, z) is the generating function of the set A.
It follows that

F (x, z, y) = f0(x, yz)
(

1 + zf0(x, z)F (x, y, z) + z(x− 1)A(x, y, z)
)

. (2.4)

Every a ∈ A can be written uniquely in the form a = uγdδ, where γ ∈ D, δ ∈ G, so
that |a|τ = |γ|τ + |δ|τ + [γ = ε][δ ∈ A], giving

A(x, y, z) = z((f0(x, z)− 1)F (x, y, z) + F (x, y, z) + (x− 1)A(x, y, z)).

Hence,

A(x, y, z) =
zf0(x, z)F (x, y, z)

1− (x− 1)z
.

By substituting the previous expression of A(x, y, z) in relation (2.4), we obtain the
required relation (2.3).

From relation (2.3), using relation (2.1), we have that

F (x, y, z)− f0(x, z)

=
(1− (x− 1)z)(f0(x, yz)− f0(x, z) + f0(x, yz)(f0(x, z)− 1))

1− (x− 1)z − zf0(x, yz)f0(x, z)

= y(1−(x−1)z)f0(x,z)(f0(x,yz)−1)(f0(x,z)−f0(x,yz))
y(1−(x−1)z)(f0(x,z)−f0(x,yz))−y(1−(x−1)z)(f0(x,z)−1)f0(x,yz)+(1−(x−1)yz)(f0(x,yz)−1)f0(x,z)

=
y(1− (x− 1)z)f0(x, z)(f0(x, yz)− 1)(f0(x, z)− f0(x, yz))

(1− y)f0(x, z)(f0(x, yz)− 1)
.

Thus, we have that

F (x, y, z) = f0(x, z) + (1− (x− 1)z)(f0(x, z)− f0(x, yz))
y

1− y
. (2.5)

From relation (2.2), we have that

[ym](f0(x, z)− f0(x, yz)) =







f0(x, z)− 1, m = 0

−
m−1
∑

k=0

(

m−1
k

)

Mm−k−1x
kzm, m > 1.
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Hence, from relation (2.5), we obtain that, for m > 1,

fm(x, z) = (1− (x− 1)z)[ym−1]
f0(x, z)− f0(x, yz)

1− y

= (1− (x− 1)z)(f0(x, z)− 1−
m−1
∑

n=1

n−1
∑

k=0

(

n− 1

k

)

Mn−k−1x
kzn)

= (1− (x− 1)z)
∑

n>m

n−1
∑

k=0

(

n− 1

k

)

Mn−k−1x
kzn.

Corollary 2.2. The number of Grand-Dyck paths with semilength n, having m flaws and

k occurrences of the string udu is equal to

[xkzn]fm =

{

(

n−1
k

)

Mn−k−1, m = 0, n
(

n−2
k

)

(Mn−k−1 +Mn−k−2), m ∈ [1, n− 1].

Proof. By Theorem 2.1, for m ∈ [1, n− 1], we have that

[xkzn]fm =

(

n− 1

k

)

Mn−k−1 −
(

n− 2

k − 1

)

Mn−k−1 +

(

n− 2

k

)

Mn−k−2

=

(

n− 2

k

)

Mn−k−1 +

(

n− 2

k

)

Mn−k−2

=

(

n− 2

k

)

(Mn−k−1 +Mn−k−2) .

The cases where m = 0, n are obvious and are omitted.

Corollary 2.3. The number of Grand-Dyck paths with semilength n, having k occurrences

of the string udu is equal to
(

n− 1

k

)

((n− k + 1)Mn−k−1 + (n− k − 1)Mn−k−2) .

For further information concerning the double sequence described in the previous
corollary, see A097692 in [22].
Remark. Corollary 2.2 is a Chung-Feller type theorem, since it shows that the number
of Grand-Dyck paths with semilength n having m flaws and k occurrences of the string
udu is independent of m, for m ∈ [1, n− 1].

We end this section by giving a combinatorial proof of this result. For this purpose
it is enough to construct a bijection from Gn,m to Gn,m+1 which preserves the number of
occurrences of the string udu, for every m ∈ [1, n− 2].

We observe that every a ∈ G \ D̄ (resp. a ∈ G \ D) can be written uniquely in the
form α = β1uγ1dβ2δγ2 (resp. α = β1δγ1dβ2uγ2) where β1, β2 ∈ D̄, γ1, γ2 ∈ D, δ ∈ G such
that δ = ε or δ starts and ends with u.
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The mapping ψ : G \ D̄ → G \ D with

ψ(β1uγ1dβ2δγ2) = β1δγ1dβ2uγ2

(see Figure 2) is a length-preserving bijection that increases the number of flaws by one.

β1

γ1

β2

δ γ2

ψ

β1

δ γ1

β2

γ2

Figure 2: The bijection ψ

Furthermore, |ψ(α)|udu = |α|udu for every α ∈ G \ D̄ with 1 6 p(α) 6 |a|u − 2.
Indeed, every occurrence of τ in α (resp. in ψ(α)) that does not lie entirely in one of

β1, β2, γ1, γ2 exists if and only if γ1 = β2 = ε and δγ2 6= ε (resp. γ1 = β2 = ε and β1δ 6= ε).
Then, if δ 6= ε, the required equality is obviously true. On the other hand, if δ = ε,

since |α|u − p(α) > 2 (resp. p(α) > 1), it follows that, if γ1 = ε (resp. β2 = ε), then
γ2 6= ε (resp. β1 6= ε). Hence, the required equality holds in this case, too.

Thus, the restriction of ψ on the set Gn,m gives the required bijection.

3 The string τ = duu

Let F (x, y, z) =
∑

a∈G

x|a|duuyp(a)z|a|u =
∑

m>0

fm(x, z)y
m, where fm(x, z) is the generating

function of the set of Grand-Dyck paths with m flaws, with respect to the number of
occurrences of τ = duu and to the semilength.

Let g0(x, z) be the generating function of D with respect to the number of occurrences
of τ̄ = udd and to the semilength. The Dyck path statistics “number of occurrences of
duu” and “number of occurences of udd” have been studied by Deutsch [9] and Sapounakis,
Tasoulas, Tsikouras [19] respectively, where it is stated that the corresponding generating
functions f0, g0 satisfy the equations

xzf 2
0 (x, z)− (1 + 2(x− 1)z)f0(x, z) + 1 + (x− 1)z = 0 (3.1)

and
z(1 + (x− 1)z)g20(x, z)− g0(x, z) + 1 = 0 (3.2)

with coefficients

an,k = [xkzn]f0 =

{

1, k = n = 0

2n−2k−1Ck

(

n−1
2k

)

, n > 1
(3.3)
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and

bn,k = [xkzn]g0 =







1, k = 0

1
n+1

(

n+1
k

)

n
∑

j=2k

(

j−k−1
k−1

)(

n+1−k
n−j

)

, k > 1.
(3.4)

From relations (3.1), (3.2) it follows that

f0(x, z) =
1 + 2(x− 1)z −

√
∆

2xz
and g0(x, z) =

1−
√
∆

2z(1 + (x− 1)z)
,

where ∆ = 1− 4z − 4z2(x− 1).
From the previous two equalities it follows that

f0(x, z) = (1− (x− 1)z(f0(x, z)− 1))g0(x, z) =
1

1− zg0(x, z)
. (3.5)

Theorem 3.1.

fm(x, z) = (1− (x− 1)z(f0(x, z)− 1))
∑

n>m

∑

k>0

bn,kx
kzn, m > 0.

Proof. We will first show that

F (x, y, z) =
g0(x, yz)

1− z(1 + (x− 1)yz)g0(x, z)g0(x, yz)
. (3.6)

For every α ∈ G \ D̄ with a = βuγdδ, β ∈ D̄, γ ∈ D, δ ∈ G we have that

|α|τ = |β|τ + |γ|τ + |δ|τ + [β ends with du] + [δ ∈ A]

where A = {a ∈ G : a starts with u2}.
From the previous equality, using the first non-flaw decomposition of G \ D̄, it follows

that

F (x, y, z) =
∑

β∈D̄

x|β|τyp(β)z|β|u

+ z
∑

β∈D̄

x|β|τ+[β ends with du]yp(β)z|β|u
∑

γ∈D

x|γ|τ z|γ|u
∑

δ∈G

x|δ|τ+[δ∈A]yp(δ)z|δ|u

= g0(x, yz) + z

(

g0(x, yz) + (x− 1)
∑

β∈D̄
β ends with du

x|β|τ (yz)|β|u
)

f0(x, z)
(

F (x, y, z)

+ (x− 1)A(x, y, z)
)

where A(x, y, z) is the generating function of the set A.
It follows that

F (x, y, z) = g0(x, yz) (1 + z(1 + (x− 1)yz)f0(x, z)(F (x, y, z) + (x− 1)A(x, y, z))) .
(3.7)
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Every a ∈ A can be written uniquely in the form a = uγdδ, where γ ∈ D \{ε}, δ ∈ G,
so that |a|τ = |γ|τ + |δ|τ + [δ ∈ A], giving

A(x, y, z) = z(f0(x, z)− 1)(F (x, y, z) + (x− 1)A(x, y, z)).

Hence,

A(x, y, z) =
z(f0(x, z)− 1)F (x, y, z)

1− (x− 1)z(f0(x, z)− 1)
.

By substituting the previous expression ofA(x, y, z) in relation (3.7), and using relation
(3.5), we obtain the required relation (3.6).

From relation (3.6), and using relations (3.2) and (3.5), we have that

F (x, y, z) =
g0(x, yz) (g0(x, z)− yg0(x, yz))

g0(x, z)−yg0(x, yz)−z(1+(x−1)yz)g20(x, z)g0(x, yz) + g0(x, z)(g0(x, yz)−1)

=
g0(x, z)− yg0(x, yz)

g0(x, z)− zg20(x, z)− y(1 + (x− 1)z2g20(x, z))

= (1− (x− 1)z(f0(x, z)− 1))
g0(x, z)− yg0(x, yz)

1− y
.

Since

[ym](g0(x, z)− yg0(x, yz)) =







g0(x, z), m = 0

−
∑

k>0

bm−1,kx
kzm−1, m > 1

it follows that

fm(x, z) = (1− (x− 1)z(f0(x, z)− 1)) [ym]

(

g0(x, z)− yg0(x, yz)

1− y

)

= (1− (x− 1)z(f0(x, z)− 1))

(

g0(x, z)−
m
∑

n=1

∑

k>0

bn−1,kx
kzn−1

)

= (1− (x− 1)z(f0(x, z)− 1))
∑

n>m

∑

k>0

bn,kx
kzn.

Corollary 3.2. The number of Grand-Dyck paths with semilength n, having m flaws and

k occurrences of the string duu is equal to

[xkzn]fm = bn,k +
n−m−1
∑

i=1

k
∑

j=0

ai,j (bn−i−1,k−j − bn−i−1,k−j−1) .

Proof. We first observe that

(f0(x, z)− 1)
∑

n>m

∑

k>0

bn,kx
kzn =

∑

n>m+1

∑

k>0

n−m
∑

j=1

k
∑

j=0

ai,jbn−i,k−jx
kzn
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and hence, by Theorem 3.1 it follows that

[xkzn]fm = bn,k +
n−m−1
∑

i=1

k
∑

j=0

ai,j (bn−i−1,k−j − bn−i−1,k−j−1) .

Remark From the previous corollary, it follows that the number of Grand-Dyck paths
with semilength n having m flaws and k occurrences of the string τ = udd is equal to

bn,k +
m−1
∑

i=1

k
∑

j=0

ai,j (bn−i−1,k−j − bn−i−1,k−j−1) .

Corollary 3.3. The number of Grand-Dyck paths with semilength n, having k occurrences

of the string duu is equal to

(n+ 1)bn,k +
n−1
∑

i=1

(n− i)
k
∑

j=0

ai,j (bn−i−1,k−j − bn−i−1,k−j−1) .

For further information concerning the double sequence described in the previous
corollary, see A051288 in [22].
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